Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index f130d9d..f71b266 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,786 +1,790 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/PhaseSpacePoint.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <random>
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/Event.hh"
#include "HEJ/JetSplitter.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/resummation_jet.hh"
#include "HEJ/utility.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
namespace HEJ{
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int qqxmid1_idx = -9;
constexpr int qqxmid2_idx = -8;
constexpr int qqxb_idx = -7;
constexpr int qqxf_idx = -6;
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace {
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in arXiv:1805.04446 (see Fig. 2)
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
return sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
const int ng = dist(ran_.get());
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
assert(idx >= 0);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(new_idx >= 0);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
namespace {
//! returns index of most backward q-qbar jet
int getBackQuarkJet(Event const & ev){
std::vector<Particle> const born_parton{filter_partons(ev.outgoing())};
// find born quarks (ignore extremal partons)
auto const firstquark = std::find_if(
born_parton.cbegin()+1, born_parton.cend()-2,
[](Particle const & s){ return (is_anyquark(s)); }
);
// assert that it is a q-q_bar pair.
assert(firstquark != born_parton.cend()-2);
assert( ( is_quark(*firstquark) && is_antiquark(*(firstquark+1)) )
|| ( is_antiquark(*firstquark) && is_quark(*(firstquark+1)) ));
// find jets at FO corresponding to the quarks
// technically this isn't necessary for LO
std::vector<int> const born_indices{ ev.particle_jet_indices(ev.jets()) };
int const firstjet_idx = born_indices[
std::distance(born_parton.cbegin(), firstquark) ];
assert(firstjet_idx>0);
assert( born_indices[ std::distance(born_parton.cbegin(), firstquark+1) ]
== firstjet_idx+1 );
return firstjet_idx;
}
template<class ConstIterator, class Iterator>
void label_extremal_qqx(
ConstIterator born_begin, ConstIterator born_end,
Iterator first_out
){
// find born quarks
const auto firstquark = std::find_if(
born_begin, born_end-1,
[](Particle const & s){ return (is_anyquark(s)); }
);
assert(firstquark != born_end-1);
const auto secondquark = std::find_if(
firstquark+1, born_end,
[](Particle const & s){ return (is_anyquark(s)); }
);
assert(secondquark != born_end);
assert( ( is_quark(*firstquark) && is_antiquark(*secondquark) )
|| ( is_antiquark(*firstquark) && is_quark(*secondquark) ));
assert(first_out->type == ParticleID::gluon);
assert((first_out+1)->type == ParticleID::gluon);
// copy type from born
first_out->type = firstquark->type;
(first_out+1)->type = secondquark->type;
}
}
void PhaseSpacePoint::label_qqx(Event const & event){
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
assert(filter_partons(outgoing_).size() == outgoing_.size());
if(qqxb_){
label_extremal_qqx( event.outgoing().cbegin(), event.outgoing().cend(),
outgoing_.begin()
);
return;
}
if(qqxf_){ // same as qqxb with reversed order
label_extremal_qqx( event.outgoing().crbegin(), event.outgoing().crend(),
outgoing_.rbegin()
);
return;
}
// central qqx
std::vector<Particle> const born_parton{filter_partons(event.outgoing())};
// find born quarks (ignore extremal partons)
auto const firstquark = std::find_if(
born_parton.cbegin()+1, born_parton.cend()-2,
[](Particle const & s){ return (is_anyquark(s)); }
);
// assert that it is a q-q_bar pair.
assert(firstquark != born_parton.cend()-2);
assert( ( is_quark(*firstquark) && is_antiquark(*(firstquark+1)) )
|| ( is_antiquark(*firstquark) && is_quark(*(firstquark+1)) ));
// find jets at FO corresponding to the quarks
// technically this isn't necessary for LO
std::vector<int> const born_indices{ event.particle_jet_indices(event.jets()) };
int const firstjet_idx = born_indices[
std::distance(born_parton.cbegin(), firstquark) ];
assert(firstjet_idx>0);
assert( born_indices[ std::distance(born_parton.cbegin(), firstquark+1) ]
== firstjet_idx+1 );
// find corresponding jets after resummation
fastjet::ClusterSequence cs{to_PseudoJet(outgoing_), param_.jet_param.def};
auto const jets = fastjet::sorted_by_rapidity(
cs.inclusive_jets( param_.jet_param.min_pt ));
std::vector<int> const resum_indices{ cs.particle_jet_indices({jets}) };
// assert that jets didn't move
assert(nearby_ep( ( event.jets().cbegin()+firstjet_idx )->rapidity(),
jets[ firstjet_idx ].rapidity(), 1e-2) );
assert(nearby_ep( ( event.jets().cbegin()+firstjet_idx+1 )->rapidity(),
jets[ firstjet_idx+1 ].rapidity(), 1e-2) );
// find last partons in first (central) jet
size_t idx_out = 0;
for(size_t i=resum_indices.size()-2; i>0; --i)
if(resum_indices[i] == firstjet_idx){
idx_out = i;
break;
}
assert(idx_out != 0);
// check that no additional emission between jets
//! @TODO don't even generate such configurations
if(resum_indices[idx_out+1] != resum_indices[idx_out]+1){
weight_=0.;
status_ = StatusCode::gluon_in_qqx;
return;
}
outgoing_[idx_out].type = firstquark->type;
outgoing_[idx_out+1].type = (firstquark+1)->type;
}
void PhaseSpacePoint::label_quarks(Event const & ev){
const auto WEmit = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & s){ return abs(s.type) == pid::Wp; }
);
if (WEmit != end(ev.outgoing())){
if(!qqxb_)
outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type;
if(!qqxf_)
outgoing_.rbegin()[unof_].type
= filter_partons(ev.outgoing()).rbegin()[unof_].type;
} else {
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
}
if(qqxmid_||qqxb_||qqxf_){
label_qqx(ev);
}
}
PhaseSpacePoint::PhaseSpacePoint(
Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran
):
unob_{ev.type() == event_type::unob},
unof_{ev.type() == event_type::unof},
qqxb_{ev.type() == event_type::qqxexb},
qqxf_{ev.type() == event_type::qqxexf},
qqxmid_{ev.type() == event_type::qqxmid},
param_{std::move(conf)},
ran_{ran},
status_{unspecified}
{
weight_ = 1;
const auto & Born_jets = ev.jets();
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
ng - ng_jets, CMINPT, param_.jet_param.min_pt
);
int qqxbackjet(-1);
if(qqxmid_){
qqxbackjet = getBackQuarkJet(ev);
}
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
if(weight_ == 0.) {
status_ = failed_reshuffle;
return;
}
if(! pass_resummation_cuts(jets)){
status_ = failed_resummation_cuts;
weight_ = 0.;
return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets, qqxbackjet);
if(weight_ == 0.) {
status_ = StatusCode::failed_split;
return;
}
if(qqxmid_){
rescale_qqx_rapidities(
out_partons, jets,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity(),
qqxbackjet
);
}
else{
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
}
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
status_ = StatusCode::empty_jets;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
status_ = StatusCode::wrong_jets;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}});
}
assert(!outgoing_.empty());
label_quarks(ev);
if(weight_ == 0.) {
//! @TODO optimise s.t. this is not possible
// status is handled internally
return;
}
copy_AWZH_boson_from(ev);
reconstruct_incoming(ev.incoming());
status_ = StatusCode::good;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.get().flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.get().flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.get().flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return sorted_by_rapidity(partons);
}
void PhaseSpacePoint::rescale_qqx_rapidities(
std::vector<fastjet::PseudoJet> & out_partons,
std::vector<fastjet::PseudoJet> const & jets,
const double ymin1, const double ymax2,
const int qqxbackjet
){
const double ymax1 = jets[qqxbackjet].rapidity();
const double ymin2 = jets[qqxbackjet+1].rapidity();
const double ratio = (ymax1 - ymin1)/((ymax1 - ymin1)+(ymax2 - ymin2));
- std::vector<std::reference_wrapper<fastjet::PseudoJet>> refpart(out_partons.begin(), out_partons.end());
+ std::vector<std::reference_wrapper<fastjet::PseudoJet>> refpart(
+ out_partons.begin(), out_partons.end());
auto gap = std::find_if(refpart.begin(), refpart.end(),
- [ratio](fastjet::PseudoJet p){return (p.rapidity()>=ratio);} );
+ [ratio](fastjet::PseudoJet p){
+ return (p.rapidity()>=ratio);} );
constexpr double ep = 1e-7;
- for(int i=0; i<std::distance(refpart.begin(), gap); ++i){
- assert(0 <= refpart[i].get().rapidity() && refpart[i].get().rapidity() < ratio);
+ for(auto it_part=refpart.begin(); it_part<gap; ++it_part){
+ fastjet::PseudoJet & part = *it_part;
+ assert(0 <= part.rapidity() && part.rapidity() < ratio);
const double dy = ymax1 - ymin1 - 2*ep;
- const double y = ymin1 + ep + dy*(refpart[i].get().rapidity()/ratio);
- refpart[i].get().reset_momentum_PtYPhiM(refpart[i].get().pt(), y, refpart[i].get().phi());
+ const double y = ymin1 + ep + dy*(part.rapidity()/ratio);
+ part.reset_momentum_PtYPhiM(part.pt(), y, part.phi());
weight_ *= (dy+ymax2-ymin2-2*ep);
- assert(ymin1 <= refpart[i].get().rapidity() && refpart[i].get().rapidity() <= ymax1);
+ assert(ymin1 <= part.rapidity() && part.rapidity() <= ymax1);
}
- for(int i=std::distance(begin(refpart), gap); i<std::distance(begin(refpart), end(refpart)); ++i){
- assert(ratio <= refpart[i].get().rapidity() && refpart[i].get().rapidity() < 1);
+ for(auto it_part=gap; it_part<refpart.end(); ++it_part){
+ fastjet::PseudoJet & part = *it_part;
+ assert(ratio <= part.rapidity() && part.rapidity() < 1);
const double dy = ymax2 - ymin2 - 2*ep;
- const double y = ymin2 + ep + dy*(((refpart[i].get().rapidity()-ratio)/(1-ratio)));
- refpart[i].get().reset_momentum_PtYPhiM(refpart[i].get().pt(), y, refpart[i].get().phi());
+ const double y = ymin2 + ep + dy*(((part.rapidity()-ratio)/(1-ratio)));
+ part.reset_momentum_PtYPhiM(part.pt(), y, part.phi());
weight_ *= (dy+ymax1-ymin1-2*ep);
- assert(ymin2 <= refpart[i].get().rapidity() && refpart[i].get().rapidity() <= ymax2);
+ assert(ymin2 <= part.rapidity() && part.rapidity() <= ymax2);
}
assert(is_sorted(begin(out_partons), end(out_partons), rapidity_less{}));
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param_.jet_param.def.R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(ran_.get());
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
const auto jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// additional Jacobian to ensure Born integration over delta gives 1
weight_ *= resummation_jet_weight(Born_jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param_.jet_param.def.R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if((unob_||qqxb_) && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if((unof_||qqxf_) && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.get().flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets,
size_t qqxbackjet
){
return split(jets, distribute_jet_partons(ng_jets, jets), qqxbackjet);
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param_.min_extparton_pt) return false;
return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np,
size_t qqxbackjet
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_ + qqxb_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_ - qqxf_;
const auto & jet = param_.jet_param;
const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_};
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
auto split_res = jet_splitter.split(jets[i], np[i]);
weight_ *= split_res.weight;
if(weight_ == 0) return {};
assert(
std::all_of(
begin(split_res.constituents), end(split_res.constituents),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(split_res.constituents), end(split_res.constituents)
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
// also mark qqxmid partons, and apply appropriate pt cut.
auto extremal = end(jet_partons);
if (i == most_backward_FKL_idx){ //FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(backward_FKL_idx);
}
else if(((unob_ || qqxb_) && i == 0)){
// unordered/qqxb
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unob_)?unob_idx:qqxb_idx);
}
else if (i == most_forward_FKL_idx){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(forward_FKL_idx);
}
else if(((unof_ || qqxf_) && i == jets.size() - 1)){
// unordered/qqxf
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unof_)?unof_idx:qqxf_idx);
}
else if((qqxmid_ && i == qqxbackjet)){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(qqxmid1_idx);
}
else if((qqxmid_ && i == qqxbackjet+1)){
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(qqxmid2_idx);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
if(qqxb_ && partons.front().user_index() != qqxb_idx) return false;
if(qqxf_ && partons.back().user_index() != qqxf_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = cluster_jets(jet_partons);
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
namespace {
bool contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
){
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
return std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
}
}
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Particle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved());
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved() const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
const double norm = diff.E();
for(auto const & out: outgoing()) diff -= out.p;
return nearby(diff, fastjet::PseudoJet{}, norm);
}
} //namespace HEJ

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 5:08 PM (14 h, 38 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023579
Default Alt Text
(28 KB)

Event Timeline