Page MenuHomeHEPForge

No OneTemporary

diff --git a/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc b/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc
--- a/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc
+++ b/Decay/VectorMeson/VectorMeson2BaryonsDecayer.cc
@@ -1,362 +1,362 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the VectorMeson2BaryonsDecayer class.
//
#include "VectorMeson2BaryonsDecayer.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/ParVector.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "Herwig/Decay/TwoBodyDecayMatrixElement.h"
#include "ThePEG/Helicity/HelicityFunctions.h"
#include "ThePEG/Helicity/WaveFunction/RSSpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/RSSpinorBarWaveFunction.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
void VectorMeson2BaryonsDecayer::doinitrun() {
DecayIntegrator::doinitrun();
if(initialize()) {
for(unsigned int ix=0;ix<incoming_.size();++ix) {
if(mode(ix)) maxweight_[ix] = mode(ix)->maxWeight();
}
}
}
void VectorMeson2BaryonsDecayer::doinit() {
DecayIntegrator::doinit();
// check the parameters arew consistent
unsigned int isize=gm_.size();
if(isize!=incoming_.size() || isize!=outgoingf_.size()||
isize!=outgoinga_.size() || isize!= maxweight_.size()||
isize!= phi_.size() || isize!= ge_.size())
throw InitException() << "Inconsistent parameters in VectorMeson2"
<< "BaryonsDecayer::doiin() " << Exception::runerror;
// set up the integration channels
PhaseSpaceModePtr mode;
for(unsigned int ix=0;ix<incoming_.size();++ix) {
tPDPtr in = getParticleData(incoming_[ix]);
tPDVector out = {getParticleData(outgoingf_[ix]),
getParticleData(outgoinga_[ix])};
if(in&&out[0]&&out[1])
mode = new_ptr(PhaseSpaceMode(in,out,maxweight_[ix]));
else
mode=PhaseSpaceModePtr();
addMode(mode);
}
}
VectorMeson2BaryonsDecayer::VectorMeson2BaryonsDecayer()
: gm_ ({0.00163222616377,0.00158881446341,0.00163819673075,0.000944247071286,0.00141162244048 ,0.00150424724997 ,0.00093350341391,0.00107528142563,0.000860759359361,0.00103222902272,0.00098818310509,0.00119542938517 ,0.000941856299908,0.00108249234586 ,0.00102912698738 ,0.000561082932891,0.000526423800011,0.000500391020504}),
ge_ ({0.00135736265293,0.0015117595557 ,0.00136696938558,0.001988067505 ,0.000852659560453,0.000801719253474,0.00150640470181,0.00153402258271,0.0015323974485 ,0. ,0.00084599445285,0.000621041230885,0.000599393812308,0.000327664954147,0.000664382626732,0.000260326162249,0.000362882855521,0.00025226758188 }),
- phi_ ({0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. }),
+ phi_ ({0. ,0. ,0.740 ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. ,0. }),
incoming_ ({443 ,443 ,443 ,443 ,443 ,443 ,443 ,443 ,443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 ,100443 }),
outgoingf_({ 2212 , 2112 , 3122 , 3212 , 3312 , 3322 , 3114 , 3224 , 3214 , 2212 , 2112 , 3122 , 3212 , 3312 , 3322 , 3114 , 3224 , 3214 }),
outgoinga_({-2212 ,-2112 ,-3122 ,-3212 ,-3312 ,-3322 ,-3114 ,-3224 ,-3214 ,-2212 ,-2112 ,-3122 ,-3212 ,-3312 ,-3322 ,-3114 ,-3224 ,-3214 }),
maxweight_({1.6 ,1.6 ,2.1 ,1.5 ,2. ,2.1 ,7. ,10. ,6.5 ,1.7 ,1.7 ,2.5 ,2.5 ,2. ,2. ,30. ,35. ,41. })
{}
int VectorMeson2BaryonsDecayer::modeNumber(bool & cc,tcPDPtr parent,
const tPDVector & children) const {
if(children.size()!=2) return -1;
int id(parent->id());
int idbar = parent->CC() ? parent->CC()->id() : id;
int id1(children[0]->id());
int id1bar = children[0]->CC() ? children[0]->CC()->id() : id1;
int id2(children[1]->id());
int id2bar = children[1]->CC() ? children[1]->CC()->id() : id2;
int imode(-1);
unsigned int ix(0);
cc=false;
do {
if(incoming_[ix]==id ) {
if((id1 ==outgoingf_[ix]&&id2 ==outgoinga_[ix])||
(id2 ==outgoingf_[ix]&&id1 ==outgoinga_[ix])) imode=ix;
}
if(incoming_[ix]==idbar) {
if((id1bar==outgoingf_[ix]&&id2bar==outgoinga_[ix])||
(id2bar==outgoingf_[ix]&&id1bar==outgoinga_[ix])) {
imode=ix;
cc=true;
}
}
++ix;
}
while(imode<0&&ix<incoming_.size());
return imode;
}
IBPtr VectorMeson2BaryonsDecayer::clone() const {
return new_ptr(*this);
}
IBPtr VectorMeson2BaryonsDecayer::fullclone() const {
return new_ptr(*this);
}
void VectorMeson2BaryonsDecayer::persistentOutput(PersistentOStream & os) const {
os << gm_ << ge_ << phi_ << incoming_ << outgoingf_ << outgoinga_ << maxweight_;
}
void VectorMeson2BaryonsDecayer::persistentInput(PersistentIStream & is, int) {
is >> gm_ >> ge_ >> phi_ >> incoming_ >> outgoingf_ >> outgoinga_ >> maxweight_;
}
DescribeClass<VectorMeson2BaryonsDecayer,DecayIntegrator>
describeHerwigVectorMeson2BaryonsDecayer("Herwig::VectorMeson2BaryonsDecayer", "HwVMDecay.so");
void VectorMeson2BaryonsDecayer::Init() {
static ClassDocumentation<VectorMeson2BaryonsDecayer> documentation
("The VectorMeson2BaryonsDecayer class is designed for "
"the decay of vector mesons to baryons.");
static ParVector<VectorMeson2BaryonsDecayer,int> interfaceIncoming
("Incoming",
"The PDG code for the incoming particle",
&VectorMeson2BaryonsDecayer::incoming_,
0, 0, 0, -10000000, 10000000, false, false, true);
static ParVector<VectorMeson2BaryonsDecayer,int> interfaceOutcoming1
("OutgoingBaryons",
"The PDG code for the outgoing fermion",
&VectorMeson2BaryonsDecayer::outgoingf_,
0, 0, 0, -10000000, 10000000, false, false, true);
static ParVector<VectorMeson2BaryonsDecayer,int> interfaceOutcoming2
("OutgoingAntiBaryons",
"The PDG code for the second outgoing anti-fermion",
&VectorMeson2BaryonsDecayer::outgoinga_,
0, 0, 0, -10000000, 10000000, false, false, true);
static ParVector<VectorMeson2BaryonsDecayer,double> interfaceGM
("GM",
"The value of the GM form factor",
&VectorMeson2BaryonsDecayer::gm_, -1, 0., -1000., 1000.,
false, false, Interface::limited);
static ParVector<VectorMeson2BaryonsDecayer,double> interfaceGE
("GE",
"The value of the GE form factor",
&VectorMeson2BaryonsDecayer::ge_, -1, 0., -1000., 1000.,
false, false, Interface::limited);
static ParVector<VectorMeson2BaryonsDecayer,double> interfacePhi
("Phi",
"The phase of the GE form factor",
&VectorMeson2BaryonsDecayer::phi_, -1, 0., -Constants::pi, Constants::pi,
false, false, Interface::limited);
static ParVector<VectorMeson2BaryonsDecayer,double> interfaceMaxWeight
("MaxWeight",
"The maximum weight for the decay mode",
&VectorMeson2BaryonsDecayer::maxweight_,
0, 0, 0, -10000000, 10000000, false, false, true);
}
void VectorMeson2BaryonsDecayer::
constructSpinInfo(const Particle & part, ParticleVector decay) const {
unsigned int iferm(0),ianti(1);
if(outgoingf_[imode()]!=decay[iferm]->id()) swap(iferm,ianti);
VectorWaveFunction::constructSpinInfo(vectors_,const_ptr_cast<tPPtr>(&part),
incoming,true,false);
// outgoing fermion
if(decay[iferm]->dataPtr()->iSpin()==PDT::Spin1Half)
SpinorBarWaveFunction::
constructSpinInfo(wavebar_,decay[iferm],outgoing,true);
else
RSSpinorBarWaveFunction::
constructSpinInfo(wave2bar_,decay[iferm],outgoing,true);
// outgoing antifermion
if(decay[ianti]->dataPtr()->iSpin()==PDT::Spin1Half)
SpinorWaveFunction::
constructSpinInfo(wave_ ,decay[ianti],outgoing,true);
else
RSSpinorWaveFunction::
constructSpinInfo(wave2_,decay[ianti],outgoing,true);
}
double VectorMeson2BaryonsDecayer::me2(const int,const Particle & part,
const tPDVector & outgoing,
const vector<Lorentz5Momentum> & momenta,
MEOption meopt) const {
// initialze me
if(!ME())
ME(new_ptr(TwoBodyDecayMatrixElement(PDT::Spin1,outgoing[0]->iSpin(),outgoing[0]->iSpin())));
// fermion and antifermion
unsigned int iferm(0),ianti(1);
if(outgoingf_[imode()]!=outgoing[iferm]->id()) swap(iferm,ianti);
// initialization
if(meopt==Initialize) {
VectorWaveFunction::calculateWaveFunctions(vectors_,rho_,
const_ptr_cast<tPPtr>(&part),
incoming,false);
}
// spin 1/2
if(outgoing[0]->iSpin()==PDT::Spin1Half) {
wave_.resize(2);
wavebar_.resize(2);
for(unsigned int ix=0;ix<2;++ix) {
wavebar_[ix] = HelicityFunctions::dimensionedSpinorBar(-momenta[iferm],ix,Helicity::outgoing);
wave_ [ix] = HelicityFunctions::dimensionedSpinor (-momenta[ianti],ix,Helicity::outgoing);
}
// coefficients
Complex GM = gm_[imode()];
Complex GE = ge_[imode()]*exp(Complex(0.,phi_[imode()]));
LorentzPolarizationVector c2 = -2.*outgoing[0]->mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass()))*
(GM-GE)*(momenta[iferm]-momenta[ianti]);
// now compute the currents
LorentzPolarizationVector temp;
//double mesum(0.);
for(unsigned ix=0;ix<2;++ix) {
for(unsigned iy=0;iy<2;++iy) {
LorentzPolarizationVector temp = (GM*wave_[ix].vectorCurrent(wavebar_[iy])+c2*wave_[ix].scalar(wavebar_[iy]))/part.mass();
for(unsigned int iz=0;iz<3;++iz) {
if(iferm>ianti) (*ME())(iz,ix,iy)=vectors_[iz].dot(temp);
else (*ME())(iz,iy,ix)=vectors_[iz].dot(temp);
//mesum += norm(vectors_[iz].dot(temp));
}
}
}
double me = ME()->contract(rho_).real();
// cerr << "testing decay " << part.PDGName() << " -> " << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << "\n";
// cerr << "testing ME " << mesum/3. << " " << me << " " << 4./3.*(norm(GM)+2.*sqr(outgoing[0]->mass()/part.mass())*norm(GE)) << "\n";
// cerr << "testing gamma " << mesum/3./8./Constants::pi*sqrt(sqr(part.mass())-4.*sqr(outgoing[0]->mass()))/MeV << "\n";
// return the answer
return me;
}
// spin 3/2
else if(outgoing[0]->iSpin()==PDT::Spin3Half) {
wave2_.resize(4);
wave2bar_.resize(4);
wave_.resize(4);
wavebar_.resize(4);
RSSpinorBarWaveFunction swave(momenta[iferm],outgoing[iferm],Helicity::outgoing);
RSSpinorWaveFunction awave(momenta[ianti],outgoing[ianti],Helicity::outgoing);
LorentzPolarizationVector vtemp = part.momentum()/part.mass();
for(unsigned int ix=0;ix<4;++ix) {
swave.reset(ix);
awave.reset(ix);
wave2bar_[ix] = swave.dimensionedWf();
wavebar_ [ix] = wave2bar_[ix].dot(vtemp);
wave2_ [ix] = awave.dimensionedWf();
wave_ [ix] = wave2_[ix].dot(vtemp);
}
// coefficients
Complex GM = gm_[imode()];
Complex GE = ge_[imode()]*exp(Complex(0.,phi_[imode()]));
LorentzPolarizationVector c2 = -2.*outgoing[0]->mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass()))*
(GM-GE)*(momenta[iferm]-momenta[ianti]);
// now compute the currents
//double mesum(0.);
for(unsigned ix=0;ix<4;++ix) {
for(unsigned iy=0;iy<4;++iy) {
// q(al)q(be) piece
LorentzPolarizationVector temp2 = (GM*wave_[ix].vectorCurrent(wavebar_[iy])+c2*wave_[ix].scalar(wavebar_[iy]))*
2.*part.mass()/(4.*sqr(outgoing[0]->mass())-sqr(part.mass()));
// g(al)g(be) * GM-GE piece
LorentzPolarizationVector temp3 = wave2_[ix].generalScalar(wave2bar_[iy],1.,1.)*c2/part.mass();
// g(al)g(be) * gamma^mu
LorentzPolarizationVector temp1(GM/part.mass()*(wave2bar_[iy](0,3)*wave2_[ix](0,0) + wave2bar_[iy](0,2)*wave2_[ix](0,1) -
wave2bar_[iy](0,1)*wave2_[ix](0,2) - wave2bar_[iy](0,0)*wave2_[ix](0,3) +
wave2bar_[iy](1,3)*wave2_[ix](1,0) + wave2bar_[iy](1,2)*wave2_[ix](1,1) -
wave2bar_[iy](1,1)*wave2_[ix](1,2) - wave2bar_[iy](1,0)*wave2_[ix](1,3) +
wave2bar_[iy](2,3)*wave2_[ix](2,0) + wave2bar_[iy](2,2)*wave2_[ix](2,1) -
wave2bar_[iy](2,1)*wave2_[ix](2,2) - wave2bar_[iy](2,0)*wave2_[ix](2,3) -
wave2bar_[iy](3,3)*wave2_[ix](3,0) - wave2bar_[iy](3,2)*wave2_[ix](3,1) +
wave2bar_[iy](3,1)*wave2_[ix](3,2) + wave2bar_[iy](3,0)*wave2_[ix](3,3)),
Complex(0,1)*GM/part.mass()*(wave2bar_[iy](0,3)*wave2_[ix](0,0) - wave2bar_[iy](0,2)*wave2_[ix](0,1) -
wave2bar_[iy](0,1)*wave2_[ix](0,2) + wave2bar_[iy](0,0)*wave2_[ix](0,3) +
wave2bar_[iy](1,3)*wave2_[ix](1,0) - wave2bar_[iy](1,2)*wave2_[ix](1,1) -
wave2bar_[iy](1,1)*wave2_[ix](1,2) + wave2bar_[iy](1,0)*wave2_[ix](1,3) +
wave2bar_[iy](2,3)*wave2_[ix](2,0) - wave2bar_[iy](2,2)*wave2_[ix](2,1) -
wave2bar_[iy](2,1)*wave2_[ix](2,2) + wave2bar_[iy](2,0)*wave2_[ix](2,3) -
wave2bar_[iy](3,3)*wave2_[ix](3,0) + wave2bar_[iy](3,2)*wave2_[ix](3,1) +
wave2bar_[iy](3,1)*wave2_[ix](3,2) - wave2bar_[iy](3,0)*wave2_[ix](3,3)),
GM/part.mass()*(wave2bar_[iy](0,2)*wave2_[ix](0,0) - wave2bar_[iy](0,3)*wave2_[ix](0,1) -
wave2bar_[iy](0,0)*wave2_[ix](0,2) + wave2bar_[iy](0,1)*wave2_[ix](0,3) +
wave2bar_[iy](1,2)*wave2_[ix](1,0) - wave2bar_[iy](1,3)*wave2_[ix](1,1) -
wave2bar_[iy](1,0)*wave2_[ix](1,2) + wave2bar_[iy](1,1)*wave2_[ix](1,3) +
wave2bar_[iy](2,2)*wave2_[ix](2,0) - wave2bar_[iy](2,3)*wave2_[ix](2,1) -
wave2bar_[iy](2,0)*wave2_[ix](2,2) + wave2bar_[iy](2,1)*wave2_[ix](2,3) -
wave2bar_[iy](3,2)*wave2_[ix](3,0) + wave2bar_[iy](3,3)*wave2_[ix](3,1) +
wave2bar_[iy](3,0)*wave2_[ix](3,2) - wave2bar_[iy](3,1)*wave2_[ix](3,3)),
GM/part.mass()*(-wave2bar_[iy](0,2)*wave2_[ix](0,0) - wave2bar_[iy](0,3)*wave2_[ix](0,1) -
wave2bar_[iy](0,0)*wave2_[ix](0,2) - wave2bar_[iy](0,1)*wave2_[ix](0,3) -
wave2bar_[iy](1,2)*wave2_[ix](1,0) - wave2bar_[iy](1,3)*wave2_[ix](1,1) -
wave2bar_[iy](1,0)*wave2_[ix](1,2) - wave2bar_[iy](1,1)*wave2_[ix](1,3) -
wave2bar_[iy](2,2)*wave2_[ix](2,0) - wave2bar_[iy](2,3)*wave2_[ix](2,1) -
wave2bar_[iy](2,0)*wave2_[ix](2,2) - wave2bar_[iy](2,1)*wave2_[ix](2,3) +
wave2bar_[iy](3,2)*wave2_[ix](3,0) + wave2bar_[iy](3,3)*wave2_[ix](3,1) +
wave2bar_[iy](3,0)*wave2_[ix](3,2) + wave2bar_[iy](3,1)*wave2_[ix](3,3)));
LorentzPolarizationVector temp = temp1+temp2+temp3;
for(unsigned int iz=0;iz<3;++iz) {
if(iferm>ianti) (*ME())(iz,ix,iy)=vectors_[iz].dot(temp);
else (*ME())(iz,iy,ix)=vectors_[iz].dot(temp);
//mesum += norm(vectors_[iz].dot(temp));
}
}
}
double me = ME()->contract(rho_).real();
// cerr << "testing decay " << part.PDGName() << " -> " << outgoing[0]->PDGName() << " " << outgoing[1]->PDGName() << "\n";
// cerr << "testing ME " << mesum/3. << " " << me << " " << 1./3.*(40.*norm(GM)/9.+16.*sqr(outgoing[0]->mass()/part.mass())*norm(GE)) << "\n";
// return the answer
return me;
}
else
assert(false);
}
// output the setup information for the particle database
void VectorMeson2BaryonsDecayer::dataBaseOutput(ofstream & output,
bool header) const {
if(header) output << "update decayers set parameters=\"";
// parameters for the DecayIntegrator base class
DecayIntegrator::dataBaseOutput(output,false);
// the rest of the parameters
for(unsigned int ix=0;ix<incoming_.size();++ix) {
if(ix<initsize_) {
output << "newdef " << name() << ":Incoming " << ix << " "
<< incoming_[ix] << "\n";
output << "newdef " << name() << ":OutgoingFermion " << ix << " "
<< outgoingf_[ix] << "\n";
output << "newdef " << name() << ":OutgoingAntiFermion " << ix << " "
<< outgoinga_[ix] << "\n";
output << "newdef " << name() << ":GM " << ix << " "
<< gm_[ix] << "\n";
output << "newdef " << name() << ":GE " << ix << " "
<< ge_[ix] << "\n";
output << "newdef " << name() << ":Phi " << ix << " "
<< phi_[ix] << "\n";
output << "newdef " << name() << ":MaxWeight " << ix << " "
<< maxweight_[ix] << "\n";
}
else {
output << "insert " << name() << ":Incoming " << ix << " "
<< incoming_[ix] << "\n";
output << "insert " << name() << ":OutgoingFermion " << ix << " "
<< outgoingf_[ix] << "\n";
output << "insert " << name() << ":OutgoingAntiFermion " << ix << " "
<< outgoinga_[ix] << "\n";
output << "insert " << name() << ":GM " << ix << " "
<< gm_[ix] << "\n";
output << "insert " << name() << ":GE " << ix << " "
<< ge_[ix] << "\n";
output << "insert " << name() << ":Phi " << ix << " "
<< phi_[ix] << "\n";
output << "insert " << name() << ":MaxWeight " << ix << " "
<< maxweight_[ix] << "\n";
}
}
if(header) output << "\n\" where BINARY ThePEGName=\""
<< fullName() << "\";" << endl;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Jan 21, 2:12 AM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4208648
Default Alt Text
(18 KB)

Event Timeline