Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8308986
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
32 KB
Subscribers
None
View Options
diff --git a/include/HEJ/Tensor.hh b/include/HEJ/Tensor.hh
index a3fd0e8..d2aa6eb 100644
--- a/include/HEJ/Tensor.hh
+++ b/include/HEJ/Tensor.hh
@@ -1,214 +1,218 @@
/** \file
* \brief Tensor Template Class declaration.
*
* This file contains the declaration of the Tensor Template class. This
* is used to calculate some of the more complex currents within the
* W+Jets implementation particularly.
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <complex>
#include <valarray>
namespace CLHEP {
class HepLorentzVector;
}
class CCurrent;
namespace HEJ {
typedef std::complex<double> COM;
///@TODO put in some namespace
namespace detail {
static constexpr std::size_t d = 4;
//! \internal Compute integer powers at compile time
inline
constexpr std::size_t power(unsigned base, unsigned exp) {
if(exp == 0) return 1;
// use exponentiation by squaring
// there are potentially faster implementations using bit shifts
// but we don't really care because everything's done at compile time
// and this is easier to understand
const std::size_t sqrt = power(base, exp/2);
return (exp % 2)?base*sqrt*sqrt:sqrt*sqrt;
}
}
template <unsigned int N>
class Tensor{
public:
static constexpr std::size_t d = detail::d;
//! Constructor
Tensor() = default;
explicit Tensor(COM x);
//! Rank of Tensor
constexpr unsigned rank() const{
return N;
};
//! total number of entries
std::size_t size() const {
return components.size();
};
//! Tensor element with given indices
template<typename... Indices>
COM const & operator()(Indices... i) const;
//! Tensor element with given indices
template<typename... Indices>
COM & operator()(Indices... rest);
//! implicit conversion to complex number for rank 0 tensors (scalars)
operator COM() const;
Tensor<N> & operator*=(COM const & x);
Tensor<N> & operator/=(COM const & x);
Tensor<N> & operator+=(Tensor<N> const & T2);
Tensor<N> & operator-=(Tensor<N> const & T2);
template<unsigned M>
friend bool operator==(Tensor<M> const & T1, Tensor<M> const & T2);
//! Outer product of two tensors
template<unsigned M>
Tensor<N+M> outer(Tensor<M> const & T2) const;
//! Outer product of two tensors
template<unsigned K, unsigned M>
friend Tensor<K+M> outer(Tensor<K> const & T1, Tensor<M> const & T2);
/**
* \brief T^(mu1...mk..mN)T2_(muk) contract kth index, where k member of [1,N]
* @param T2 Tensor of Rank 1 to contract with.
* @param k int to contract Tensor T2 with from original Tensor.
* @returns T1.contract(T2,1) -> T1^(mu,nu,rho...)T2_mu
*/
Tensor<N-1> contract(Tensor<1> const & T2, int k);
//! Complex conjugate tensor
Tensor<N> & complex_conj();
std::array<COM, detail::power(d, N)> components;
private:
};
template<unsigned N>
Tensor<N> operator*(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator/(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator+(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
Tensor<N> operator-(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
bool operator==(Tensor<N> const & T1, Tensor<N> const & T2);
template<unsigned N>
bool operator!=(Tensor<N> const & T1, Tensor<N> const & T2);
namespace helicity {
enum Helicity {
minus, plus
};
}
using helicity::Helicity;
inline
constexpr Helicity flip(Helicity h) {
return (h == helicity::plus)?helicity::minus:helicity::plus;
}
/**
* \brief Returns diag(+---) metric
* @returns metric {(1,0,0,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1)}
*/
Tensor<2> metric();
/**
* \brief Calculates current <p1|mu|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu = <p1|mu|p2>
*
* The vector current is helicity conserving, so we only need to state
* one helicity.
*
* @note in/out configuration considered in calculation
*/
Tensor<1> current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Calculates current <p1|mu nu rho|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho|p2>
*
* @note in/out configuration considered in calculation
*/
Tensor<3> rank3_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Calculates current <p1|mu nu rho tau sigma|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho tau sigma|p2>
*
* @note in/out configuration considered in calculation
*/
Tensor<5> rank5_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Convert from CCurrent class
* @param j Current in CCurrent format
* @returns Current in Tensor Format
*/
Tensor<1> Construct1Tensor(CCurrent j);
/**
* \brief Convert from HLV class
* @param p Current in HLV format
* @returns Current in Tensor Format
*/
Tensor<1> Construct1Tensor(CLHEP::HepLorentzVector p);
/**
* \brief Construct Epsilon (Polarisation) Tensor
* @param k Momentum of incoming/outgoing boson
* @param ref Reference momentum for calculation
* @param pol Polarisation of boson
* @returns Polarisation Tensor E^mu
*/
- Tensor<1> eps(CLHEP::HepLorentzVector k, CLHEP::HepLorentzVector ref, Helicity pol);
+ Tensor<1> eps(
+ CLHEP::HepLorentzVector const & k,
+ CLHEP::HepLorentzVector const & ref,
+ Helicity pol
+ );
//! Initialises Tensor values by iterating over permutations of gamma matrices.
bool init_sigma_index();
}
// implementation of template functions
#include "HEJ/detail/Tensor_impl.hh"
diff --git a/src/Tensor.cc b/src/Tensor.cc
index 704a175..e416b25 100644
--- a/src/Tensor.cc
+++ b/src/Tensor.cc
@@ -1,738 +1,743 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Tensor.hh"
#include <array>
#include <iostream>
#include <valarray>
#include <CLHEP/Vector/LorentzVector.h>
#include "HEJ/currents.hh" // only for CCurrent (?)
namespace HEJ {
namespace{
// Tensor Template definitions
short int sigma_index5[1024];
short int sigma_index3[64];
std::valarray<COM> permfactor5;
std::valarray<COM> permfactor3;
short int helfactor5[2][1024];
short int helfactor3[2][64];
// map from a list of tensor lorentz indices onto a single index
// in d dimensional spacetime
// TODO: basically the same as detail::accumulate_idx
template<std::size_t N>
std::size_t tensor_to_list_idx(std::array<int, N> const & indices) {
std::size_t list_idx = 0;
for(std::size_t i = 1, factor = 1; i <= N; ++i) {
list_idx += factor*indices[N-i];
factor *= detail::d;
}
assert(list_idx < (1u << 2*N));
return list_idx;
}
// generate all unique perms of vectors {a,a,a,a,b}, return in perms
// set_permfactor is a bool which encodes the anticommutation relations of the
// sigma matrices namely if we have sigma0, set_permfactor= false because it
// commutes with all others otherwise we need to assign a minus sign to odd
// permutations, set in permfactor
// note, inital perm is always even
void perms41(int same4, int diff, std::vector<std::array<int,5>> & perms){
bool set_permfactor(true);
if(same4==0||diff==0)
set_permfactor=false;
for(int diffpos=0;diffpos<5;diffpos++){
std::array<int,5> tempvec={same4,same4,same4,same4,same4};
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor){
if(diffpos%2==1)
permfactor5[tensor_to_list_idx(tempvec)]=-1.;
}
}
}
// generate all unique perms of vectors {a,a,a,b,b}, return in perms
// note, inital perm is always even
void perms32(int same3, int diff, std::vector<std::array<int,5>> & perms){
bool set_permfactor(true);
if(same3==0||diff==0)
set_permfactor=false;
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=diffpos1+1;diffpos2<5;diffpos2++){
std::array<int,5> tempvec={same3,same3,same3,same3,same3};
tempvec[diffpos1]=diff;
tempvec[diffpos2]=diff;
perms.push_back(tempvec);
if(set_permfactor){
if((diffpos2-diffpos1)%2==0)
permfactor5[tensor_to_list_idx(tempvec)]=-1.;
}
}
}
}
// generate all unique perms of vectors {a,a,a,b,c}, return in perms
// we have two bools since there are three distinct type of sigma matrices to
// permute, so need to test if the 3xrepeated = sigma0 or if one of the
// singles is sigma0
// if diff1/diff2 are distinct, flipping them results in a change of perm,
// otherwise it'll be symmetric under flip -> encode this in set_permfactor2
// as long as diff2!=0 can ensure inital perm is even
// if diff2=0 then it is not possible to ensure inital perm even -> encode in
// bool signflip
void perms311(int same3, int diff1, int diff2,
std::vector<std::array<int,5>> & perms
){
bool set_permfactor2(true);
bool same0(false);
bool diff0(false);
bool signflip(false); // if true, inital perm is odd
if(same3==0) // is the repeated matrix sigma0?
same0 = true;
else if(diff2==0){ // is one of the single matrices sigma0
diff0=true;
if((diff1%3-same3)!=-1)
signflip=true;
} else if(diff1==0){
std::cerr<<"Note, only first and last argument may be zero"<<std::endl;
return;
}
// possible outcomes: tt, ft, tf
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=diffpos1+1;diffpos2<5;diffpos2++){
std::array<int,5> tempvec={same3,same3,same3,same3,same3};
tempvec[diffpos1]=diff1;
tempvec[diffpos2]=diff2;
perms.push_back(tempvec);
if(!same0 && !diff0){
// full antisymmetric under exchange of same3,diff1,diff2
if((diffpos2-diffpos1)%2==0){
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd perm
// if this perm is odd, swapping diff1<->diff2 automatically even
set_permfactor2=false;
} else {
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1); // even perm
// if this perm is even, swapping diff1<->diff2 automatically odd
set_permfactor2=true;
}
} else if(diff0){// one of the single matrices is sigma0
if(signflip){ // initial config is odd!
if(diffpos1%2==1){
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1); // even perm
// initally symmetric under diff1<->diff2 =>
// if this perm is even, automatically even for first diffpos2
set_permfactor2=false;
} else {
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd perm
// initally symmetric under diff1<->diff2 =>
// if this perm is odd, automatically odd for first diffpos2
set_permfactor2=true;
}
} else {// diff0=true, initial config is even
if(diffpos1%2==1){
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd perm
// initally symmetric under diff1<->diff2 =>
// if this perm is odd, automatically odd for first diffpos2
set_permfactor2=true;
} else {
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1); // even perm
// initally symmetric under diff1<->diff2 =>
// if this perm is even, automatically even for first diffpos2
set_permfactor2=false;
}
}
if((diffpos2-diffpos1-1)%2==1)
set_permfactor2=!set_permfactor2; // change to account for diffpos2
} else if(same0){
// the repeated matrix is sigma0
// => only relative positions of diff1, diff2 matter.
// always even before flip because diff1pos<diff2pos
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1);
// if this perm is odd, swapping diff1<->diff2 automatically odd
set_permfactor2=true;
}
tempvec[diffpos1]=diff2;
tempvec[diffpos2]=diff1;
perms.push_back(tempvec);
if(set_permfactor2)
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1);
else
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1);
}
}
} // end perms311
// generate all unique perms of vectors {a,a,b,b,c}, return in perms
void perms221(int same2a, int same2b, int diff,
std::vector<std::array<int,5>> & perms
){
bool set_permfactor1(true);
bool set_permfactor2(true);
if(same2b==0){
std::cerr<<"second entry in perms221() shouldn't be zero" <<std::endl;
return;
} else if(same2a==0)
set_permfactor1=false;
else if(diff==0)
set_permfactor2=false;
for(int samepos=0;samepos<5;samepos++){
int permcount = 0;
for(int samepos2=samepos+1;samepos2<5;samepos2++){
for(int diffpos=0;diffpos<5;diffpos++){
if(diffpos==samepos||diffpos==samepos2) continue;
std::array<int,5> tempvec={same2a,same2a,same2a,same2a,same2a};
tempvec[samepos]=same2b;
tempvec[samepos2]=same2b;
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor1){
if(set_permfactor2){// full anti-symmetry
if(permcount%2==1)
permfactor5[tensor_to_list_idx(tempvec)]=-1.;
} else { // diff is sigma0
if( ((samepos2-samepos-1)%3>0)
&& (abs(abs(samepos2-diffpos)-abs(samepos-diffpos))%3>0) )
permfactor5[tensor_to_list_idx(tempvec)]=-1.;
}
} else { // same2a is sigma0
if((diffpos>samepos) && (diffpos<samepos2))
permfactor5[tensor_to_list_idx(tempvec)]=-1.;
}
permcount++;
}
}
}
}
// generate all unique perms of vectors {a,a,b,b,c}, return in perms
// there must be a sigma zero if we have 4 different matrices in string
// bool is true if sigma0 is the repeated matrix
void perms2111(int same2, int diff1,int diff2,int diff3,
std::vector<std::array<int,5>> & perms
){
bool twozero(false);
if(same2==0)
twozero=true;
else if (diff1!=0){
std::cerr<<"One of first or second argurments must be a zero"<<std::endl;
return;
} else if(diff2==0|| diff3==0){
std::cerr<<"Only first and second arguments may be a zero."<<std::endl;
return;
}
int permcount = 0;
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=0;diffpos2<5;diffpos2++){
if(diffpos2==diffpos1) continue;
for(int diffpos3=0;diffpos3<5;diffpos3++){
if(diffpos3==diffpos2||diffpos3==diffpos1) continue;
std::array<int,5> tempvec={same2,same2,same2,same2,same2};
tempvec[diffpos1]=diff1;
tempvec[diffpos2]=diff2;
tempvec[diffpos3]=diff3;
perms.push_back(tempvec);
if(twozero){// don't care about exact positions of singles, just order
if(diffpos2>diffpos3 && diffpos3>diffpos1)
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1);// odd
else if(diffpos1>diffpos2 && diffpos2>diffpos3)
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1);// odd
else if(diffpos3>diffpos1 && diffpos1>diffpos2)
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1);// odd
else
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1);// evwn
} else {
if(permcount%2==1)
permfactor5[tensor_to_list_idx(tempvec)]=-1.*COM(0,1);
else
permfactor5[tensor_to_list_idx(tempvec)]=COM(0,1);
}
permcount++;
}
}
}
}
void perms21(int same, int diff, std::vector<std::array<int,3>> & perms){
bool set_permfactor(true);
if(same==0||diff==0)
set_permfactor=false;
for(int diffpos=0; diffpos<3;diffpos++){
std::array<int,3> tempvec={same,same,same};
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor && diffpos==1)
permfactor3[tensor_to_list_idx(tempvec)]=-1.;
}
}
void perms111(int diff1, int diff2, int diff3,
std::vector<std::array<int,3>> & perms
){
bool sig_zero(false);
if(diff1==0)
sig_zero=true;
else if(diff2==0||diff3==0){
std::cerr<<"Only first argument may be a zero."<<std::endl;
return;
}
int permcount=0;
for(int pos1=0;pos1<3;pos1++){
for(int pos2=pos1+1;pos2<3;pos2++){
std::array<int,3> tempvec={diff1,diff1,diff1};
tempvec[pos1]=diff2;
tempvec[pos2]=diff3;
perms.push_back(tempvec);
if(sig_zero){
permfactor3[tensor_to_list_idx(tempvec)]=1.*COM(0,1); // even
} else if(permcount%2==1){
permfactor3[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd
} else {
permfactor3[tensor_to_list_idx(tempvec)]=1.*COM(0,1); // even
}
tempvec[pos1]=diff3;
tempvec[pos2]=diff2;
perms.push_back(tempvec);
if(sig_zero){
permfactor3[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd
} else if(permcount%2==1){
permfactor3[tensor_to_list_idx(tempvec)]=1.*COM(0,1); // even
} else {
permfactor3[tensor_to_list_idx(tempvec)]=-1.*COM(0,1); // odd
}
permcount++;
}
}
}
void SpinorO(CLHEP::HepLorentzVector p, Helicity hel, COM *sp){
// sp is pointer to COM sp[2]
COM pplus = p.e() +p.z();
COM pminus = p.e() -p.z();
COM sqpp= sqrt(pplus);
COM sqpm= sqrt(pminus);
COM pperp = p.x() + COM(0,1)*p.y();
if(hel == helicity::plus){
sp[0] = sqpp;
sp[1] = sqpm*pperp/abs(pperp);
} else {
sp[0] = sqpm*conj(pperp)/abs(pperp);
sp[1] = -sqpp;
}
}
void SpinorIp(COM sqpp, Helicity hel, COM *sp){
// if hel=+
if(hel == helicity::plus){
sp[0] = sqpp;
sp[1] = 0.;
} else {
sp[0] = 0.;
sp[1] = -sqpp;
}
}
void SpinorIm(COM sqpm, Helicity hel, COM *sp){
// if hel=+
if(hel == helicity::plus){
sp[0] = 0;
sp[1] = -sqpm;
} else {
sp[0] = -sqpm;
sp[1] = 0.;
}
}
void Spinor(CLHEP::HepLorentzVector p, Helicity hel, COM *sp){
COM pplus = p.e() +p.z();
COM pminus = p.e() -p.z();
// If incoming along +ve z
if (pminus==0.){
COM sqpp= sqrt(pplus);
SpinorIp(sqpp,hel,sp);
}
// If incoming along -ve z
else if(pplus==0.){
COM sqpm= sqrt(pminus);
SpinorIm(sqpm,hel,sp);
}
// Outgoing
else {
SpinorO(p,hel,sp);
}
}
COM perp(CLHEP::HepLorentzVector const & p) {
return COM{p.x(), p.y()};
}
COM perp_hat(CLHEP::HepLorentzVector const & p) {
const COM p_perp = perp(p);
if(p_perp == COM{0., 0.}) return -1.;
return p_perp/std::abs(p_perp);
}
+ COM angle(CLHEP::HepLorentzVector const & pi, CLHEP::HepLorentzVector const & pj) {
+ return
+ + std::sqrt(COM{pi.minus()*pj.plus()})*perp_hat(pi)
+ - std::sqrt(COM{pi.plus()*pj.minus()})*perp_hat(pj);
+ }
+
+ COM square(CLHEP::HepLorentzVector const & pi, CLHEP::HepLorentzVector const & pj) {
+ return std::conj(angle(pi, pj));
+ }
+
} // anonymous namespace
Tensor<2> metric(){
static const Tensor<2> g = [](){
Tensor<2> g(0.);
g(0,0) = 1.;
g(1,1) = -1.;
g(2,2) = -1.;
g(3,3) = -1.;
return g;
}();
return g;
}
// <1|mu|2>
// see eqs. (48), (49) in developer manual
Tensor<1> current(
CLHEP::HepLorentzVector const & p,
CLHEP::HepLorentzVector const & q,
Helicity h
){
using namespace helicity;
const COM p_perp_hat = perp_hat(p);
const COM q_perp_hat = perp_hat(q);
std::array<std::array<COM, 2>, 2> sqrt_pq;
sqrt_pq[minus][minus] = std::sqrt(COM{p.minus()*q.minus()})*p_perp_hat*conj(q_perp_hat);
sqrt_pq[minus][plus] = std::sqrt(COM{p.minus()*q.plus()})*p_perp_hat;
sqrt_pq[plus][minus] = std::sqrt(COM{p.plus()*q.minus()})*conj(q_perp_hat);
sqrt_pq[plus][plus] = std::sqrt(COM{p.plus()*q.plus()});
Tensor<1> j;
j(0) = sqrt_pq[plus][plus] + sqrt_pq[minus][minus];
j(1) = sqrt_pq[plus][minus] + sqrt_pq[minus][plus];
j(2) = COM{0., 1.}*(sqrt_pq[plus][minus] - sqrt_pq[minus][plus]);
j(3) = sqrt_pq[plus][plus] - sqrt_pq[minus][minus];
return (h == minus)?j:j.complex_conj();
}
// <1|mu nu sigma|2>
// TODO: how does this work?
Tensor<3> rank3_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
){
const CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
const CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
auto j = HEJ::current(p1new, p2new, h);
if(h == helicity::minus) {
j *= -1;
j(0) *= -1;
}
Tensor<3> j3;
for(std::size_t tensor_idx=0; tensor_idx < j3.size(); ++tensor_idx){
const double hfact = helfactor3[h][tensor_idx];
j3.components[tensor_idx] = j(sigma_index3[tensor_idx]) * hfact
* permfactor3[tensor_idx];
}
return j3;
}
// <1|mu nu sigma tau rho|2>
Tensor<5> rank5_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
){
const CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
const CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
auto j = HEJ::current(p1new, p2new, h);
if(h == helicity::minus) {
j *= -1;
j(0) *= -1;
}
Tensor<5> j5;
for(std::size_t tensor_idx=0; tensor_idx < j5.size(); ++tensor_idx){
const double hfact = helfactor5[h][tensor_idx];
j5.components[tensor_idx] = j(sigma_index5[tensor_idx]) * hfact
* permfactor5[tensor_idx];
}
return j5;
}
Tensor<1> Construct1Tensor(CCurrent j){
Tensor<1> newT;
newT.components={j.c0,j.c1,j.c2,j.c3};
return newT;
}
Tensor<1> Construct1Tensor(CLHEP::HepLorentzVector p){
Tensor<1> newT;
newT.components={p.e(),p.x(),p.y(),p.z()};
return newT;
}
- Tensor<1> eps(CLHEP::HepLorentzVector k, CLHEP::HepLorentzVector ref, Helicity pol){
-
- Tensor<1> polvec;
- COM spk[2];
- COM spr[2];
- COM denom;
-
- CLHEP::HepLorentzVector knew{ k.e()<0?-k:k };
-
- Spinor(knew, pol, spk);
- Spinor(ref, flip(pol), spr);
- denom = pow(-1.,pol)*sqrt(2)*(conj(spr[0])*spk[0] + conj(spr[1])*spk[1]);
- polvec = current(ref,knew,flip(pol))/denom;
-
- return polvec;
+ // polarisation vector according to eq. (55) in developer manual
+ Tensor<1> eps(
+ CLHEP::HepLorentzVector const & pg,
+ CLHEP::HepLorentzVector const & pr,
+ Helicity pol
+ ){
+ if(pol == helicity::plus) {
+ return current(pr, pg, pol)/(std::sqrt(2)*square(pg, pr));
+ }
+ return current(pr, pg, pol)/(std::sqrt(2)*angle(pg, pr));
}
// slow function! - but only need to evaluate once.
bool init_sigma_index(){
// initialize permfactor(3) to list of ones (change to minus one for each odd
// permutation and multiply by i for all permutations in perms2111, perms311,
// perms111)
permfactor5.resize(1024,1.);
permfactor3.resize(64,1.);
// first set sigma_index (5)
std::vector<std::array<int,5>> sigma0indices;
std::vector<std::array<int,5>> sigma1indices;
std::vector<std::array<int,5>> sigma2indices;
std::vector<std::array<int,5>> sigma3indices;
// need to generate all possible permuations of {i,j,k,l,m}
// where each index can be {0,1,2,3,4}
// 1024 possibilities
// perms with 5 same
sigma0indices.push_back({0,0,0,0,0});
sigma1indices.push_back({1,1,1,1,1});
sigma2indices.push_back({2,2,2,2,2});
sigma3indices.push_back({3,3,3,3,3});
// perms with 4 same
perms41(1,0,sigma0indices);
perms41(2,0,sigma0indices);
perms41(3,0,sigma0indices);
perms41(0,1,sigma1indices);
perms41(2,1,sigma1indices);
perms41(3,1,sigma1indices);
perms41(0,2,sigma2indices);
perms41(1,2,sigma2indices);
perms41(3,2,sigma2indices);
perms41(0,3,sigma3indices);
perms41(1,3,sigma3indices);
perms41(2,3,sigma3indices);
// perms with 3 same, 2 same
perms32(0,1,sigma0indices);
perms32(0,2,sigma0indices);
perms32(0,3,sigma0indices);
perms32(1,0,sigma1indices);
perms32(1,2,sigma1indices);
perms32(1,3,sigma1indices);
perms32(2,0,sigma2indices);
perms32(2,1,sigma2indices);
perms32(2,3,sigma2indices);
perms32(3,0,sigma3indices);
perms32(3,1,sigma3indices);
perms32(3,2,sigma3indices);
// perms with 3 same, 2 different
perms311(1,2,3,sigma0indices);
perms311(2,3,1,sigma0indices);
perms311(3,1,2,sigma0indices);
perms311(0,2,3,sigma1indices);
perms311(2,3,0,sigma1indices);
perms311(3,2,0,sigma1indices);
perms311(0,3,1,sigma2indices);
perms311(1,3,0,sigma2indices);
perms311(3,1,0,sigma2indices);
perms311(0,1,2,sigma3indices);
perms311(1,2,0,sigma3indices);
perms311(2,1,0,sigma3indices);
perms221(1,2,0,sigma0indices);
perms221(1,3,0,sigma0indices);
perms221(2,3,0,sigma0indices);
perms221(0,2,1,sigma1indices);
perms221(0,3,1,sigma1indices);
perms221(2,3,1,sigma1indices);
perms221(0,1,2,sigma2indices);
perms221(0,3,2,sigma2indices);
perms221(1,3,2,sigma2indices);
perms221(0,1,3,sigma3indices);
perms221(0,2,3,sigma3indices);
perms221(1,2,3,sigma3indices);
perms2111(0,1,2,3,sigma0indices);
perms2111(1,0,2,3,sigma1indices);
perms2111(2,0,3,1,sigma2indices);
perms2111(3,0,1,2,sigma3indices);
if(sigma0indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma0indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma1indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma1indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma2indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma2indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma3indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma3indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
}
for(int i=0;i<256;i++){
// map each unique set of tensor indices to its position in a list
int index0 = tensor_to_list_idx(sigma0indices.at(i));
int index1 = tensor_to_list_idx(sigma1indices.at(i));
int index2 = tensor_to_list_idx(sigma2indices.at(i));
int index3 = tensor_to_list_idx(sigma3indices.at(i));
sigma_index5[index0]=0;
sigma_index5[index1]=1;
sigma_index5[index2]=2;
sigma_index5[index3]=3;
short int sign[4]={1,-1,-1,-1};
// plus->true->1
helfactor5[1][index0] = sign[sigma0indices.at(i)[1]]
* sign[sigma0indices.at(i)[3]];
helfactor5[1][index1] = sign[sigma1indices.at(i)[1]]
* sign[sigma1indices.at(i)[3]];
helfactor5[1][index2] = sign[sigma2indices.at(i)[1]]
* sign[sigma2indices.at(i)[3]];
helfactor5[1][index3] = sign[sigma3indices.at(i)[1]]
* sign[sigma3indices.at(i)[3]];
// minus->false->0
helfactor5[0][index0] = sign[sigma0indices.at(i)[0]]
* sign[sigma0indices.at(i)[2]]
* sign[sigma0indices.at(i)[4]];
helfactor5[0][index1] = sign[sigma1indices.at(i)[0]]
* sign[sigma1indices.at(i)[2]]
* sign[sigma1indices.at(i)[4]];
helfactor5[0][index2] = sign[sigma2indices.at(i)[0]]
* sign[sigma2indices.at(i)[2]]
* sign[sigma2indices.at(i)[4]];
helfactor5[0][index3] = sign[sigma3indices.at(i)[0]]
* sign[sigma3indices.at(i)[2]]
* sign[sigma3indices.at(i)[4]];
}
// now set sigma_index3
std::vector<std::array<int,3>> sigma0indices3;
std::vector<std::array<int,3>> sigma1indices3;
std::vector<std::array<int,3>> sigma2indices3;
std::vector<std::array<int,3>> sigma3indices3;
// perms with 3 same
sigma0indices3.push_back({0,0,0});
sigma1indices3.push_back({1,1,1});
sigma2indices3.push_back({2,2,2});
sigma3indices3.push_back({3,3,3});
// 2 same
perms21(1,0,sigma0indices3);
perms21(2,0,sigma0indices3);
perms21(3,0,sigma0indices3);
perms21(0,1,sigma1indices3);
perms21(2,1,sigma1indices3);
perms21(3,1,sigma1indices3);
perms21(0,2,sigma2indices3);
perms21(1,2,sigma2indices3);
perms21(3,2,sigma2indices3);
perms21(0,3,sigma3indices3);
perms21(1,3,sigma3indices3);
perms21(2,3,sigma3indices3);
// none same
perms111(1,2,3,sigma0indices3);
perms111(0,2,3,sigma1indices3);
perms111(0,3,1,sigma2indices3);
perms111(0,1,2,sigma3indices3);
if(sigma0indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma0indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma1indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma1indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma2indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma2indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma3indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma3indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
}
for(int i=0;i<16;i++){
int index0 = tensor_to_list_idx(sigma0indices3.at(i));
int index1 = tensor_to_list_idx(sigma1indices3.at(i));
int index2 = tensor_to_list_idx(sigma2indices3.at(i));
int index3 = tensor_to_list_idx(sigma3indices3.at(i));
sigma_index3[index0]=0;
sigma_index3[index1]=1;
sigma_index3[index2]=2;
sigma_index3[index3]=3;
short int sign[4]={1,-1,-1,-1};
// plus->true->1
helfactor3[1][index0] = sign[sigma0indices3.at(i)[1]];
helfactor3[1][index1] = sign[sigma1indices3.at(i)[1]];
helfactor3[1][index2] = sign[sigma2indices3.at(i)[1]];
helfactor3[1][index3] = sign[sigma3indices3.at(i)[1]];
// minus->false->0
helfactor3[0][index0] = sign[sigma0indices3.at(i)[0]]
* sign[sigma0indices3.at(i)[2]];
helfactor3[0][index1] = sign[sigma1indices3.at(i)[0]]
* sign[sigma1indices3.at(i)[2]];
helfactor3[0][index2] = sign[sigma2indices3.at(i)[0]]
* sign[sigma2indices3.at(i)[2]];
helfactor3[0][index3] = sign[sigma3indices3.at(i)[0]]
* sign[sigma3indices3.at(i)[2]];
}
return true;
} // end init_sigma_index
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 1:51 PM (15 h, 38 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023027
Default Alt Text
(32 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment