Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/Wjets.cc b/src/Wjets.cc
index 3e92a2e..cf5ae44 100644
--- a/src/Wjets.cc
+++ b/src/Wjets.cc
@@ -1,2067 +1,2067 @@
#include "HEJ/currents.hh"
#include "HEJ/utility.hh"
#include "HEJ/Tensor.hh"
#include "HEJ/Constants.hh"
#include <array>
#include <iostream>
namespace { // Helper Functions
// FKL W Helper Functions
void jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
// noalias(temp)=prod(trans(CurrentOutOut(pout,helout,pnu,helout)),metric);
joo(pout,helout,pnu,helout,temp2);
// noalias(temp2)=prod(temp,ctemp);
COM prod1665=cdot(temp2,t65);
// noalias(temp)=prod(trans(Current(pe,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
joi(pe,helin,pin,helin,temp3);
COM prod5465=cdot(temp3,t65);
// noalias(temp)=prod(trans(Current(pnu,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
joo(pout,helout,pe,helout,temp2);
joi(pnu,helnu,pin,helin,temp3);
joi(pout,helout,pin,helin,temp5);
current term1,term2,term3,sum;
cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1);
cmult(prod1665/ta,temp3,term2);
cmult(-prod5465/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
void jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1>
COM prod5165=cdot(temp2,t65);
jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6>
COM prod4665=cdot(temp3,t65);
joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1>
jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5>
jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1>
current term1,term2,term3,sum;
cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1);
cmult(-prod5165/ta,temp3,term2);
cmult(prod4665/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"term1: ("<<temp5[0]<<" "<<temp5[1]<<" "<<temp5[2]<<" "<<temp5[3]<<")"<<std::endl;
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
double WProp (const CLHEP::HepLorentzVector & plbar, const CLHEP::HepLorentzVector & pl){
COM propW = COM(0.,-1.)/((pl+plbar).m2() -HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW);
double PropFactor=(propW*conj(propW)).real();
return PropFactor;
}
CCurrent jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin)
{
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pnu,helnu,pe,hele);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(pout,helout,pnu,helout);
COM prod1665=temp2.dot(t65);
- temp3 = j(pe,helin,pin,helin);
+ temp3 = joi(pe,helin,pin,helin);
COM prod5465=temp3.dot(t65);
temp2=joo(pout,helout,pe,helout);
- temp3=j(pnu,helnu,pin,helin);
- temp5=j(pout,helout,pin,helin);
+ temp3=joi(pnu,helnu,pin,helin);
+ temp5=joi(pout,helout,pin,helin);
CCurrent term1,term2,term3;
term1=(2.*brac615/ta+2.*brac645/tb)*temp5;
term2=(prod1665/ta)*temp3;
term3=(-prod5465/tb)*temp2;
sum=term1+term2+term3;
}
return sum;
}
CCurrent jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin)
{
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pnu,helnu,pe,hele);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(pe,helout,pout,helout); // temp2 is <5|alpha|1>
COM prod5165=temp2.dot(t65);
temp3 = jio(pin,helin,pnu,helin); // temp3 is <4|alpha|6>
COM prod4665=temp3.dot(t65);
temp2=joo(pnu,helout,pout,helout); // temp2 is now <6|mu|1>
temp3=jio(pin,helin,pe,helin); // temp3 is now <4|mu|5>
temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1>
CCurrent term1,term2,term3;
term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5;
term2 =(-prod5165/ta)*temp3;
term3 =(prod4665/tb)*temp2;
sum = term1 + term2 + term3;
}
return sum;
}
// Extremal quark current with W emission. Using Tensor class rather than CCurrent
Tensor <1,4> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){
// Build the external quark line W Emmision
Tensor<1,4> ABCurr = TCurrent(pl, false, plbar, false);
Tensor<1,4> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw
Tensor<1,4> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw
Tensor<3,4> J4bBlank;
if (aqline){
J4bBlank = T3Current(pin,false,pout,false);
}
else{
J4bBlank = T3Current(pout,false,pin,false);
}
double t4AB = (pout+pl+plbar).m2();
double tbAB = (pin-pl-plbar).m2();
Tensor<2,4> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB;
Tensor<2,4> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB;
Tensor<2,4> T4bmMom(0.);
if (aqline){
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom.Set(mu,nu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))*(COM(0,-1)));
}
}
}
else{
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom.Set(nu,mu, (J4b1.at(nu,mu) + J4b2.at(mu,nu))*(COM(0,1)));
}
}
}
Tensor<1,4> T4bm = T4bmMom.contract(ABCurr,1);
return T4bm;
}
// Relevant W+Jets Unordered Contribution Helper Functions
// W+Jets Uno
double jM2Wuno(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pa, bool h1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector pb, bool h2, bool pol)
{
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
//std::cout<<"Setting sigma_index...." << std::endl;
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
CLHEP::HepLorentzVector pW = pl+plbar;
CLHEP::HepLorentzVector q1g=pa-pW-p1-pg;
CLHEP::HepLorentzVector q1 = pa-p1-pW;
CLHEP::HepLorentzVector q2 = p2-pb;
const double taW = (pa-pW).m2();
const double taW1 = (pa-pW-p1).m2();
const double tb2 = (pb-p2).m2();
const double tb2g = (pb-p2-pg).m2();
const double s1W = (p1+pW).m2();
const double s1gW = (p1+pW+pg).m2();
const double s1g = (p1+pg).m2();
const double tag = (pa-pg).m2();
const double taWg = (pa-pW-pg).m2();
//use p1 as ref vec in pol tensor
Tensor<1,4> epsg = eps(pg,p2,pol);
Tensor<1,4> epsW = TCurrent(pl,false,plbar,false);
Tensor<1,4> j2b = TCurrent(p2,h2,pb,h2);
Tensor<1,4> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg)
+ p2/p2.dot(pg)) * tb2/(2*tb2g));
Tensor<1,4> Tq1g = Construct1Tensor((-pg-q1))/taW1;
Tensor<1,4> Tq2g = Construct1Tensor((pg-q2));
Tensor<1,4> TqaW = Construct1Tensor((pa-pW));//pa-pw
Tensor<1,4> Tqag = Construct1Tensor((pa-pg));
Tensor<1,4> TqaWg = Construct1Tensor((pa-pg-pW));
Tensor<1,4> Tp1g = Construct1Tensor((p1+pg));
Tensor<1,4> Tp1W = Construct1Tensor((p1+pW));//p1+pw
Tensor<1,4> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg
Tensor<2,4> g=Metric();
Tensor<3,4> J31a = T3Current(p1, h1, pa, h1);
Tensor<2,4> J2_qaW =J31a.contract(TqaW/taW, 2);
Tensor<2,4> J2_p1W =J31a.contract(Tp1W/s1W, 2);
Tensor<3,4> L1a =J2_qaW.leftprod(Tq1q2);
Tensor<3,4> L1b =J2_p1W.leftprod(Tq1q2);
Tensor<3,4> L2a = J2_qaW.leftprod(Tq1g);
Tensor<3,4> L2b = J2_p1W.leftprod(Tq1g);
Tensor<3,4> L3 = (g.rightprod(J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2)))/taW1;
Tensor<3,4> L(0.);
Tensor<5,4> J51a = T5Current(p1, h1, pa, h1);
Tensor<4,4> J_qaW = J51a.contract(TqaW,4);
Tensor<4,4> J_qag = J51a.contract(Tqag,4);
Tensor<4,4> J_p1gW = J51a.contract(Tp1gW,4);
Tensor<3,4> U1a = J_qaW.contract(Tp1g,2);
Tensor<3,4> U1b = J_p1gW.contract(Tp1g,2);
Tensor<3,4> U1c = J_p1gW.contract(Tp1W,2);
Tensor<3,4> U1(0.);
Tensor<3,4> U2a = J_qaW.contract(TqaWg,2);
Tensor<3,4> U2b = J_qag.contract(TqaWg,2);
Tensor<3,4> U2c = J_qag.contract(Tp1W,2);
Tensor<3,4> U2(0.);
for(int nu=0; nu<4;nu++){
for(int mu=0;mu<4;mu++){
for(int rho=0;rho<4;rho++){
L.Set(nu, mu, rho, L1a.at(nu,mu,rho) + L1b.at(nu,rho,mu)
+ L2a.at(mu,nu,rho) + L2b.at(mu,rho,nu) + L3.at(mu,nu,rho));
U1.Set(nu, mu, rho, U1a.at(nu, mu, rho) / (s1g*taW)
+ U1b.at(nu,rho,mu) / (s1g*s1gW) + U1c.at(rho,nu,mu) / (s1W*s1gW));
U2.Set(nu,mu,rho,U2a.at(mu,nu,rho) / (taWg*taW)
+ U2b.at(mu,rho,nu) / (taWg*tag) + U2c.at(rho,mu,nu) / (s1W*tag));
}
}
}
COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0);
COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1)).at(0);
double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real();
double t1 = q1g.m2();
double t2 = q2.m2();
double WPropfact = WProp(plbar, pl);
//Divide by WProp
amp*=WPropfact;
//Divide by t-channels
amp/=(t1*t2);
//Average over initial states
amp/=(4.*HEJ::C_A*HEJ::C_A);
return amp;
}
// Relevant Wqqx Helper Functions.
//g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes)
Tensor <1,4> gtqqxW(CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar){
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false);
//blank 3 Gamma Current
Tensor<3,4> JV23 = T3Current(pq,false,pqbar,false);
// Components of g->qqW before W Contraction
Tensor<2,4> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB);
Tensor<2,4> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB);
// g->qqW Current. Note Minus between terms due to momentum flow.
// Also note: (-I)^2 from W vert. (I) from Quark prop.
Tensor<1,4> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.);
return JVCur;
}
// Helper Functions Calculate the Crossed Contribution
Tensor <2,4> MCrossW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
// Useful propagator factors
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double tcro1=(q3+pq).m2();
double tcro2=(q1-pqbar).m2();
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar,false);
//Blank 5 gamma Current
Tensor<5,4> J523 = T5Current(pq,false,pqbar,false);
// 4 gamma currents (with 1 contraction already).
Tensor<4,4> J_q3q = J523.contract((Tq3+Tpq),2);
Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2);
// Components of Crossed Vertex Contribution
Tensor<3,4> Xcro1 = J_q3q.contract((Tpqbar + TAB),3);
Tensor<3,4> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3);
Tensor<3,4> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3);
// Term Denominators Taken Care of at this stage
Tensor<2,4> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB);
Tensor<2,4> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2);
Tensor<2,4> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2);
//Initialise the Crossed Vertex Object
Tensor<2,4> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro.Set(mu,nu, -(-Xcro1Cont.at(nu,mu)+Xcro2Cont.at(nu,mu)+Xcro3Cont.at(nu,mu)));
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2,4> MUncrossW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pl - plbar - pq - pqbar;
double tunc1 = (q1-pq).m2();
double tunc2 = (q3+pqbar).m2();
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// Define llx current.
Tensor<1,4> ABCur = TCurrent(pl, false, plbar, false);
//Blank 5 gamma Current
Tensor<5,4> J523 = T5Current(pq,false,pqbar,false);
// 4 gamma currents (with 1 contraction already).
Tensor<4,4> J_2AB = J523.contract((Tpq+TAB),2);
Tensor<4,4> J_q1q = J523.contract((Tq1-Tpq),2);
// 2 Contractions taken care of.
Tensor<3,4> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3);
Tensor<3,4> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3);
Tensor<3,4> Xunc3 = J_q1q.contract((Tpqbar+TAB),3);
// Term Denominators Taken Care of at this stage
Tensor<2,4> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2);
Tensor<2,4> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2);
Tensor<2,4> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB);
//Initialise the Uncrossed Vertex Object
Tensor<2,4> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc.Set(mu,nu,-(- Xunc1Cont.at(mu,nu)+Xunc2Cont.at(mu,nu) +Xunc3Cont.at(mu,nu)));
}
}
return Xunc;
}
// Helper Functions Calculate the g->qqxW (Eikonal) Contributions
Tensor <2,4> MSymW(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, int nabove){
double sa2=(pa+pq).m2();
double s12=(p1+pq).m2();
double sa3=(pa+pqbar).m2();
double s13=(p1+pqbar).m2();
double saA=(pa+pl).m2();
double s1A=(p1+pl).m2();
double saB=(pa+plbar).m2();
double s1B=(p1+plbar).m2();
double sb2=(pb+pq).m2();
double s42=(p4+pq).m2();
double sb3=(pb+pqbar).m2();
double s43=(p4+pqbar).m2();
double sbA=(pb+pl).m2();
double s4A=(p4+pl).m2();
double sbB=(pb+plbar).m2();
double s4B=(p4+plbar).m2();
double s23AB=(pl+plbar+pq+pqbar).m2();
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3=q1-pq-pqbar-plbar-pl;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Define Tensors to be used
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> TAB = Construct1Tensor(pl+plbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
// g->qqW Current (Factors of sqrt2 dealt with in this function.)
Tensor<1,4> JV = gtqqxW(pq,pqbar,pl,plbar);
// 1a gluon emisson Contribution
Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13+s1A+s1B)) + Tpa*(t1/(sa2+sa3+saA+saB)));
Tensor<2,4> X1aCont = X1a.contract(JV,3);
//4b gluon emission Contribution
Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43+s4A+s4B)) + Tpb*(t3/(sb2+sb3+sbA+sbB)));
Tensor<2,4> X4bCont = X4b.contract(JV,3);
//Set up each term of 3G diagram.
Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar+TAB);
Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar-TAB);
Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3));
// Note the contraction of indices changes term by term
Tensor<2,4> X3g1Cont = X3g1.contract(JV,3);
Tensor<2,4> X3g2Cont = X3g2.contract(JV,2);
Tensor<2,4> X3g3Cont = X3g3.contract(JV,1);
// XSym is an amalgamation of x1a, X4b and X3g. Makes sense from a colour factor point of view.
Tensor<2,4>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym.Set(mu,nu, (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu) - X3g3Cont.at(nu,mu))
+ (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) );
}
}
return Xsym/s23AB;
}
Tensor <2,4> MCross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2=(q1-pqbar).m2();
Tensor<1,4> Tq1 = Construct1Tensor(q1-pqbar);
//Blank 3 gamma Current
Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq);
// 2 gamma current (with 1 contraction already).
Tensor<2,4> XCroCont = J323.contract((Tq1),2)/(t2);
//Initialise the Crossed Vertex
Tensor<2,4> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro.Set(mu,nu, (XCroCont.at(nu,mu)));
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2,4> MUncross(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2 = (q1-pq).m2();
Tensor<1,4> Tq1 = Construct1Tensor(q1-pq);
//Blank 3 gamma Current
Tensor<3,4> J323 = T3Current(pq,hq,pqbar,hq);
// 2 gamma currents (with 1 contraction already).
Tensor<2,4> XUncCont = J323.contract((Tq1),2)/t2;
//Initialise the Uncrossed Vertex
Tensor<2,4> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc.Set(mu,nu,-(XUncCont.at(mu,nu)));
}
}
return Xunc;
}
// Helper Functions Calculate the Eikonal Contributions
Tensor <2,4> MSym(CLHEP::HepLorentzVector pa,CLHEP::HepLorentzVector p1,CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector p4, CLHEP::HepLorentzVector pq,CLHEP::HepLorentzVector pqbar, std::vector<HLV> partons, bool hq, int nabove){
CLHEP::HepLorentzVector q1, q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1-pq-pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
double s23 = (pq+pqbar).m2();
double sa2 = (pa+pq).m2();
double sa3 = (pa+pqbar).m2();
double s12 = (p1+pq).m2();
double s13 = (p1+pqbar).m2();
double sb2 = (pb+pq).m2();
double sb3 = (pb+pqbar).m2();
double s42 = (p4+pq).m2();
double s43 = (p4+pqbar).m2();
//Define Tensors to be used
Tensor<1,4> Tp1 = Construct1Tensor(p1);
Tensor<1,4> Tp4 = Construct1Tensor(p4);
Tensor<1,4> Tpa = Construct1Tensor(pa);
Tensor<1,4> Tpb = Construct1Tensor(pb);
Tensor<1,4> Tpq = Construct1Tensor(pq);
Tensor<1,4> Tpqbar = Construct1Tensor(pqbar);
Tensor<1,4> Tq1 = Construct1Tensor(q1);
Tensor<1,4> Tq3 = Construct1Tensor(q3);
Tensor<2,4> g=Metric();
Tensor<1,4> qqxCur = TCurrent(pq, hq, pqbar, hq);
// // 1a gluon emisson Contribution
Tensor<3,4> X1a = g.rightprod(Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3)));
Tensor<2,4> X1aCont = X1a.contract(qqxCur,3);
// //4b gluon emission Contribution
Tensor<3,4> X4b = g.rightprod(Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3)));
Tensor<2,4> X4bCont = X4b.contract(qqxCur,3);
// New Formulation Corresponding to New Analytics
Tensor<3,4> X3g1 = g.leftprod(Tq1+Tpq+Tpqbar);
Tensor<3,4> X3g2 = g.leftprod(Tq3-Tpq-Tpqbar);
Tensor<3,4> X3g3 = g.leftprod((Tq1+Tq3));
// Note the contraction of indices changes term by term
Tensor<2,4> X3g1Cont = X3g1.contract(qqxCur,3);
Tensor<2,4> X3g2Cont = X3g2.contract(qqxCur,2);
Tensor<2,4> X3g3Cont = X3g3.contract(qqxCur,1);
Tensor<2,4>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym.Set(mu, nu, COM(0,1) * ( (X3g1Cont.at(nu,mu) + X3g2Cont.at(mu,nu)
- X3g3Cont.at(nu,mu)) + (X1aCont.at(mu,nu) - X4bCont.at(mu,nu)) ) );
}
}
return Xsym/s23;
}
} // Anonymous Namespace helper functions
// W+Jets FKL Contributions
double jMWqQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double jMWqQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double jMWqbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double jMWqbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double jMWqg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf*Ca=4
return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double jMWqbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
joi(p2out,true,p2in,true,mj2p);
joi(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/HEJ::C_A*(a2Mmp+a2Mmm);
double WPropfact = WProp(pe, pnu);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf*Ca=4
return HEJ::C_F*HEJ::C_A*WPropfact*sst/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
// W+Jets Unordered Contributions
//qQ->qQWg_unob
double junobMWqQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false);
- mj2p=j(p2out,true,p2in,true);
- mj2m=j(p2out,false,p2in,false);
+ mj2p=joi(p2out,true,p2in,true);
+ mj2m=joi(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
- jgbp=j(pg,true,p2in,true);
- jgbm=j(pg,false,p2in,false);
+ jgbp=joi(pg,true,p2in,true);
+ jgbm=joi(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qQbar->qQbarWg_unob
double junobMWqQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jW(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQ->qbarQWg_unob
double junobMWqbarQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false);
- mj2p=j(p2out,true,p2in,true);
- mj2m=j(p2out,false,p2in,false);
+ mj2p=joi(p2out,true,p2in,true);
+ mj2m=joi(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
- jgbp=j(pg,true,p2in,true);
- jgbm=j(pg,false,p2in,false);
+ jgbp=joi(pg,true,p2in,true);
+ jgbm=joi(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQbar->qbarQbarWg_unob
double junobMWqbarQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pg)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg);
CLHEP::HepLorentzVector q3=-(p2in-p2out);
mj1m=jWbar(p1out,false,pe,false,pnu,false,p1in,false);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=((-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mj1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MWmp/2.))/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*q1.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
////////////////////////////////////////////////////////////////////
//qQ->qQWg_unof
double junofMWgqQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false);
- mj1p=j(p1out,true,p1in,true);
- mj1m=j(p1out,false,p1in,false);
+ mj1p=joi(p1out,true,p1in,true);
+ mj1m=joi(p1out,false,p1in,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
- jgap=j(pg,true,p1in,true);
- jgam=j(pg,false,p1in,false);
+ jgap=joi(pg,true,p1in,true);
+ jgam=joi(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qQbar->qQbarWg_unof
double junofMWgqQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false);
- mj1p=j(p1out,true,p1in,true);
- mj1m=j(p1out,false,p1in,false);
+ mj1p=joi(p1out,true,p1in,true);
+ mj1m=joi(p1out,false,p1in,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
- jgap=j(pg,true,p1in,true);
- jgam=j(pg,false,p1in,false);
+ jgap=joi(pg,true,p1in,true);
+ jgam=joi(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQ->qbarQWg_unof
double junofMWgqbarQ (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jW(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
//qbarQbar->qbarQbarWg_unof
double junofMWgqbarQbar (CLHEP::HepLorentzVector pg,CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
CCurrent mj2m,mj1p,mj1m;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector qg=p1in-p1out-pg;
CLHEP::HepLorentzVector q2=-(p2in-p2out-pe-pnu);
mj2m=jWbar(p2out,false,pe,false,pnu,false,p2in,false);
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
// Dot products of these which occur again and again
COM MWpm=mj1p.dot(mj2m); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MWmm) + (-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWmm/2.))/q1.m2();
Lpm=(qsum*(MWpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MWpm/2.))/q1.m2();
U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*MWmm)/(p1out+pg).m2();
U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*MWpm)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*MWmm)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*MWpm)/(p1in-pg).m2();
double amm,apm;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
apm=HEJ::C_F*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1pm+U2pm);
double ampsq=-(apm+amm);
//Divide by WProp
double WPropfact = WProp(pe, pnu);
ampsq*=WPropfact;
// Now add the t-channels
double th=q2.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
return ampsq;
}
///TODO make this comment more visible
/// Naming scheme jM2-Wuno-g-({q/qbar}{Q/Qbar/g})
///TODO Spit naming for more complicated functions?
/// e.g. jM2WqqtoqQQq -> jM2_Wqq_to_qQQq
double jM2WunogqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
//same as function above but actually obtaining the antiquark line by crossing symmetry, where p1out and p1in are expected to be negative.
//should give same result as jM2WunogqbarQ below (verified)
double jM2WunogqQ_crossqQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2WunogqQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2Wunogqg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
return ME2;
}
double jM2WunogqbarQ(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2WunogqbarQbar(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
return ME2;
}
double jM2Wunogqbarg(CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
return ME2;
}
// W+Jets qqxExtremal
// W+Jets qqxExtremal Currents - wqq emission
double jM2WgQtoqbarqQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2WgQtoqqbarQ(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2Wggtoqbarqg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqbarout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,false,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
double jM2Wggtoqqbarg(CLHEP::HepLorentzVector pgin, CLHEP::HepLorentzVector pqbarout,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector pqout, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in){
//COM temp;
double ME2mpp=0.;
double ME2mpm=0.;
double ME2mmp=0.;
double ME2mmm=0.;
double ME2;
ME2mpp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,true);
ME2mpm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,true,false);
ME2mmp = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,true);
ME2mmm = jM2Wuno(-pgin, pqbarout,plbar,pl,-pqout,true,p2out,p2in,false,false);
//Helicity sum
ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
double ratio; // p2-/pb- in the notes
if (p2in.pz()>0.) // if the gluon is the positive
ratio=p2out.plus()/p2in.plus();
else // the gluon is the negative
ratio=p2out.minus()/p2in.minus();
double cam = ( (HEJ::C_A - 1/HEJ::C_A)*(ratio + 1./ratio)/2. + 1/HEJ::C_A)/HEJ::C_F;
ME2*=cam;
//Correct colour averaging
ME2*=(3.0/8.0);
return ME2;
}
namespace {
//Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm1(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double t1 = (p3-pb)*(p3-pb);
Tensor<1,4> Tp3 = Construct1Tensor((p3));//p3
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb, refmom, helg);
Tensor<3,4> qqCurBlank = T3Current(p2,hel2,p3,hel2);
Tensor<2,4> qqCur = qqCurBlank.contract(Tp3-Tpb,2);
Tensor<1,4> gqqCur = qqCur.contract(epsg,2)/t1;
return gqqCur*(-1);
}
//Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm2(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double t1 = (p2-pb)*(p2-pb);
Tensor<1,4> Tp2 = Construct1Tensor((p2));//p2
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb,refmom, helg);
Tensor<3,4> qqCurBlank = T3Current(p2,hel2,p3,hel2);
Tensor<2,4> qqCur = qqCurBlank.contract(Tp2-Tpb,2);
Tensor<1,4> gqqCur = qqCur.contract(epsg,1)/t1;
return gqqCur;
}
//Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1,4> qggm3(CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3, bool hel2, bool helg, CLHEP::HepLorentzVector refmom){
double s23 = (p2+p3)*(p2+p3);
Tensor<1,4> Tp2 = Construct1Tensor((p2));//p2
Tensor<1,4> Tp3 = Construct1Tensor((p3));//p3
Tensor<1,4> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1,4> epsg = eps(pb, refmom, helg);
Tensor<2,4> g=Metric();
Tensor<3,4> qqCurBlank1 = g.leftprod(Tp2+Tp3)/s23;
Tensor<3,4> qqCurBlank2 = g.leftprod(Tpb)/s23;
Tensor<1,4> Cur23 = TCurrent(p2,hel2, p3,hel2);
Tensor<2,4> qqCur1 = qqCurBlank1.contract(Cur23,3);
Tensor<2,4> qqCur2 = qqCurBlank2.contract(Cur23,3);
Tensor<2,4> qqCur3 = qqCurBlank2.contract(Cur23,1);
Tensor<1,4> gqqCur = (qqCur1.contract(epsg,1)
- qqCur2.contract(epsg,2)
+ qqCur3.contract(epsg,1))*2*COM(0,1);
return gqqCur;
}
}
// no wqq emission
double jM2WgqtoQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p3,CLHEP::HepLorentzVector plbar,CLHEP::HepLorentzVector pl, bool aqlinepa){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;}
// 2 independent helicity choices (complex conjugation related).
Tensor<1,4> TMmmm1 = qggm1(pb,p2,p3,false,false, pa);
Tensor<1,4> TMmmm2 = qggm2(pb,p2,p3,false,false, pa);
Tensor<1,4> TMmmm3 = qggm3(pb,p2,p3,false,false, pa);
Tensor<1,4> TMpmm1 = qggm1(pb,p2,p3,false,true, pa);
Tensor<1,4> TMpmm2 = qggm2(pb,p2,p3,false,true, pa);
Tensor<1,4> TMpmm3 = qggm3(pb,p2,p3,false,true, pa);
// Build the external quark line W Emmision
Tensor<1,4> cur1a = jW(pa,p1,plbar,pl, aqlinepa);
//Contract with the qqxCurrent.
COM Mmmm1 = TMmmm1.contract(cur1a,1).at(0);
COM Mmmm2 = TMmmm2.contract(cur1a,1).at(0);
COM Mmmm3 = TMmmm3.contract(cur1a,1).at(0);
COM Mpmm1 = TMpmm1.contract(cur1a,1).at(0);
COM Mpmm2 = TMpmm2.contract(cur1a,1).at(0);
COM Mpmm3 = TMpmm3.contract(cur1a,1).at(0);
//Colour factors:
COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
cm1m1=8./3.;
cm2m2=8./3.;
cm3m3=6.;
cm1m2 =-1./3.;
cm1m3 = -3.*COM(0.,1.);
cm2m3 = 3.*COM(0.,1.);
//Sqaure and sum for each helicity config:
double Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3)));
double Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3)));
// Divide by WProp
double WPropfact = WProp(plbar, pl);
return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2();
}
// W+Jets qqxCentral
double jM2WqqtoqQQq(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl, CLHEP::HepLorentzVector plbar, std::vector<HLV> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove)
{
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;}
HLV pq, pqbar, p1, p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1,4> T1am, T4bm, T1ap, T4bp;
if(!(aqlinepa)){
T1ap = TCurrent(p1, true, pa, true);
T1am = TCurrent(p1, false, pa, false);}
else if(aqlinepa){
T1ap = TCurrent(pa, true, p1, true);
T1am = TCurrent(pa, false, p1, false);}
if(!(aqlinepb)){
T4bp = TCurrent(p4, true, pb, true);
T4bm = TCurrent(p4, false, pb, false);}
else if(aqlinepb){
T4bp = TCurrent(pb, true, p4, true);
T4bm = TCurrent(pb, false, p4, false);}
// Calculate the 3 separate contributions to the effective vertex
Tensor<2,4> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2,4> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2,4> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
// 4 Different Helicity Choices (Differs from Pure Jet Case, where there is also the choice in qqbar helicity.
// (- - hel choice)
COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1)).at(0);
// (- + hel choice)
COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1)).at(0);
COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1)).at(0);
COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1)).at(0);
// (+ - hel choice)
COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1)).at(0);
// (+ + hel choice)
COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1)).at(0);
COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1)).at(0);
COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1)).at(0);
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
//Divide by WProp
double WPropfact = WProp(plbar, pl);
amp*=WPropfact;
return amp;
}
// no wqq emission
double jM2WqqtoqQQqW(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,CLHEP::HepLorentzVector pl,CLHEP::HepLorentzVector plbar, std::vector<CLHEP::HepLorentzVector> partons, bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove, int nbelow, bool forwards){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
if (!forwards){ //If Emission from Leg a instead, flip process.
HLV dummymom = pa;
bool dummybool= aqlinepa;
int dummyint = nabove;
pa = pb;
pb = dummymom;
std::reverse(partons.begin(),partons.end());
qqxmarker = !(qqxmarker);
aqlinepa = aqlinepb;
aqlinepb = dummybool;
nabove = nbelow;
nbelow = dummyint;
}
HLV pq, pqbar, p1,p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1,4> T1am(0.), T1ap(0.);
if(!(aqlinepa)){
T1ap = TCurrent(p1, true, pa, true);
T1am = TCurrent(p1, false, pa, false);}
else if(aqlinepa){
T1ap = TCurrent(pa, true, p1, true);
T1am = TCurrent(pa, false, p1, false);}
Tensor <1,4> T4bm = jW(pb, p4, plbar, pl, aqlinepb);
// Calculate the 3 separate contributions to the effective vertex
Tensor<2,4> Xunc_m = MUncross(pa, pq, pqbar,partons, false, nabove);
Tensor<2,4> Xcro_m = MCross( pa, pq, pqbar,partons, false, nabove);
Tensor<2,4> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, false, nabove);
Tensor<2,4> Xunc_p = MUncross(pa, pq, pqbar,partons, true, nabove);
Tensor<2,4> Xcro_p = MCross( pa, pq, pqbar,partons, true, nabove);
Tensor<2,4> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, true, nabove);
// (- - hel choice)
COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1)).at(0);
// (- + hel choice)
COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1)).at(0);
COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1)).at(0);
// (+ - hel choice)
COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1)).at(0);
// (+ + hel choice)
COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1)).at(0);
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
CLHEP::HepLorentzVector q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
//Divide by WProp
double WPropfact = WProp(plbar, pl);
amp*=WPropfact;
return amp;
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 10:59 PM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4201333
Default Alt Text
(71 KB)

Event Timeline