Page MenuHomeHEPForge

No OneTemporary

diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh
index 66e6c55..a110609 100644
--- a/include/HEJ/Event.hh
+++ b/include/HEJ/Event.hh
@@ -1,201 +1,203 @@
/** \file
* \brief Declares the Event class and helpers
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "HEJ/event_types.hh"
#include "HEJ/Particle.hh"
+#include "HEJ/RNG.hh"
#include "fastjet/ClusterSequence.hh"
namespace LHEF{
class HEPEUP;
class HEPRUP;
}
namespace fastjet{
class JetDefinition;
}
namespace HEJ{
-
struct ParameterDescription;
//! Event parameters
struct EventParameters{
double mur; /**< Value of the Renormalisation Scale */
double muf; /**< Value of the Factorisation Scale */
double weight; /**< Event Weight */
//! Optional description
std::shared_ptr<ParameterDescription> description = nullptr;
};
//! Description of event parameters
struct ParameterDescription {
//! Name of central scale choice (e.g. "H_T/2")
std::string scale_name;
//! Actual renormalisation scale divided by central scale
double mur_factor;
//! Actual factorisation scale divided by central scale
double muf_factor;
ParameterDescription() = default;
ParameterDescription(
std::string scale_name, double mur_factor, double muf_factor
):
scale_name{scale_name}, mur_factor{mur_factor}, muf_factor{muf_factor}
{};
};
//! An event before jet clustering & classification
struct UnclusteredEvent{
//! Default Constructor
UnclusteredEvent() = default;
//! Constructor from LesHouches event information
UnclusteredEvent(LHEF::HEPEUP const & hepeup);
std::array<Particle, 2> incoming; /**< Incoming Particles */
std::vector<Particle> outgoing; /**< Outgoing Particles */
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays;
//! Central parameter (e.g. scale) choice
EventParameters central;
std::vector<EventParameters> variations; /**< For parameter variation */
- //! Generate the particle colour leading in the MRK limit, see \cite Andersen:2011zd
- void generate_colour_flow();
+ //! @brief Generate the particle colour leading in the MRK limit, see \cite Andersen:2011zd
+ //! @note This will overwrite all existing colours
+ void generate_colour_flow(HEJ::RNG &);
+ void sort(); /**< Sort Particles in rapidity **/
};
/** An event with clustered jets
*
* This is the main HEJ 2 event class.
* It contains kinematic information including jet clustering,
* parameter (e.g. scale) settings and the event weight.
*/
class Event{
public:
//! Default Event Constructor
Event() = default;
//! Event Constructor adding jet clustering to an unclustered event
Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
);
//! The jets formed by the outgoing partons
std::vector<fastjet::PseudoJet> jets() const;
//! The corresponding event before jet clustering
UnclusteredEvent const & unclustered() const {
return ev_;
}
//! Central parameter choice
EventParameters const & central() const{
return ev_.central;
}
//! Central parameter choice
EventParameters & central(){
return ev_.central;
}
//! Incoming particles
std::array<Particle, 2> const & incoming() const{
return ev_.incoming;
}
//! Outgoing particles
std::vector<Particle> const & outgoing() const{
return ev_.outgoing;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return ev_.decays;
}
//! Parameter (scale) variations
std::vector<EventParameters> const & variations() const{
return ev_.variations;
}
//! Parameter (scale) variations
std::vector<EventParameters> & variations(){
return ev_.variations;
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters const & variations(size_t i) const{
return ev_.variations[i];
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters & variations(size_t i){
return ev_.variations[i];
}
//! Indices of the jets the outgoing partons belong to
/**
* @param jets Jets to be tested
* @returns A vector containing, for each outgoing parton,
* the index in the vector of jets the considered parton
* belongs to. If the parton is not inside any of the
* passed jets, the corresponding index is set to -1.
*/
std::vector<int> particle_jet_indices(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cs_.particle_jet_indices(jets);
}
//! Jet definition used for clustering
fastjet::JetDefinition const & jet_def() const{
return cs_.jet_def();
}
//! Minimum jet transverse momentum
double min_jet_pt() const{
return min_jet_pt_;
}
//! Event type
event_type::EventType type() const{
return type_;
}
private:
UnclusteredEvent ev_;
fastjet::ClusterSequence cs_;
double min_jet_pt_;
event_type::EventType type_;
};
//! Square of the partonic centre-of-mass energy \f$\hat{s}\f$
double shat(Event const & ev);
//! Convert an event to a LHEF::HEPEUP
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
}
diff --git a/include/HEJ/PhaseSpacePoint.hh b/include/HEJ/PhaseSpacePoint.hh
index 9d08ec3..f8b0ec9 100644
--- a/include/HEJ/PhaseSpacePoint.hh
+++ b/include/HEJ/PhaseSpacePoint.hh
@@ -1,154 +1,154 @@
/** \file
* \brief Contains the PhaseSpacePoint Class
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <functional>
#include <unordered_map>
#include <vector>
#include "HEJ/config.hh"
#include "HEJ/Particle.hh"
#include "HEJ/RNG.hh"
namespace HEJ{
class Event;
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param ev Clustered Jet Event
* @param conf Configuration parameters
* @param ran Random number generator
*/
PhaseSpacePoint(
Event const & ev,
PhaseSpacePointConfig conf,
- HEJ::RNG & ran
+ RNG & ran
);
//! Get phase space point weight
double weight() const{
return weight_;
}
//! Access incoming particles
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Access outgoing particles
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return decays_;
}
static constexpr int ng_max = 1000; //< maximum number of extra gluons
private:
std::vector<fastjet::PseudoJet> cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const;
bool pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const;
bool pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const;
int sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets);
int sample_ng_jets(int ng, std::vector<fastjet::PseudoJet> const & Born_jets);
double probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const;
std::vector<fastjet::PseudoJet> gen_non_jet(
int ng_non_jet,
double ptmin, double ptmax
);
void rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
);
std::vector<fastjet::PseudoJet> reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
);
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
void reconstruct_incoming(std::array<Particle, 2> const & Born_incoming);
double phase_space_normalisation(
int num_Born_jets,
int num_res_partons
) const;
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets, int ng_jets
);
std::vector<int> distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
);
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np_in_jet
);
bool split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const;
template<class Particle>
Particle const & most_backward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle const & most_forward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle & most_backward_FKL(std::vector<Particle> & partons) const;
template<class Particle>
Particle & most_forward_FKL(std::vector<Particle> & partons) const;
bool extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
void copy_AWZH_boson_from(Event const & event);
bool momentum_conserved() const;
bool unob_, unof_;
double weight_;
PhaseSpacePointConfig param_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! \internal Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays_;
std::reference_wrapper<HEJ::RNG> ran_;
};
}
diff --git a/src/Event.cc b/src/Event.cc
index 9f4edfd..57ee930 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,389 +1,397 @@
/**
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <utility>
#include "LHEF/LHEF.h"
#include "fastjet/JetDefinition.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/PDG_codes.hh"
namespace HEJ{
namespace{
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(std::vector<Particle> const & outgoing){
bool has_AWZH_boson = false;
for(auto const & out: outgoing){
if(is_AWZH_boson(out.type)){
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
}
else if(! is_parton(out.type)) return false;
}
return true;
}
template<class Iterator>
Iterator remove_AWZH(Iterator begin, Iterator end){
return std::remove_if(
begin, end, [](Particle const & p){return is_AWZH_boson(p);}
);
}
template<class Iterator>
bool valid_outgoing(Iterator begin, Iterator end){
return std::distance(begin, end) >= 2
&& std::is_sorted(begin, end, rapidity_less{})
&& std::count_if(
begin, end, [](Particle const & s){return is_AWZH_boson(s);}
) < 2;
}
/// @note that this changes the outgoing range!
template<class ConstIterator, class Iterator>
bool is_FKL(
ConstIterator begin_incoming, ConstIterator end_incoming,
Iterator begin_outgoing, Iterator end_outgoing
){
assert(std::distance(begin_incoming, end_incoming) == 2);
assert(std::distance(begin_outgoing, end_outgoing) >= 2);
// One photon, W, H, Z in the final state is allowed.
// Remove it for remaining tests,
end_outgoing = remove_AWZH(begin_outgoing, end_outgoing);
// Test if this is a standard FKL configuration.
return
(begin_incoming->type == begin_outgoing->type)
&& ((end_incoming-1)->type == (end_outgoing-1)->type)
&& std::all_of(
begin_outgoing + 1, end_outgoing - 1,
[](Particle const & p){ return p.type == pid::gluon; }
);
}
bool is_FKL(
std::array<Particle, 2> const & incoming,
std::vector<Particle> outgoing
){
assert(std::is_sorted(begin(incoming), end(incoming), pz_less{}));
assert(valid_outgoing(begin(outgoing), end(outgoing)));
return is_FKL(
begin(incoming), end(incoming),
begin(outgoing), end(outgoing)
);
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief Checks whether event is unordered backwards
* @param ev Event
* @returns Is Event Unordered Backwards
*
* - Checks there is more than 3 constuents in the final state
* - Checks there is more than 3 jets
* - Checks the most backwards parton is a gluon
* - Checks the most forwards jet is not a gluon
* - Checks the rest of the event is FKL
* - Checks the second most backwards is not a different boson
* - Checks the unordered gluon actually forms a jet
*/
bool is_unordered_backward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.front().type == pid::gluon) return false;
if(out.front().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) first outgoing particle must not be a A,W,Z,H.
const auto FKL_begin = next(begin(out));
if(is_AWZH_boson(*FKL_begin)) return false;
if(!is_FKL(in, {FKL_begin, end(out)})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.front()});
return indices[0] >= 0 && indices[1] == -1;
}
/**
* \brief Checks for a forward unordered gluon emission
* @param ev Event
* @returns Is the event a forward unordered emission
*
* \see is_unordered_backward
*/
bool is_unordered_forward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.back().type == pid::gluon) return false;
if(out.back().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) last outgoing particle must not be a A,W,Z,H.
const auto FKL_end = prev(end(out));
if(is_AWZH_boson(*prev(FKL_end))) return false;
if(!is_FKL(in, {begin(out), FKL_end})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.back()});
return indices.back() >= 0 && indices[indices.size()-2] == -1;
}
using event_type::EventType;
EventType classify(Event const & ev){
if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state;
if(! has_2_jets(ev)) return EventType::no_2_jets;
if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL;
if(is_unordered_backward(ev)){
return EventType::unordered_backward;
}
if(is_unordered_forward(ev)){
return EventType::unordered_forward;
}
return EventType::nonHEJ;
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
const fastjet::PseudoJet momentum{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
};
if(is_parton(id))
return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
return Particle{ id, std::move(momentum), {} };
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace anonymous
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup):
central(EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
})
{
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
- void UnclusteredEvent::generate_colour_flow(){
- //TODO implement
+ void UnclusteredEvent::generate_colour_flow(RNG & ran){
}
- Event::Event(
- UnclusteredEvent ev,
- fastjet::JetDefinition const & jet_def, double min_jet_pt
- ):
- ev_{std::move(ev)},
- cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def},
- min_jet_pt_{min_jet_pt}
- {
- // sort particles
+ void UnclusteredEvent::sort(){
+ // sort incoming
std::sort(
- begin(ev_.incoming), end(ev_.incoming),
+ begin(incoming), end(incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
- auto old_outgoing = std::move(ev_.outgoing);
+ //sort outgoing
+ if(std::is_sorted(begin(outgoing), end(outgoing), rapidity_less{}))
+ return;
+ auto old_outgoing = std::move(outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
- ev_.outgoing.clear();
- ev_.outgoing.reserve(old_outgoing.size());
+ outgoing.clear();
+ outgoing.reserve(old_outgoing.size());
for(size_t i: idx) {
- ev_.outgoing.emplace_back(std::move(old_outgoing[i]));
+ outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
- if(!ev_.decays.empty()){
- auto old_decays = std::move(ev_.decays);
- ev_.decays.clear();
+ if(!decays.empty()){
+ auto old_decays = std::move(decays);
+ decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
- ev_.decays.emplace(i, std::move(decay->second));
+ decays.emplace(i, std::move(decay->second));
}
- assert(old_decays.size() == ev_.decays.size());
+ assert(old_decays.size() == decays.size());
}
+ }
+
+ Event::Event(
+ UnclusteredEvent ev,
+ fastjet::JetDefinition const & jet_def, double min_jet_pt
+ ):
+ ev_{std::move(ev)},
+ cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def},
+ min_jet_pt_{min_jet_pt}
+ {
+ // sort particles
+ ev_.sort();
+
// classify event
type_ = classify(*this);
assert(std::is_sorted(begin(outgoing()), end(outgoing()), rapidity_less{}));
}
std::vector<fastjet::PseudoJet> Event::jets() const{
return cs_.inclusive_jets(min_jet_pt_);
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
namespace{
// colour flow according to Les Houches standard
// TODO: stub
std::vector<std::pair<int, int>> colour_flow(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
std::vector<std::pair<int, int>> result(
incoming.size() + outgoing.size()
);
for(auto & col: result){
col = std::make_pair(-1, -1);
}
return result;
}
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type()+1; // event ID
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
for(Particle const & in: event.incoming()){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
}
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
}
result.ICOLUP = colour_flow(
event.incoming(), filter_partons(event.outgoing())
);
if(result.ICOLUP.size() < num_particles){
const size_t AWZH_boson_idx = std::find_if(
begin(event.outgoing()), end(event.outgoing()),
[](Particle const & s){ return is_AWZH_boson(s); }
) - begin(event.outgoing()) + event.incoming().size();
assert(AWZH_boson_idx <= result.ICOLUP.size());
result.ICOLUP.insert(
begin(result.ICOLUP) + AWZH_boson_idx,
std::make_pair(0,0)
);
}
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:35 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242921
Default Alt Text
(25 KB)

Event Timeline