Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877141
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
13 KB
Subscribers
None
View Options
Index: trunk/src/omega/src/color.ml
===================================================================
--- trunk/src/omega/src/color.ml (revision 4008)
+++ trunk/src/omega/src/color.ml (revision 4009)
@@ -1,364 +1,365 @@
(* $Id$
Copyright (C) 1999-2012 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
Christian Speckner <cnspeckn@googlemail.com>
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
(* \thocwmodulesection{Quantum Numbers} *)
type t =
| Singlet
| SUN of int
| AdjSUN of int
let conjugate = function
| Singlet -> Singlet
| SUN n -> SUN (-n)
| AdjSUN n -> AdjSUN n
let compare c1 c2 =
match c1, c2 with
| Singlet, Singlet -> 0
| Singlet, _ -> -1
| _, Singlet -> 1
| SUN n, SUN n' -> compare n n'
| SUN _, AdjSUN _ -> -1
| AdjSUN _, SUN _ -> 1
| AdjSUN n, AdjSUN n' -> compare n n'
module type Line =
sig
type t
val conj : t -> t
val equal : t -> t -> bool
val to_string : t -> string
end
module type Cycles =
sig
type line
type t = (line * line) list
(* Contract the graph by connecting lines and return the number of
cycles together with the contracted graph.
\begin{dubious}
The semantics of the contracted graph is not yet 100\%ly fixed.
\end{dubious} *)
val contract : t -> int * t
(* The same as [contract], but returns only the number of cycles
and raises [Open_line] when not all lines are closed. *)
val count : t -> int
exception Open_line
(* Mainly for debugging \ldots *)
val to_string : t -> string
end
module Cycles (L : Line) : Cycles with type line = L.t =
struct
type line = L.t
type t = (line * line) list
exception Open_line
(* NB: The following algorithm for counting the cycles is quadratic since it
performs nested scans of the lists. If this was a serious problem one could
replace the lists of pairs by a [Map] and replace one power by a logarithm. *)
let rec find_fst c_final c1 disc seen = function
| [] -> ((L.conj c_final, c1) :: disc, List.rev seen)
| (c1', c2') as c12' :: rest ->
if L.equal c1 c1' then
find_snd c_final (L.conj c2') disc [] (List.rev_append seen rest)
else
find_fst c_final c1 disc (c12' :: seen) rest
and find_snd c_final c2 disc seen = function
| [] -> ((L.conj c_final, L.conj c2) :: disc, List.rev seen)
| (c1', c2') as c12' :: rest->
if L.equal c2' c2 then begin
if L.equal c1' c_final then
(disc, List.rev_append seen rest)
else
find_fst c_final (L.conj c1') disc [] (List.rev_append seen rest)
end else
find_snd c_final c2 disc (c12' :: seen) rest
let consume = function
| [] -> ([], [])
| (c1, c2) :: rest -> find_snd (L.conj c1) (L.conj c2) [] [] rest
let contract lines =
let rec contract' acc disc = function
| [] -> (acc, List.rev disc)
| rest ->
begin match consume rest with
| [], rest' -> contract' (succ acc) disc rest'
| disc', rest' -> contract' acc (List.rev_append disc' disc) rest'
end in
contract' 0 [] lines
let count lines =
match contract lines with
| n, [] -> n
| n, _ -> raise Open_line
let to_string lines =
String.concat ""
(List.map
(fun (c1, c2) -> "[" ^ L.to_string c1 ^ "," ^ L.to_string c2 ^ "]")
lines)
end
(* \thocwmodulesection{Color Flows} *)
module type Flow =
sig
type color
type t = color list * color list
val rank : t -> int
val of_list : int list -> color
val ghost : unit -> color
val to_lists : t -> int list list
val in_to_lists : t -> int list list
val out_to_lists : t -> int list list
val ghost_flags : t -> bool list
val in_ghost_flags : t -> bool list
val out_ghost_flags : t -> bool list
type power = { num : int; den : int; power : int }
type factor = power list
val factor : t -> t -> factor
val zero : factor
end
module Flow (* [: Flow] *) =
struct
type color =
| Lines of int * int
| Ghost
type t = color list * color list
let rank cflow =
2
(* \thocwmodulesubsection{Constructors} *)
let ghost () =
Ghost
let of_list = function
| [c1; c2] -> Lines (c1, c2)
| _ -> invalid_arg "Color.Flow.of_list: num_lines != 2"
let to_list = function
| Lines (c1, c2) -> [c1; c2]
| Ghost -> [0; 0]
let to_lists (cfin, cfout) =
(List.map to_list cfin) @ (List.map to_list cfout)
let in_to_lists (cfin, _) =
List.map to_list cfin
let out_to_lists (_, cfout) =
List.map to_list cfout
let ghost_flag = function
| Lines _ -> false
| Ghost -> true
let ghost_flags (cfin, cfout) =
(List.map ghost_flag cfin) @ (List.map ghost_flag cfout)
let in_ghost_flags (cfin, _) =
List.map ghost_flag cfin
let out_ghost_flags (_, cfout) =
List.map ghost_flag cfout
(* \thocwmodulesubsection{Evaluation} *)
type power = { num : int; den : int; power : int }
type factor = power list
let zero = []
let count_ghosts1 colors =
List.fold_left
(fun acc -> function Ghost -> succ acc | _ -> acc)
0 colors
let count_ghosts (fin, fout) =
count_ghosts1 fin + count_ghosts1 fout
type 'a square =
| Square of 'a
| Mismatch
let conjugate = function
| Lines (c1, c2) -> Lines (-c2, -c1)
| Ghost -> Ghost
let cross_in (cin, cout) =
cin @ (List.map conjugate cout)
let cross_out (cin, cout) =
(List.map conjugate cin) @ cout
module C = Cycles (struct
type t = int
let conj = (~-)
let equal = (=)
let to_string = string_of_int
end)
let square f1 f2 =
let rec square' acc f1' f2' =
match f1', f2' with
| [], [] -> Square (List.rev acc)
| _, [] | [], _ -> Mismatch
| Ghost :: rest1, Ghost :: rest2 ->
square' acc rest1 rest2
| Lines (0, 0) :: rest1, Lines (0, 0) :: rest2 ->
square' acc rest1 rest2
| Lines (0, c1') :: rest1, Lines (0, c2') :: rest2 ->
square' ((c1', c2') :: acc) rest1 rest2
| Lines (c1, 0) :: rest1, Lines (c2, 0) :: rest2 ->
square' ((c1, c2) :: acc) rest1 rest2
| Lines (0, _) :: _, _ | _ , Lines (0, _) :: _
| Lines (_, 0) :: _, _ | _, Lines (_, 0) :: _ -> Mismatch
| Lines (_, _) :: _, Ghost :: _ | Ghost :: _, Lines (_, _) :: _ -> Mismatch
| Lines (c1, c1') :: rest1, Lines (c2, c2') :: rest2 ->
square' ((c1', c2') :: (c1, c2) :: acc) rest1 rest2 in
square' [] (cross_out f1) (cross_out f2)
(* In addition to counting closed color loops, we also need to count closed
gluon loops. Fortunately, we can use the same algorithm on a different
data type, provided it doesn't require all lines to be closed. *)
module C2 = Cycles (struct
type t = int * int
let conj (c1, c2) = (- c2, - c1)
let equal (c1, c2) (c1', c2') = c1 = c1' && c2 = c2'
let to_string (c1, c2) = "(" ^ string_of_int c1 ^ "," ^ string_of_int c2 ^ ")"
end)
let square2 f1 f2 =
let rec square2' acc f1' f2' =
match f1', f2' with
| [], [] -> Square (List.rev acc)
| _, [] | [], _ -> Mismatch
| Ghost :: rest1, Ghost :: rest2 ->
square2' acc rest1 rest2
| Lines (0, 0) :: rest1, Lines (0, 0) :: rest2 ->
square2' acc rest1 rest2
| Lines (0, _) :: rest1, Lines (0, _) :: rest2
| Lines (_, 0) :: rest1, Lines (_, 0) :: rest2 ->
square2' acc rest1 rest2
| Lines (0, _) :: _, _ | _ , Lines (0, _) :: _
| Lines (_, 0) :: _, _ | _, Lines (_, 0) :: _ -> Mismatch
| Lines (_, _) :: _, Ghost :: _ | Ghost :: _, Lines (_, _) :: _ -> Mismatch
| Lines (c1, c1') :: rest1, Lines (c2, c2') :: rest2 ->
square2' (((c1, c1'), (c2, c2')) :: acc) rest1 rest2 in
square2' [] (cross_out f1) (cross_out f2)
-(* Surprisingly, this is missing from [Pervasives]! *)
+(* $\ocwlowerid{int\_power}: n\, p \to n^p$
+ for integers is missing from [Pervasives]! *)
let int_power n p =
let rec int_power' acc i =
if i < 0 then
invalid_arg "int_power"
else if i = 0 then
acc
else
int_power' (n * acc) (pred i) in
int_power' 1 p
(* Instead of implementing a full fledged algebraic evaluator, let's
simply expand the binomial by hand:
\begin{equation}
\left(\frac{N_C^2-2}{N_C^2}\right)^n =
\sum_{i=0}^n \binom{n}{i} (-2)^i N_C^{-2i}
\end{equation} *)
(* NB: Any result of [square] other than [Mismatch] guarantees
[count_ghosts f1 = count_ghosts f2]. *)
let factor f1 f2 =
match square f1 f2, square2 f1 f2 with
| Mismatch, _ | _, Mismatch -> []
| Square f12, Square f12' ->
let num_cycles = C.count f12
and num_cycles2, disc = C2.contract f12'
and num_ghosts = count_ghosts f1 in
(*i Printf.eprintf "f12 = %s -> #loops = %d\n"
(C.to_string f12) num_cycles;
Printf.eprintf "f12' = %s -> #loops = %d, disc = %s\n"
(C2.to_string f12') num_cycles2 (C2.to_string disc);
flush stderr; i*)
List.map
(fun i ->
let parity = if num_ghosts mod 2 = 0 then 1 else -1
and power = num_cycles - num_ghosts in
let coeff = int_power (-2) i * Combinatorics.binomial num_cycles2 i
and power2 = - 2 * i in
{ num = parity * coeff;
den = 1;
power = power + power2 })
(ThoList.range 0 num_cycles2)
end
(* later: *)
module General_Flow =
struct
type color =
| Lines of int list
| Ghost of int
type t = color list * color list
let rank_default = 2 (* Standard model *)
let rank cflow =
try
begin match List.hd cflow with
| Lines lines -> List.length lines
| Ghost n_lines -> n_lines
end
with
| _ -> rank_default
end
(*i
* Local Variables:
* mode:caml
* indent-tabs-mode:nil
* page-delimiter:"^(\\* .*\n"
* End:
i*)
Index: trunk/src/omega/src/color.mli
===================================================================
--- trunk/src/omega/src/color.mli (revision 4008)
+++ trunk/src/omega/src/color.mli (revision 4009)
@@ -1,74 +1,81 @@
(* $Id$
Copyright (C) 1999-2012 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
Christian Speckner <cnspeckn@googlemail.com>
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
(* \thocwmodulesection{Quantum Numbers} *)
(* Color is not necessarily the~$\textrm{SU}(3)$ of QCD. Conceptually,
it can be any \emph{unbroken} symmetry (\emph{broken} symmetries correspond
to [Model.flavor]). In order to keep the group theory simple, we confine
ourselves to the fundamental and adjoint representation
of a single~$\textrm{SU}(N_C)$ for the moment. Therefore,
particles are either color singlets or live in the defining
representation of $\textrm{SU}(N_C)$: [SUN]$(|N_C|)$, its conjugate
[SUN]$(-|N_C|)$ or in the adjoint representation of
$\textrm{SU}(N_C)$: [AdjSUN]$(N_C)$. *)
type t = Singlet | SUN of int | AdjSUN of int
val conjugate : t -> t
val compare : t -> t -> int
(* \thocwmodulesection{Color Flows} *)
module type Flow =
sig
type color
type t = color list * color list
val rank : t -> int
val of_list : int list -> color
val ghost : unit -> color
val to_lists : t -> int list list
val in_to_lists : t -> int list list
val out_to_lists : t -> int list list
val ghost_flags : t -> bool list
val in_ghost_flags : t -> bool list
val out_ghost_flags : t -> bool list
+(* A factor is a list of powers
+ \begin{equation}
+ \sum_{i}
+ \left( \frac{\ocwlowerid{num}_i}{\ocwlowerid{den}_i}
+ \right)^{\ocwlowerid{power}_i}
+ \end{equation} *)
type power = { num : int; den : int; power : int }
type factor = power list
+
val factor : t -> t -> factor
val zero : factor
end
module Flow : Flow
(*i
* Local Variables:
* mode:caml
* indent-tabs-mode:nil
* page-delimiter:"^(\\* .*\n"
* End:
i*)
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 2:51 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804840
Default Alt Text
(13 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment