Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F11222458
fourjetsLO.sin
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
1 KB
Subscribers
None
fourjetsLO.sin
View Options
#Example of four jets cross-section at LO using the Cambridge algorithm for jet identification.
#Results are normalised to the 2 jets LO cross-section and can be compared directly to Phys.Rev. D59 (1999) 014020.
#Parameters
mc = 0
ms = 0
mb = 0
mW = 80.016 GeV
mZ = 91.187 GeV
wZ = 2.49 GeV
seed = 2222
sqrts = 91.187 GeV
scale = sqrts
#Jet definition
alias j = u:d:s:U:D:S:c:C:b:B:gl
#Options
?vis_channels = true
?use_vamp_equivalences = false
?alpha_s_is_fixed = false
?alpha_s_from_mz = true
?alpha_s_from_lambda_qcd = false
alphas = 0.118
!alphas = 0.121
#Processes
process jj = E1, e1 => j, j
process jjjj = E1, e1 => j, j, j, j
#Jet Algorithm. It uses the EECambridgePlugin of FastJet
jet_algorithm = plugin_algorithm
jet_r = 1
!jet_ycut = 0.001
#Define Plot and calculate ratio.
plot R_4 { x_min = 0.0009 x_max = 0.11 ?x_log=true $x_label="$y_{cut}$" ?draw_errors=true $y_label="$\sigma_{jjjj} / \sigma_{jj}$" $title = "Cambridge Algorith LO"}
scan jet_ycut = ((0.001 => 0.003 /+ 0.0001),(0.003 => 0.009 /+ 0.001),(0.01 => 0.03 /+ 0.001),(0.03 => 0.1 /+ 0.01)) {
integrate (jj) {iterations=5:10000:"gw" cuts = count [cluster if E > 0 GeV [j]] > 1}
integrate (jjjj) {iterations=5:50000:"gw" cuts = count [cluster if E > 0 GeV [j]] > 3}
record R_4 (jet_ycut, integral (jjjj) / integral(jj), sqrt((error(jj)/integral(jj))^2 +(error(jjjj)/integral(jjjj))^2)*integral (jjjj) / integral(jj))}
compile_analysis { $out_file = "ratio.dat" }
File Metadata
Details
Attached
Mime Type
text/plain
Expires
Wed, May 14, 11:55 AM (1 h, 43 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5111562
Default Alt Text
fourjetsLO.sin (1 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment