Page MenuHomeHEPForge

HalfHalfOneSplitFn.h
No OneTemporary

HalfHalfOneSplitFn.h

// -*- C++ -*-
//
// HalfHalfOneSplitFn.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2019 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_HalfHalfOneSplitFn_H
#define HERWIG_HalfHalfOneSplitFn_H
//
// This is the declaration of the HalfHalfOneSplitFn class.
//
#include "Herwig/Shower/QTilde/SplittingFunctions/SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/**\ingroup Shower
*
* This class provides the concrete implementation of the exact leading-order
* splitting function for \f$\frac12\to q\frac12 1\f$.
*
* In this case the splitting function is given by
* \f[P(z,t) =C\left(\frac{1+z^2}{1-z}-2\frac{m^2_q}{t}\right),\f]
* where \f$C\f$ is the corresponding colour factor.
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = \frac{2C}{1-z},\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z = -2C\ln(1-z),\f]
* and its inverse is
* \f[1-\exp\left(\frac{r}{2C}\right).\f]
*
* @see \ref HalfHalfOneSplitFnInterfaces "The interfaces"
* defined for HalfHalfOneSplitFn.
*/
class HalfHalfOneSplitFn: public SplittingFunction {
public:
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P(z,t)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
* @param rho The spin density matrix
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass, const RhoDMatrix & rho) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,t)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
* @param rho The spin density matrix
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass, const RhoDMatrix & rho) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
/**
* Method to calculate the azimuthal angle
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
/**
* Method to calculate the azimuthal angle for backward evolution
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
/**
* Calculate the matrix element for the splitting
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
*/
virtual DecayMEPtr matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi, bool timeLike);
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
HalfHalfOneSplitFn & operator=(const HalfHalfOneSplitFn &) = delete;
};
}
#endif /* HERWIG_HalfHalfOneSplitFn_H */

File Metadata

Mime Type
text/x-c++
Expires
Sat, May 3, 6:57 AM (18 h, 44 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4978961
Default Alt Text
HalfHalfOneSplitFn.h (6 KB)

Event Timeline