Page MenuHomeHEPForge

fourjetsLO.sin
No OneTemporary

fourjetsLO.sin

#Example of four jets cross-section at LO using the Cambridge algorithm for jet identification.
#Results are normalised to the 2 jets LO cross-section and can be compared directly to Phys.Rev. D59 (1999) 014020.
#Parameters
mc = 0
ms = 0
mb = 0
mW = 80.016 GeV
mZ = 91.187 GeV
wZ = 2.49 GeV
seed = 2222
sqrts = 91.187 GeV
scale = sqrts
#Jet definition
alias j = u:d:s:U:D:S:c:C:b:B:gl
#Options
?vis_channels = true
?use_vamp_equivalences = false
?alpha_s_is_fixed = false
?alpha_s_from_mz = true
?alpha_s_from_lambda_qcd = false
alphas = 0.118
!alphas = 0.121
#Processes
process jj = E1, e1 => j, j
process jjjj = E1, e1 => j, j, j, j
#Jet Algorithm. It uses the EECambridgePlugin of FastJet
jet_algorithm = plugin_algorithm
jet_r = 1
!jet_ycut = 0.001
#Define Plot and calculate ratio.
plot R_4 { x_min = 0.0009 x_max = 0.11 ?x_log=true $x_label="$y_{cut}$" ?draw_errors=true $y_label="$\sigma_{jjjj} / \sigma_{jj}$" $title = "Cambridge Algorith LO"}
scan jet_ycut = ((0.001 => 0.003 /+ 0.0001),(0.003 => 0.009 /+ 0.001),(0.01 => 0.03 /+ 0.001),(0.03 => 0.1 /+ 0.01)) {
integrate (jj) {iterations=5:10000:"gw" cuts = count [cluster if E > 0 GeV [j]] > 1}
integrate (jjjj) {iterations=5:50000:"gw" cuts = count [cluster if E > 0 GeV [j]] > 3}
record R_4 (jet_ycut, integral (jjjj) / integral(jj), sqrt((error(jj)/integral(jj))^2 +(error(jjjj)/integral(jjjj))^2)*integral (jjjj) / integral(jj))}
compile_analysis { $out_file = "ratio.dat" }

File Metadata

Mime Type
text/plain
Expires
Wed, May 14, 11:55 AM (1 h, 43 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5111562
Default Alt Text
fourjetsLO.sin (1 KB)

Event Timeline