Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879259
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
37 KB
Subscribers
None
View Options
diff --git a/MatrixElement/General/GeneralHardME.h b/MatrixElement/General/GeneralHardME.h
--- a/MatrixElement/General/GeneralHardME.h
+++ b/MatrixElement/General/GeneralHardME.h
@@ -1,517 +1,522 @@
// -*- C++ -*-
//
// GeneralHardME.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_GeneralHardME_H
#define HERWIG_GeneralHardME_H
//
// This is the declaration of the GeneralHardME class.
//
#include "Herwig++/MatrixElement/HwMEBase.h"
#include "ThePEG/Utilities/Exception.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/Models/General/HPDiagram.h"
#include "Herwig++/MatrixElement/ProductionMatrixElement.h"
#include "Herwig++/MatrixElement/HardVertex.h"
#include "ThePEG/EventRecord/SpinInfo.h"
#include "ThePEG/PDF/PolarizedBeamParticleData.h"
#include "GeneralHardME.fh"
namespace Herwig {
using namespace ThePEG;
using Helicity::VertexBasePtr;
/**
* This defines the GeneralHardME class that is designed to serve as a
* base class for matrix elements of specific spin structures when those
* structures are created by a a general model, i.e. a SUSY production
* ME. It stores a vector of diagram structures that contain the required
* to calculate the matrix element.
*
* @see HwMEBase
*/
class GeneralHardME: public HwMEBase {
public:
/**
* Convenient typedef for size_type of HPDiagram vector
*/
typedef vector<HPDiagram>::size_type HPCount;
/**
* Enum for the possible colour structures
*/
enum ColourStructure {UNDEFINED,
Colour11to11,Colour11to33bar,Colour11to88,
Colour33to33,Colour33barto11,Colour33barto33bar,
Colour33barto66bar, Colour33barto6bar6,
Colour33to61, Colour3bar3barto6bar1,
Colour33to16, Colour3bar3barto16bar,
Colour38to3bar6, Colour38to63bar,
Colour33barto18,Colour33barto81,Colour33barto88,
Colour38to13,Colour38to31,
Colour38to83,Colour38to38,
Colour3bar3barto3bar3bar,
Colour3bar8to13bar,Colour3bar8to3bar1,
Colour3bar8to83bar,Colour3bar8to3bar8,
Colour88to11,Colour88to33bar,
Colour88to66bar,Colour88to88,
Colour88to18,Colour88to81};
public:
/**
* The default constructor.
*/
GeneralHardME();
public:
/** @name Virtual functions required by the MEBase class. */
//@{
/**
* Return the order in \f$\alpha_S\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInAlphaS() const;
/**
* Return the order in \f$\alpha_{EW}\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInAlphaEW() const;
/**
* The matrix element for the kinematical configuration
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
* @return the matrix element scaled with sHat() to give a
* dimensionless number.
*/
virtual double me2() const = 0;
/**
* Return the scale associated with the last set phase space point.
*/
virtual Energy2 scale() const {
if(scaleChoice_==0) {
return scaleFactor_*sHat();
}
- else {
- assert( scaleChoice_== 1 );
+ else if(scaleChoice_==1) {
Energy2 mbar = 0.5*(meMomenta()[2].mass2()+meMomenta()[3].mass2());
Energy2 t = 0.5*(tHat()-mbar);
Energy2 u = 0.5*(uHat()-mbar);
Energy2 s = 0.5*sHat();
return scaleFactor_*4.*s*t*u/(s*s+t*t+u*u);
}
+ else if(scaleChoice_ ==2) {
+ Energy2 scale1 = meMomenta()[2].mass2()+meMomenta()[2].perp2();
+ Energy2 scale2 = meMomenta()[3].mass2()+meMomenta()[3].perp2();
+ return scaleFactor_*sqrt(scale1*scale2);
+ }
+ else assert(false);
}
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const;
/**
* Get diagram selector. With the information previously supplied with the
* setKinematics method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
* @param dv the diagrams to be weighted.
* @return a Selector relating the given diagrams to their weights.
*/
virtual Selector<DiagramIndex>
diagrams(const DiagramVector & dv) const;
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
* @param diag the diagram chosen.
* @return the possible colour geometries weighted by their
* relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const;
//@}
/**
* Set the diagrams and matrix of colour factors.
* @param process vector of MEDiagram with information that
* will allow the diagrams to be created in the specific matrix element
* @param colour The colour structure for the process
* @param debug Whether to compare the numerical answer to an analytical
* formula (This is only stored for certain processes. It is intended
* for quick checks of the matrix elements).
* @param scaleOption The option of what scale to use
* @param scaleFactor The prefactor for the scale
*/
void setProcessInfo(const vector<HPDiagram> & process,
ColourStructure colour, bool debug,
unsigned int scaleOption,
double scaleFactor);
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object. Called in the run phase just before
* a run begins.
*/
virtual void doinitrun();
//@}
protected:
/**
* A debugging function to test the value of me2 against an
* analytic function. This is to be overidden in an inheriting class.
*/
virtual void debug(double ) const {}
protected:
/**
* Access the HPDiagrams that store the required information
* to create the diagrams
*/
const vector<HPDiagram> & getProcessInfo() const {
return diagrams_;
}
/**
* Return the incoming pair
* @return Pair of particle ids for the incoming particles
*/
pair<long, long> getIncoming() const {
return incoming_;
}
/**
* Return the outgoing pair
* @return Pair of particle ids for the outgoing particles
*/
pair<long, long> getOutgoing() const {
return outgoing_;
}
/**
* Return the matrix of colour factors
*/
const vector<DVector> & getColourFactors() const {
return colour_;
}
/**
* Get the number of diagrams in this process
*/
HPCount numberOfDiags() const {
return numberOfDiagrams_;
}
/**
* Access number of colour flows
*/
size_t numberOfFlows() const {
return numberOfFlows_;
}
/**
* Whether to print the debug information
*/
bool debugME() const {
return debug_;
}
/**
* Set/Get Info on the selected diagram and colour flow
*/
//@{
/**
* Colour flow
*/
unsigned int colourFlow() const {return flow_;}
/**
* Colour flow
*/
void colourFlow(unsigned int flow) const {flow_=flow;}
/**
* Diagram
*/
unsigned int diagram() const {return diagram_;}
/**
* Diagram
*/
void diagram(unsigned int diag) const {diagram_=diag;}
//@}
/**
* Calculate weight and select colour flow
*/
double selectColourFlow(vector<double> & flow,
vector<double> & me,double average) const;
/**
* Access to the colour flow matrix element
*/
vector<ProductionMatrixElement> & flowME() const {
return flowME_;
}
/**
* Access to the diagram matrix element
*/
vector<ProductionMatrixElement> & diagramME() const {
return diagramME_;
}
/**
* Access to the colour structure
*/
ColourStructure colour() const {return colourStructure_;}
/**
* Extract the paricles from the subprocess
*/
ParticleVector hardParticles(tSubProPtr subp) {
ParticleVector output(4);
output[0] = subp->incoming().first;
output[1] = subp->incoming().second;
output[2] = subp->outgoing()[0];
output[3] = subp->outgoing()[1];
//ensure particle ordering is the same as it was when
//the diagrams were created
if( output[0]->id() != getIncoming().first )
swap(output[0], output[1]);
if( output[2]->id() != getOutgoing().first )
swap(output[2], output[3]);
// return answer
return output;
}
/**
* Set the rescaled momenta
*/
void setRescaledMomenta(const ParticleVector & external) {
cPDVector data(4);
vector<Lorentz5Momentum> momenta(4);
for( size_t i = 0; i < 4; ++i ) {
data[i] = external[i]->dataPtr();
momenta[i] = external[i]->momentum();
}
rescaleMomenta(momenta, data);
}
/**
* Create the vertes
*/
void createVertex(ProductionMatrixElement & me,
ParticleVector & external) {
HardVertexPtr hardvertex = new_ptr(HardVertex());
hardvertex->ME(me);
for(ParticleVector::size_type i = 0; i < 4; ++i) {
tSpinPtr spin = external[i]->spinInfo();
if(i<2) {
tcPolarizedBeamPDPtr beam =
dynamic_ptr_cast<tcPolarizedBeamPDPtr>(external[i]->dataPtr());
if(beam) spin->rhoMatrix() = beam->rhoMatrix();
}
spin->productionVertex(hardvertex);
}
}
/**
* Initialize the storage of the helicity matrix elements
*/
void initializeMatrixElements(PDT::Spin in1, PDT::Spin in2,
PDT::Spin out1, PDT::Spin out2) {
flowME().resize(numberOfFlows(),
ProductionMatrixElement(in1,in2,out1,out2));
diagramME().resize(numberOfDiags(),
ProductionMatrixElement(in1,in2,out1,out2));
}
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static AbstractClassDescription<GeneralHardME> initGeneralHardME;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
GeneralHardME & operator=(const GeneralHardME &);
private:
/**
* External particles
*/
//@{
/**
* Store incoming particles
*/
pair<long, long> incoming_;
/**
* Store the outgoing particles
*/
pair<long, long> outgoing_;
//@}
/**
* Diagrams
*/
//@{
/**
* Store all diagrams as a vector of structures
*/
vector<HPDiagram> diagrams_;
/**
* Store the number of diagrams for fast retrieval
*/
HPCount numberOfDiagrams_;
//@}
/**
* Colour information
*/
//@{
/**
* The colour structure
*/
ColourStructure colourStructure_;
/**
* Store colour factors for ME calc.
*/
vector<DVector> colour_;
/**
* The number of colourflows.
*/
unsigned int numberOfFlows_;
//@}
/**
* Whether to test the value of me2 against the analytical function
*/
bool debug_;
/**
* The scale chocie
*/
unsigned int scaleChoice_;
/**
* The scale factor
*/
double scaleFactor_;
/**
* Info on the selected diagram and colour flow
*/
//@{
/**
* Colour flow
*/
mutable unsigned int flow_;
/**
* Diagram
*/
mutable unsigned int diagram_;
//@}
/**
* Storage of the matrix elements
*/
//@{
/**
* Matrix elements for the different colour flows
*/
mutable vector<ProductionMatrixElement> flowME_;
/**
* Matrix elements for the different Feynman diagrams
*/
mutable vector<ProductionMatrixElement> diagramME_;
//@}
};
/** Exception class to indicate a problem has occurred with setting
up to matrix element.*/
class MEException : public Exception {};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of GeneralHardME. */
template <>
struct BaseClassTrait<Herwig::GeneralHardME,1> {
/** Typedef of the first base class of GeneralHardME. */
typedef Herwig::HwMEBase NthBase;
};
/** This template specialization informs ThePEG about the name of
* the GeneralHardME class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::GeneralHardME>
: public ClassTraitsBase<Herwig::GeneralHardME> {
/** Return a platform-independent class name */
static string className() { return "Herwig::GeneralHardME"; }
};
/** @endcond */
}
#endif /* HERWIG_GeneralHardME_H */
diff --git a/Models/General/TwoToTwoProcessConstructor.cc b/Models/General/TwoToTwoProcessConstructor.cc
--- a/Models/General/TwoToTwoProcessConstructor.cc
+++ b/Models/General/TwoToTwoProcessConstructor.cc
@@ -1,645 +1,650 @@
// -*- C++ -*-
//
// TwoToTwoProcessConstructor.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the TwoToTwoProcessConstructor class.
//
#include "TwoToTwoProcessConstructor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include <sstream>
using std::stringstream;
using namespace Herwig;
namespace {
// Helper functor for find_if in duplicate function.
class SameIncomingAs {
public:
SameIncomingAs(tPDPair in) : a(in.first->id()), b(in.second->id()) {}
bool operator()(tPDPair ppair) const {
long id1(ppair.first->id()), id2(ppair.second->id());
return ( id1 == a && id2 == b ) || ( id1 == b && id2 == a );
}
private:
long a, b;
};
bool duplicateIncoming(tPDPair ppair, const vector<tPDPair> & incPairs ) {
vector<tPDPair>::const_iterator it =
find_if( incPairs.begin(), incPairs.end(), SameIncomingAs(ppair) );
return it != incPairs.end();
}
}
TwoToTwoProcessConstructor::TwoToTwoProcessConstructor() :
Nout_(0), nv_(0), allDiagrams_(true),
processOption_(0), scaleChoice_(0), scaleFactor_(1.)
{}
IBPtr TwoToTwoProcessConstructor::clone() const {
return new_ptr(*this);
}
IBPtr TwoToTwoProcessConstructor::fullclone() const {
return new_ptr(*this);
}
void TwoToTwoProcessConstructor::doinit() {
HardProcessConstructor::doinit();
if(processOption_==2&&outgoing_.size()!=2)
throw InitException()
<< "Exclusive processes require exactly"
<< " two outgoing particles but " << outgoing_.size()
<< "have been inserted in TwoToTwoProcessConstructor::doinit()."
<< Exception::runerror;
Nout_ = outgoing_.size();
PDVector::size_type ninc = incoming_.size();
// exit if nothing to do
if(Nout_==0||ninc==0) return;
//create vector of initial-state pairs
for(PDVector::size_type i = 0; i < ninc; ++i) {
for(PDVector::size_type j = 0; j < ninc; ++j) {
tPDPair inc = make_pair(incoming_[i], incoming_[j]);
if( (inc.first->iSpin() > inc.second->iSpin()) ||
(inc.first->iSpin() == inc.second->iSpin() &&
inc.first->id() < inc.second->id()) )
swap(inc.first, inc.second);
if( !duplicateIncoming(inc,incPairs_) ) {
incPairs_.push_back(inc);
}
}
}
// excluded vertices
excludedVertexSet_ =
set<VertexBasePtr>(excludedVertexVector_.begin(),
excludedVertexVector_.end());
}
void TwoToTwoProcessConstructor::persistentOutput(PersistentOStream & os) const {
os << vertices_ << incoming_ << outgoing_
<< allDiagrams_ << processOption_
<< scaleChoice_ << scaleFactor_ << excluded_ << excludedExternal_
<< excludedVertexVector_ << excludedVertexSet_;
}
void TwoToTwoProcessConstructor::persistentInput(PersistentIStream & is, int) {
is >> vertices_ >> incoming_ >> outgoing_
>> allDiagrams_ >> processOption_
>> scaleChoice_ >> scaleFactor_ >> excluded_ >> excludedExternal_
>> excludedVertexVector_ >> excludedVertexSet_;
}
ClassDescription<TwoToTwoProcessConstructor>
TwoToTwoProcessConstructor::initTwoToTwoProcessConstructor;
// Definition of the static class description member.
void TwoToTwoProcessConstructor::Init() {
static ClassDocumentation<TwoToTwoProcessConstructor> documentation
("TwoToTwoProcessConstructor constructs the possible diagrams for "
"a process given the external particles");
static RefVector<TwoToTwoProcessConstructor,ThePEG::ParticleData> interfaceIn
("Incoming",
"Pointers to incoming particles",
&TwoToTwoProcessConstructor::incoming_, -1, false, false, true, false);
static RefVector<TwoToTwoProcessConstructor,ThePEG::ParticleData> interfaceOut
("Outgoing",
"Pointers to incoming particles",
&TwoToTwoProcessConstructor::outgoing_, -1, false, false, true, false);
static Switch<TwoToTwoProcessConstructor,bool> interfaceIncludeAllDiagrams
("IncludeEW",
"Switch to decide which diagrams to include in ME calc.",
&TwoToTwoProcessConstructor::allDiagrams_, true, false, false);
static SwitchOption interfaceIncludeAllDiagramsOff
(interfaceIncludeAllDiagrams,
"No",
"Only include QCD diagrams",
false);
static SwitchOption interfaceIncludeAllDiagramsOn
(interfaceIncludeAllDiagrams,
"Yes",
"Include EW+QCD.",
true);
static Switch<TwoToTwoProcessConstructor,unsigned int> interfaceProcesses
("Processes",
"Whether to generate inclusive or exclusive processes",
&TwoToTwoProcessConstructor::processOption_, 0, false, false);
static SwitchOption interfaceProcessesSingleParticleInclusive
(interfaceProcesses,
"SingleParticleInclusive",
"Require at least one particle from the list of outgoing particles"
" in the hard process",
0);
static SwitchOption interfaceProcessesTwoParticleInclusive
(interfaceProcesses,
"TwoParticleInclusive",
"Require that both the particles in the hard processes are in the"
" list of outgoing particles",
1);
static SwitchOption interfaceProcessesExclusive
(interfaceProcesses,
"Exclusive",
"Require that both the particles in the hard processes are in the"
" list of outgoing particles in every hard process",
2);
static Switch<TwoToTwoProcessConstructor,unsigned int> interfaceScaleChoice
("ScaleChoice",
"&TwoToTwoProcessConstructor::scaleChoice_",
&TwoToTwoProcessConstructor::scaleChoice_, 0, false, false);
static SwitchOption interfaceScaleChoiceDefault
(interfaceScaleChoice,
"Default",
"Use if sHat if intermediates all colour neutral, otherwise the transverse mass",
0);
static SwitchOption interfaceScaleChoicesHat
(interfaceScaleChoice,
"sHat",
"Always use sHat",
1);
static SwitchOption interfaceScaleChoiceTransverseMass
(interfaceScaleChoice,
"TransverseMass",
"Always use the transverse mass",
2);
+ static SwitchOption interfaceScaleChoiceGeometicMean
+ (interfaceScaleChoice,
+ "GeometicMean",
+ "Use the geometic mean of m^2+p_T^2 for the two particles",
+ 3);
static Parameter<TwoToTwoProcessConstructor,double> interfaceScaleFactor
("ScaleFactor",
"The prefactor used in the scale calculation. The scale used is"
" that defined by scaleChoice multiplied by this prefactor",
&TwoToTwoProcessConstructor::scaleFactor_, 1.0, 0.0, 10.0,
false, false, Interface::limited);
static RefVector<TwoToTwoProcessConstructor,ThePEG::ParticleData> interfaceExcluded
("Excluded",
"Particles which are not allowed as intermediates",
&TwoToTwoProcessConstructor::excluded_, -1, false, false, true, false, false);
static RefVector<TwoToTwoProcessConstructor,ParticleData> interfaceExcludedExternal
("ExcludedExternal",
"Particles which are not allowed as outgoing particles",
&TwoToTwoProcessConstructor::excludedExternal_, -1,
false, false, true, false, false);
static RefVector<TwoToTwoProcessConstructor,VertexBase> interfaceExcludedVertices
("ExcludedVertices",
"Vertices which are not included in the 2 -> 2 scatterings",
&TwoToTwoProcessConstructor::excludedVertexVector_, -1, false, false, true, true, false);
}
namespace {
// Helper functor for find_if below.
class SameProcessAs {
public:
SameProcessAs(const HPDiagram & diag) : a(diag) {}
bool operator()(const HPDiagram & b) const {
return a.sameProcess(b);
}
private:
HPDiagram a;
};
}
void TwoToTwoProcessConstructor::constructDiagrams() {
if(incPairs_.empty() || outgoing_.empty() || !subProcess() ) return;
nv_ = model()->numberOfVertices();
//make sure vertices are initialised
for(unsigned int ix = 0; ix < nv_; ++ix ) {
VertexBasePtr vertex = model()->vertex(ix);
if(excludedVertexSet_.find(vertex) !=
excludedVertexSet_.end()) continue;
vertices_.push_back(vertex);
}
nv_ = vertices_.size();
//Create necessary diagrams
vector<tcPDPair>::size_type is;
PDVector::size_type os;
for(is = 0; is < incPairs_.size(); ++is) {
tPDPair ppi = incPairs_[is];
for(os = 0; os < Nout_; ++os) {
long fs = outgoing_[os]->id();
for(size_t iv = 0; iv < nv_; ++iv) {
tVertexBasePtr vertexA = vertices_[iv];
//This skips an effective vertex and the EW ones if
// we only want the strong diagrams
if( !allDiagrams_ && vertexA->orderInGs() == 0 )
continue;
if(vertexA->getNpoint() == 3) {
//scattering diagrams
createTChannels(ppi, fs, vertexA);
//resonance diagrams
if( vertexA->isIncoming(ppi.first) &&
vertexA->isIncoming(ppi.second) )
createSChannels(ppi, fs, vertexA);
}
else
makeFourPointDiagrams(ppi.first->id(), ppi.second->id(),
fs, vertexA);
}
}
}
//need to find all of the diagrams that relate to the same process
//first insert them into a map which uses the '<' operator
//to sort the diagrams
multiset<HPDiagram> grouped;
HPDVector::iterator dit = processes_.begin();
HPDVector::iterator dend = processes_.end();
bool abort=false;
for( ; dit != dend; ++dit) {
// check for on-shell s-channel
tPDPtr out1 = getParticleData(dit->outgoing.first );
tPDPtr out2 = getParticleData(dit->outgoing.second);
if(dit->channelType == HPDiagram::sChannel &&
dit->intermediate->width()==ZERO &&
dit->intermediate->mass() > out1->mass()+ out2->mass()) {
tPDPtr in1 = getParticleData(dit->incoming.first );
tPDPtr in2 = getParticleData(dit->incoming.second);
generator()->log() << dit->intermediate->PDGName()
<< " can be on-shell in the process "
<< in1 ->PDGName() << " " << in2->PDGName() << " -> "
<< out1->PDGName() << " " << out2->PDGName()
<< " but has zero width.\nEither set the width, enable "
<< "calculation of its decays, and hence the width,\n"
<< "or disable it as a potential intermediate using\n"
<< "insert " << fullName() << ":Excluded 0 "
<< dit->intermediate->fullName() << "\n---\n";
abort = true;
}
grouped.insert(*dit);
}
if(abort) throw Exception() << "One or more processes with zero width"
<< " resonant intermediates"
<< Exception::runerror;
assert( processes_.size() == grouped.size() );
processes_.clear();
typedef multiset<HPDiagram>::const_iterator set_iter;
set_iter it = grouped.begin(), iend = grouped.end();
while( it != iend ) {
pair<set_iter,set_iter> range = grouped.equal_range(*it);
set_iter itb = range.first;
HPDVector process;
for( ; itb != range.second; ++itb ) {
process.push_back(*itb);
}
// if inclusive enforce the exclusivity
if(processOption_==2) {
if(!((process[0].outgoing. first==outgoing_[0]->id()&&
process[0].outgoing.second==outgoing_[1]->id())||
(process[0].outgoing. first==outgoing_[1]->id()&&
process[0].outgoing.second==outgoing_[0]->id()))) {
process.clear();
it = range.second;
continue;
}
}
if(find(excludedExternal_.begin(),excludedExternal_.end(),
getParticleData(process[0].outgoing. first))!=excludedExternal_.end()) {
process.clear();
it = range.second;
continue;
}
if(find(excludedExternal_.begin(),excludedExternal_.end(),
getParticleData(process[0].outgoing.second))!=excludedExternal_.end()) {
process.clear();
it = range.second;
continue;
}
// finally if the process is allow assign the colour flows
for(unsigned int ix=0;ix<process.size();++ix) assignToCF(process[ix]);
// create the matrix element
createMatrixElement(process);
process.clear();
it = range.second;
}
}
void TwoToTwoProcessConstructor::
createSChannels(tcPDPair inpp, long fs, tVertexBasePtr vertex) {
//Have 2 incoming particle and a vertex, find the possible offshell
//particles
pair<long,long> inc = make_pair(inpp.first->id(), inpp.second->id());
tPDSet offshells = search(vertex, inpp.first->id(), incoming,
inpp.second->id(), incoming, outgoing);
tPDSet::const_iterator it;
for(it = offshells.begin(); it != offshells.end(); ++it) {
if(find(excluded_.begin(),excluded_.end(),*it)!=excluded_.end()) continue;
for(size_t iv = 0; iv < nv_; ++iv) {
tVertexBasePtr vertexB = vertices_[iv];
if( vertexB->getNpoint() != 3) continue;
if( !allDiagrams_ && vertexB->orderInGs() == 0 ) continue;
tPDSet final;
if( vertexB->isOutgoing(getParticleData(fs)) &&
vertexB->isIncoming(*it) )
final = search(vertexB, (*it)->id(), incoming, fs,
outgoing, outgoing);
//Now make diagrams
if(!final.empty())
makeDiagrams(inc, fs, final, *it, HPDiagram::sChannel,
make_pair(vertex, vertexB), make_pair(true,true));
}
}
}
void TwoToTwoProcessConstructor::
createTChannels(tPDPair inpp, long fs, tVertexBasePtr vertex) {
pair<long,long> inc = make_pair(inpp.first->id(), inpp.second->id());
//first try a with c
tPDSet offshells = search(vertex, inpp.first->id(), incoming, fs,
outgoing, outgoing);
tPDSet::const_iterator it;
for(it = offshells.begin(); it != offshells.end(); ++it) {
if(find(excluded_.begin(),excluded_.end(),*it)!=excluded_.end()) continue;
for(size_t iv = 0; iv < nv_; ++iv) {
tVertexBasePtr vertexB = vertices_[iv];
if( vertexB->getNpoint() != 3 ) continue;
if( !allDiagrams_ && vertexB->orderInGs() == 0 ) continue;
tPDSet final;
if( vertexB->isIncoming(inpp.second) )
final = search(vertexB, inc.second, incoming, (*it)->id(),
incoming, outgoing);
if( !final.empty() )
makeDiagrams(inc, fs, final, *it, HPDiagram::tChannel,
make_pair(vertex, vertexB), make_pair(true,true));
}
}
//now try b with c
offshells = search(vertex, inpp.second->id(), incoming, fs,
outgoing, incoming);
for(it = offshells.begin(); it != offshells.end(); ++it) {
if(find(excluded_.begin(),excluded_.end(),*it)!=excluded_.end()) continue;
for(size_t iv = 0; iv < nv_; ++iv) {
tVertexBasePtr vertexB = vertices_[iv];
if( vertexB->getNpoint() != 3 ) continue;
if( !allDiagrams_ && vertexB->orderInGs() == 0 ) continue;
tPDSet final;
if( vertexB->isIncoming(inpp.first) )
final = search(vertexB, inc.first, incoming, (*it)->id(),
outgoing, outgoing);
if( !final.empty() )
makeDiagrams(inc, fs, final, *it, HPDiagram::tChannel,
make_pair(vertexB, vertex), make_pair(true, false));
}
}
}
void TwoToTwoProcessConstructor::makeFourPointDiagrams(long parta, long partb,
long partc, VBPtr vert) {
if(processOption_>=1) {
PDVector::const_iterator loc = find(outgoing_.begin(),outgoing_.end(),
getParticleData(partc));
if(loc==outgoing_.end()) return;
}
tPDSet ext = search(vert, parta, incoming, partb,incoming, partc, outgoing);
if( ext.empty() ) return;
IDPair in(parta, partb);
for(tPDSet::const_iterator iter=ext.begin(); iter!=ext.end();
++iter) {
if(processOption_>=1) {
PDVector::const_iterator loc = find(outgoing_.begin(),outgoing_.end(),
*iter);
if(loc==outgoing_.end()) continue;
}
HPDiagram nhp(in,make_pair(partc, (*iter)->id()));
nhp.vertices = make_pair(vert, vert);
nhp.channelType = HPDiagram::fourPoint;
fixFSOrder(nhp);
if( !duplicate(nhp, processes_) ) processes_.push_back(nhp);
}
}
void
TwoToTwoProcessConstructor::makeDiagrams(IDPair in, long out1, const tPDSet & out2,
PDPtr inter, HPDiagram::Channel chan,
VBPair vertexpair, BPair cross) {
if(processOption_>=1) {
PDVector::const_iterator loc = find(outgoing_.begin(),outgoing_.end(),
getParticleData(out1));
if(loc==outgoing_.end()) return;
}
for(tPDSet::const_iterator it = out2.begin(); it != out2.end(); ++it) {
if(processOption_>=1) {
PDVector::const_iterator loc = find(outgoing_.begin(),outgoing_.end(),
*it);
if(loc==outgoing_.end()) continue;
}
HPDiagram nhp( in,make_pair(out1, (*it)->id()) );
nhp.intermediate = inter;
nhp.vertices = vertexpair;
nhp.channelType = chan;
nhp.ordered = cross;
fixFSOrder(nhp);
if( !duplicate(nhp, processes_) ) processes_.push_back(nhp);
}
}
set<tPDPtr>
TwoToTwoProcessConstructor::search(VBPtr vertex, long part1, direction d1,
long part2, direction d2, direction d3) {
if(vertex->getNpoint() != 3) return tPDSet();
if(d1 == incoming && getParticleData(part1)->CC()) part1 = -part1;
if(d2 == incoming && getParticleData(part2)->CC()) part2 = -part2;
vector<long> ext;
tPDSet third;
for(unsigned int ix = 0;ix < 3; ++ix) {
vector<long> pdlist = vertex->search(ix, part1);
ext.insert(ext.end(), pdlist.begin(), pdlist.end());
}
for(unsigned int ix = 0; ix < ext.size(); ix += 3) {
long id0 = ext.at(ix);
long id1 = ext.at(ix+1);
long id2 = ext.at(ix+2);
int pos;
if((id0 == part1 && id1 == part2) ||
(id0 == part2 && id1 == part1))
pos = ix + 2;
else if((id0 == part1 && id2 == part2) ||
(id0 == part2 && id2 == part1))
pos = ix + 1;
else if((id1 == part1 && id2 == part2) ||
(id1 == part2 && id2 == part1))
pos = ix;
else
pos = -1;
if(pos >= 0) {
tPDPtr p = getParticleData(ext[pos]);
if(d3 == incoming && p->CC()) p = p->CC();
third.insert(p);
}
}
return third;
}
set<tPDPtr>
TwoToTwoProcessConstructor::search(VBPtr vertex,
long part1, direction d1,
long part2, direction d2,
long part3, direction d3,
direction d4) {
if(vertex->getNpoint() != 4) return tPDSet();
if(d1 == incoming && getParticleData(part1)->CC()) part1 = -part1;
if(d2 == incoming && getParticleData(part2)->CC()) part2 = -part2;
if(d3 == incoming && getParticleData(part3)->CC()) part3 = -part3;
vector<long> ext;
tPDSet fourth;
for(unsigned int ix = 0;ix < 4; ++ix) {
vector<long> pdlist = vertex->search(ix, part1);
ext.insert(ext.end(), pdlist.begin(), pdlist.end());
}
for(unsigned int ix = 0;ix < ext.size(); ix += 4) {
long id0 = ext.at(ix); long id1 = ext.at(ix + 1);
long id2 = ext.at(ix + 2); long id3 = ext.at(ix + 3);
int pos;
if((id0 == part1 && id1 == part2 && id2 == part3) ||
(id0 == part1 && id1 == part3 && id2 == part2) ||
(id0 == part2 && id1 == part1 && id2 == part3) ||
(id0 == part2 && id1 == part3 && id2 == part1) ||
(id0 == part3 && id1 == part1 && id2 == part2) ||
(id0 == part3 && id1 == part2 && id2 == part1))
pos = ix + 3;
else if((id0 == part1 && id1 == part2 && id3 == part3) ||
(id0 == part1 && id1 == part3 && id3 == part2) ||
(id0 == part2 && id1 == part1 && id3 == part3) ||
(id0 == part2 && id1 == part3 && id3 == part1) ||
(id0 == part3 && id1 == part1 && id3 == part2) ||
(id0 == part3 && id1 == part2 && id3 == part1))
pos = ix + 2;
else if((id0 == part1 && id2 == part2 && id3 == part3) ||
(id0 == part1 && id2 == part3 && id3 == part2) ||
(id0 == part2 && id2 == part1 && id3 == part3) ||
(id0 == part2 && id2 == part3 && id3 == part1) ||
(id0 == part3 && id2 == part1 && id3 == part2) ||
(id0 == part3 && id2 == part2 && id3 == part1))
pos = ix + 1;
else if((id1 == part1 && id2 == part2 && id3 == part3) ||
(id1 == part1 && id2 == part3 && id3 == part2) ||
(id1 == part2 && id2 == part1 && id3 == part3) ||
(id1 == part2 && id2 == part3 && id3 == part1) ||
(id1 == part3 && id2 == part1 && id3 == part2) ||
(id1 == part3 && id2 == part2 && id3 == part1))
pos = ix;
else
pos = -1;
if(pos >= 0) {
tPDPtr p = getParticleData(ext[pos]);
if(d4 == incoming && p->CC())
p = p->CC();
fourth.insert(p);
}
}
return fourth;
}
void
TwoToTwoProcessConstructor::createMatrixElement(const HPDVector & process) const {
if ( process.empty() ) return;
// external particles
tcPDVector extpart(4);
extpart[0] = getParticleData(process[0].incoming.first);
extpart[1] = getParticleData(process[0].incoming.second);
extpart[2] = getParticleData(process[0].outgoing.first);
extpart[3] = getParticleData(process[0].outgoing.second);
// create the object
string objectname ("/Herwig/MatrixElements/");
string classname = MEClassname(extpart, objectname);
GeneralHardMEPtr matrixElement = dynamic_ptr_cast<GeneralHardMEPtr>
(generator()->preinitCreate(classname, objectname));
if( !matrixElement ) {
std::stringstream message;
message << "TwoToTwoProcessConstructor::createMatrixElement "
<< "- No matrix element object could be created for "
<< "the process "
<< extpart[0]->PDGName() << " " << extpart[0]->iSpin() << ","
<< extpart[1]->PDGName() << " " << extpart[1]->iSpin() << "->"
<< extpart[2]->PDGName() << " " << extpart[2]->iSpin() << ","
<< extpart[3]->PDGName() << " " << extpart[3]->iSpin()
<< ". Constructed class name: \"" << classname << "\"";
generator()->logWarning(TwoToTwoProcessConstructorError(message.str(),Exception::warning));
return;
}
// choice for the scale
unsigned int scale;
if(scaleChoice_==0) {
// check coloured initial and final state
bool inColour = ( extpart[0]->coloured() ||
extpart[1]->coloured());
bool outColour = ( extpart[2]->coloured() ||
extpart[3]->coloured());
if(inColour&&outColour) {
bool coloured = false;
for(unsigned int ix=0;ix<process.size();++ix) {
if(process[ix].intermediate&&
process[ix].intermediate->coloured()) {
coloured = true;
break;
}
}
scale = coloured ? 1 : 0;
}
else {
scale = 0;
}
}
else {
scale = scaleChoice_-1;
}
// set the information
matrixElement->setProcessInfo(process, colourFlow(extpart),
debug(), scale, scaleFactor_);
// insert it
generator()->preinitInterface(subProcess(), "MatrixElements",
subProcess()->MEs().size(),
"insert", matrixElement->fullName());
}
string TwoToTwoProcessConstructor::MEClassname(const vector<tcPDPtr> & extpart,
string & objname) const {
string classname("Herwig::ME");
for(vector<tcPDPtr>::size_type ix = 0; ix < extpart.size(); ++ix) {
if(ix == 2) classname += "2";
if(extpart[ix]->iSpin() == PDT::Spin0) classname += "s";
else if(extpart[ix]->iSpin() == PDT::Spin1) classname += "v";
else if(extpart[ix]->iSpin() == PDT::Spin1Half) classname += "f";
else if(extpart[ix]->iSpin() == PDT::Spin2) classname += "t";
else {
std::stringstream message;
message << "MEClassname() : Encountered an unknown spin for "
<< extpart[ix]->PDGName() << " while constructing MatrixElement "
<< "classname " << extpart[ix]->iSpin();
generator()->logWarning(TwoToTwoProcessConstructorError(message.str(),Exception::warning));
}
}
objname += "ME" + extpart[0]->PDGName() + extpart[1]->PDGName() + "2"
+ extpart[2]->PDGName() + extpart[3]->PDGName();
return classname;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:47 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3803733
Default Alt Text
(37 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment