Page MenuHomeHEPForge

No OneTemporary

diff --git a/pyext/professor2/minimize.py b/pyext/professor2/minimize.py
--- a/pyext/professor2/minimize.py
+++ b/pyext/professor2/minimize.py
@@ -1,15 +1,279 @@
# -*- python -*-
-def mk_fitfunc(fname, pnames, globname):
+def mk_fitfunc(fname, pnames, globname, extraargs=[]):
"""
Dynamically make a fit function for the given param names, to be passed to Minuit.
Return a string definition of the function, to be exec'd, and the list of
generated internal arg names corresponding to pnames.
"""
fargs = ["A%03i" % i for i in xrange(len(pnames))]
- funcdef = "def {gname}({fargs}): return {fname}([{fargs}])".format(gname=globname, fargs=", ".join(fargs), fname=fname)
+ funcdef = "def {gname}({fargs}):\n x= lambda {fargs}: {fname}([{fargs}], {extrargs})".format(gname=globname, fargs=", ".join(fargs), fname=fname, extrargs=", ".join(extraargs))
+ funcdef+="\n return x({fargs})".format(fargs=", ".join(fargs))
return funcdef
+
+def prepareBins(dataHistos, ipolHistos, maxErrDict, matchers, doFilter=False):
+ ## Try to read run histos and extract maximum errors
+
+ ## Weight file parsing
+
+
+ ## Find things available in both ipol and ref data, and in the weight file if there is one
+ available = []
+ for ihn in sorted(ipolHistos.keys()):
+ ## Set default bin weights
+ for ib in ipolHistos[ihn].bins:
+ ib.w = 1.0
+ ## Find user-specified bin weights if there was a weight file
+ if matchers is not None:
+ ## Find matches
+ pathmatch_matchers = [(m,wstr) for m,wstr in matchers.iteritems() if m.match_path(ihn)]
+ ## Ditch histos not listed in the weight file
+ if not pathmatch_matchers:
+ del ipolHistos[ihn]
+ continue
+ ## Attach fit weights to the ibins, setting to zero if there's no position match
+ for ib in ipolHistos[ihn].bins:
+ posmatch_matchers = [(m,wstr) for (m,wstr) in pathmatch_matchers if m.match_pos(ib)]
+ ib.w = float(posmatch_matchers[-1][1]) if posmatch_matchers else 0 #< NB. using last match
+ for rhn in dataHistos.keys():
+ if ihn==rhn or rhn=="/REF/"+ihn: #< TODO: short for rhn = "/REF/"+ihn ?
+ # TODO: we should eliminate this potential mismatch of ref and MC hnames
+ available.append([ihn,rhn])
+ break #< TODO: ok?
+ # else:
+ # print "Could not find %s"%ihn
+
+
+ ## Prepare lists of ibins and dbins
+ IBINS, DBINS, MAXERRS, FILTERED = [], [], [], []
+ BINDICES={} # Allows for more helpful error messages in case of prof.StatError
+ for a in available:
+ # TODO: print out the available observables
+ if len(ipolHistos[a[0]].bins) != len(dataHistos[a[1]].bins):
+ print "Inconsistency discovered between data bins and parametrised bins:"
+ print "Removing histogram", a[0]
+ del ipolHistos[a[0]]
+ del dataHistos[a[1]]
+ else:
+ BINDICES[a[0]] = []#range(len(IBINS), len(IBINS) + len(ipolHistos[a[0]])) # This is for debugging
+ for nb in xrange(len(ipolHistos[a[0]].bins)):
+ if doFilter and dataHistos[a[1]].bins[nb].err ==0:
+ FILTERED.append(1)
+ continue
+ if ipolHistos[a[0]].bins[nb].w >0:
+ IBINS.append(ipolHistos[a[0]].bins[nb])
+ DBINS.append(dataHistos[a[1]].bins[nb])
+ BINDICES[a[0]].append(len(IBINS))
+ if maxErrDict:
+ MAXERRS.extend(MAXERRS[a[0]])
+ if not MAXERRS:
+ MAXERRS = None
+
+ if len(FILTERED)>0:
+ print "DEBUG: filtered %i bins due to zero data error" % len(FILTERED)
+
+
+
+ ## Sanity checks
+ assert len(IBINS) == len(DBINS)
+ if not IBINS:
+ print "No bins... exiting"
+ import sys
+ sys.exit(1)
+ assert MAXERRS is None or len(IBINS) == len(MAXERRS)
+ return DBINS, IBINS, MAXERRS
+
+
+def simpleGoF(params, dbins, ibins, maxerrs):
+ """
+ Very straightforward goodness-of-fit measure
+ """
+ chi2 = 0.0
+ for num, ibin in enumerate(ibins):
+ ## Weight is attached to the ipol bin (default set to 1.0 above)
+ w = ibin.w
+ if w == 0:
+ continue
+ ## Get ipol & ref bin values and compute their difference
+ ival = ibin.val(params)
+ dval = dbins[num].val
+ diff = dval - ival
+ ## Data error
+ err2 = dbins[num].err**2
+ ## Plus interpolation error added in quadrature
+ maxierr = maxerrs[ibin] if maxerrs else None
+ err2 += ibin.err(params, emax=maxierr)**2
+ # TODO: compute asymm error for appropriate deviation direction cf. sum([e**2 for e in ibin.ierrs])
+ if not err2:
+ continue
+ # TODO: should we square w too, so it penalised deviations _linearly_?
+ chi2 += w * diff**2 / err2
+ return chi2
+
+
+# TODO make this work again
+def simpleGoFGradient(params):
+ """
+ Very straightforward goodness-of-fit measure
+ """
+ dchi2 = [0 for x in params]
+ for num, ibin in enumerate(IBINS):
+ ## Weight is attached to the ipol bin (default set to 1.0 above)
+ w = ibin.w
+ if w == 0:
+ continue
+ ## Get ipol & ref bin values and compute their difference
+ ival = ibin.val(params)
+ dval = DBINS[num].val
+ diff = dval - ival
+ ## Data error
+ err2 = DBINS[num].err**2
+ ## Plus interpolation error added in quadrature
+ maxierr = MAXERRS[ibin] if MAXERRS else None
+ err2 += ibin.err(params, emax=maxierr)**2
+ # TODO: compute asymm error for appropriate deviation direction cf. sum([e**2 for e in ibin.ierrs])
+ if not err2:
+ raise prof.StatError("Zero uncertainty on a bin being used in the fit -- cannot compute a reasonable GoF")
+ # TODO: should we square w too, so it penalised deviations _linearly_?
+ igrad = ibin.grad(params)
+ for p in xrange(len(params)):
+ dchi2[p] += 2 * w * diff * igrad[p] / err2
+ N=sum(dchi2)
+ return [x/N for x in dchi2]
+
+def setupMinuitFitarg(pnames, pmins, pmaxs, LIMITFILE):
+ ## Dictionary fitarg for iminuit
+ farg=dict()
+
+ ## Initial conditions --- use pos = center of hypercube, and step = range/10
+ # TODO: Optionally make an initial brute force scan to choose the Minuit starting point, using prof.scangrid
+ assert len(pmins) == len(pmaxs)
+
+ pmids = [(pmins[i] + pmaxs[i])/2. for i in xrange(len(pmins))]
+ pranges = [(pmaxs[i] - pmins[i]) for i in xrange(len(pmins))]
+
+ # This sets the start point
+ for i, aname in enumerate(pnames):
+ farg[aname] = pmids[i]
+ farg['error_%s'%aname] = pranges[i] / 10.
+
+ ## Fix parameters, set limits (with pname translation)
+ import professor2 as prof
+ limits, fixed = prof.read_limitsandfixed(LIMITFILE)
+
+ for i, pname in enumerate(pnames):
+ if pname in limits.keys():
+ farg['limit_%s'%pname] = limits[pname]
+ if pname in fixed.keys():
+ # if not opts.QUIET:
+ # print "Fixing", pname, "= %f"%fixed[pnames[i]]
+ farg[pname] = fixed[pnames[i]]
+ farg['fix_%s'%pname] = True
+ return farg
+
+
+def readResult(fname):
+ """
+ Open results file, extract and return minimum point as OrderedDict
+ and return raw list of all other lines for further processing.
+ """
+ RES=[]
+ OTH=[]
+ with open(fname) as f:
+ for line in f:
+ l=line.strip()
+ if l.startswith("#"):
+ OTH.append(l)
+ else:
+ temp=l.split()
+ RES.append([temp[0], float(temp[1])])
+
+ from collections import OrderedDict
+ return OrderedDict(RES), OTH
+
+def getParamCov(TXT):
+ """
+ Read the covariance matrix from the lines, return as numpy array
+ """
+ START = TXT.index("# Covariance matrix:") + 2
+ dim = len(TXT[START].strip().split()) - 2
+ END = START+dim
+ COV_raw = TXT[START:END]
+ from numpy import zeros
+ COV_p = zeros((dim, dim))
+ for i in xrange(dim):
+ temp = map(float, COV_raw[i].split()[2:2+dim])
+ for j in xrange(dim):
+ COV_p[i][j] = temp[j]
+
+
+ return COV_p
+
+def getParamCorr(TXT):
+ """
+ Read the corrlation matrix from the lines, return as numpy array
+ """
+ START = TXT.index("# Correlation matrix:") + 2
+ dim = len(TXT[START].strip().split()) - 2
+ END = START+dim
+ COV_raw = TXT[START:END]
+ from numpy import zeros
+ COV_p = zeros((dim, dim))
+ for i in xrange(dim):
+ temp = map(float, COV_raw[i].split()[2:2+dim])
+ for j in xrange(dim):
+ COV_p[i][j] = temp[j]
+
+
+ return COV_p
+
+def eigenDecomposition(mat):
+ """
+ Given a symmetric, real NxN matrix, M, an eigen decomposition is always
+ possible, such that M can be written as M = T_transp * S * T (orthogonal
+ transformation) with T_transp * T = 1_N and S being a diagonal matrix with
+ the eigenvalues of M on the diagonal.
+
+ Returns
+ -------
+ T_trans : numpy.matrix
+ S : numpy.ndarray
+ The real eigen values.
+ T : numpy.matrix
+ """
+ from scipy import linalg
+ from numpy import matrix
+ import numpy
+
+ A = matrix(mat)
+ S, T_trans = linalg.eig(A)
+ if numpy.iscomplex(S).any():
+ raise ValueError("Given matrix `mat` has complex eigenvalues!")
+
+ return matrix(T_trans), S.real, matrix(T_trans).transpose()
+
+def mkEigentunes(COV, point, plus=True):
+ T_trans, S, T = eigenDecomposition(COV)
+ from numpy import sqrt, zeros, matrix
+ rv = matrix(point.values())
+ rv_trans = (T_trans * rv.transpose()).transpose()
+
+ ret = []
+
+ for num, c in enumerate(S):
+ ev = zeros(len(S))
+ sigma=sqrt(c)
+ if plus:
+ ev[num] =sigma
+ else:
+ ev[num] = -1* sigma
+ ev_trans = rv_trans + ev
+ etune_params_t = T * ev_trans.transpose()
+ etune_params = etune_params_t.transpose().tolist()[0]
+ ret.append([sigma, etune_params])
+
+ return ret

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:42 PM (1 d, 1 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3806135
Default Alt Text
(10 KB)

Event Timeline