Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/LauCPFitModel.cc b/src/LauCPFitModel.cc
index 15c01ca..b3ad44b 100644
--- a/src/LauCPFitModel.cc
+++ b/src/LauCPFitModel.cc
@@ -1,3440 +1,3450 @@
/*
Copyright 2004 University of Warwick
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Laura++ package authors:
John Back
Paul Harrison
Thomas Latham
*/
/*! \file LauCPFitModel.cc
\brief File containing implementation of LauCPFitModel class.
*/
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include "TVirtualFitter.h"
#include "TSystem.h"
#include "TMinuit.h"
#include "TRandom.h"
#include "TFile.h"
#include "TTree.h"
#include "TBranch.h"
#include "TLeaf.h"
#include "TMath.h"
#include "TH2.h"
#include "TGraph2D.h"
#include "TGraph.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "LauAbsBkgndDPModel.hh"
#include "LauAbsCoeffSet.hh"
#include "LauIsobarDynamics.hh"
#include "LauAbsPdf.hh"
#include "LauAsymmCalc.hh"
#include "LauComplex.hh"
#include "LauConstants.hh"
#include "LauCPFitModel.hh"
#include "LauDaughters.hh"
#include "LauEffModel.hh"
#include "LauEmbeddedData.hh"
#include "LauFitNtuple.hh"
#include "LauGenNtuple.hh"
#include "LauKinematics.hh"
#include "LauPrint.hh"
#include "LauRandom.hh"
#include "LauScfMap.hh"
ClassImp(LauCPFitModel)
LauCPFitModel::LauCPFitModel(LauIsobarDynamics* negModel, LauIsobarDynamics* posModel, Bool_t tagged, const TString& tagVarName) : LauAbsFitModel(),
negSigModel_(negModel), posSigModel_(posModel),
negKinematics_(negModel ? negModel->getKinematics() : 0),
posKinematics_(posModel ? posModel->getKinematics() : 0),
usingBkgnd_(kFALSE),
nSigComp_(0),
nSigDPPar_(0),
nExtraPdfPar_(0),
nNormPar_(0),
negMeanEff_("negMeanEff",0.0,0.0,1.0), posMeanEff_("posMeanEff",0.0,0.0,1.0),
negDPRate_("negDPRate",0.0,0.0,100.0), posDPRate_("posDPRate",0.0,0.0,100.0),
signalEvents_(0),
signalAsym_(0),
forceAsym_(kFALSE),
tagged_(tagged),
tagVarName_(tagVarName),
curEvtCharge_(0),
useSCF_(kFALSE),
useSCFHist_(kFALSE),
scfFrac_("scfFrac",0.0,0.0,1.0),
scfFracHist_(0),
scfMap_(0),
compareFitData_(kFALSE),
negParent_("B-"), posParent_("B+"),
negSignalTree_(0), posSignalTree_(0),
reuseSignal_(kFALSE),
useNegReweighting_(kFALSE), usePosReweighting_(kFALSE),
sigDPLike_(0.0),
scfDPLike_(0.0),
sigExtraLike_(0.0),
scfExtraLike_(0.0),
sigTotalLike_(0.0),
scfTotalLike_(0.0)
{
const LauDaughters* negDaug = negSigModel_->getDaughters();
if (negDaug != 0) {negParent_ = negDaug->getNameParent();}
const LauDaughters* posDaug = posSigModel_->getDaughters();
if (posDaug != 0) {posParent_ = posDaug->getNameParent();}
}
LauCPFitModel::~LauCPFitModel()
{
delete negSignalTree_;
delete posSignalTree_;
for (LauBkgndEmbDataList::iterator iter = negBkgndTree_.begin(); iter != negBkgndTree_.end(); ++iter) {
delete (*iter);
}
for (LauBkgndEmbDataList::iterator iter = posBkgndTree_.begin(); iter != posBkgndTree_.end(); ++iter) {
delete (*iter);
}
delete scfFracHist_;
}
void LauCPFitModel::setupBkgndVectors()
{
UInt_t nBkgnds = this->nBkgndClasses();
negBkgndDPModels_.resize( nBkgnds );
posBkgndDPModels_.resize( nBkgnds );
negBkgndPdfs_.resize( nBkgnds );
posBkgndPdfs_.resize( nBkgnds );
bkgndEvents_.resize( nBkgnds );
bkgndAsym_.resize( nBkgnds );
negBkgndTree_.resize( nBkgnds );
posBkgndTree_.resize( nBkgnds );
reuseBkgnd_.resize( nBkgnds );
bkgndDPLike_.resize( nBkgnds );
bkgndExtraLike_.resize( nBkgnds );
bkgndTotalLike_.resize( nBkgnds );
}
void LauCPFitModel::setNSigEvents(LauParameter* nSigEvents)
{
if ( nSigEvents == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : The LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( signalEvents_ != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : You are trying to overwrite the signal yield." << std::endl;
return;
}
if ( signalAsym_ != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : You are trying to overwrite the signal asymmetry." << std::endl;
return;
}
signalEvents_ = nSigEvents;
TString name = signalEvents_->name();
if ( ! name.Contains("signalEvents") && !( name.BeginsWith("signal") && name.EndsWith("Events") ) ) {
signalEvents_->name("signalEvents");
}
Double_t value = nSigEvents->value();
signalEvents_->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
signalAsym_ = new LauParameter("signalAsym",0.0,-1.0,1.0,kTRUE);
}
void LauCPFitModel::setNSigEvents( LauParameter* nSigEvents, LauParameter* sigAsym, Bool_t forceAsym )
{
if ( nSigEvents == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : The event LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( sigAsym == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : The asym LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( signalEvents_ != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : You are trying to overwrite the signal yield." << std::endl;
return;
}
if ( signalAsym_ != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNSigEvents : You are trying to overwrite the signal asymmetry." << std::endl;
return;
}
signalEvents_ = nSigEvents;
signalEvents_->name("signalEvents");
Double_t value = nSigEvents->value();
signalEvents_->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
signalAsym_ = sigAsym;
signalAsym_->name("signalAsym");
signalAsym_->range(-1.0,1.0);
forceAsym_ = forceAsym;
}
void LauCPFitModel::setNBkgndEvents( LauAbsRValue* nBkgndEvents )
{
if ( nBkgndEvents == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBgkndEvents : The background yield LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( ! this->validBkgndClass( nBkgndEvents->name() ) ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : Invalid background class \"" << nBkgndEvents->name() << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t bkgndID = this->bkgndClassID( nBkgndEvents->name() );
if ( bkgndEvents_[bkgndID] != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : You are trying to overwrite the background yield." << std::endl;
return;
}
if ( bkgndAsym_[bkgndID] != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : You are trying to overwrite the background asymmetry." << std::endl;
return;
}
nBkgndEvents->name( nBkgndEvents->name()+"Events" );
if ( nBkgndEvents->isLValue() ) {
Double_t value = nBkgndEvents->value();
LauParameter* yield = dynamic_cast<LauParameter*>( nBkgndEvents );
yield->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
}
bkgndEvents_[bkgndID] = nBkgndEvents;
bkgndAsym_[bkgndID] = new LauParameter(nBkgndEvents->name()+"Asym",0.0,-1.0,1.0,kTRUE);
}
void LauCPFitModel::setNBkgndEvents(LauAbsRValue* nBkgndEvents, LauAbsRValue* bkgndAsym)
{
if ( nBkgndEvents == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : The background yield LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( bkgndAsym == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : The background asym LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( ! this->validBkgndClass( nBkgndEvents->name() ) ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : Invalid background class \"" << nBkgndEvents->name() << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t bkgndID = this->bkgndClassID( nBkgndEvents->name() );
if ( bkgndEvents_[bkgndID] != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : You are trying to overwrite the background yield." << std::endl;
return;
}
if ( bkgndAsym_[bkgndID] != 0 ) {
std::cerr << "ERROR in LauCPFitModel::setNBkgndEvents : You are trying to overwrite the background asymmetry." << std::endl;
return;
}
nBkgndEvents->name( nBkgndEvents->name()+"Events" );
if ( nBkgndEvents->isLValue() ) {
Double_t value = nBkgndEvents->value();
LauParameter* yield = dynamic_cast<LauParameter*>( nBkgndEvents );
yield->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
}
bkgndEvents_[bkgndID] = nBkgndEvents;
bkgndAsym->name( nBkgndEvents->name()+"Asym" );
if ( bkgndAsym->isLValue() ) {
LauParameter* asym = dynamic_cast<LauParameter*>( bkgndAsym );
asym->range(-1.0, 1.0);
}
bkgndAsym_[bkgndID] = bkgndAsym;
}
void LauCPFitModel::splitSignalComponent( const TH2* dpHisto, const Bool_t upperHalf, const Bool_t fluctuateBins, LauScfMap* scfMap )
{
if ( useSCF_ == kTRUE ) {
std::cerr << "ERROR in LauCPFitModel::splitSignalComponent : Have already setup SCF." << std::endl;
return;
}
if ( dpHisto == 0 ) {
std::cerr << "ERROR in LauCPFitModel::splitSignalComponent : The histogram pointer is null." << std::endl;
return;
}
const LauDaughters* daughters = negSigModel_->getDaughters();
scfFracHist_ = new LauEffModel( daughters, 0 );
scfFracHist_->setEffHisto( dpHisto, kTRUE, fluctuateBins, 0.0, 0.0, upperHalf, daughters->squareDP() );
scfMap_ = scfMap;
useSCF_ = kTRUE;
useSCFHist_ = kTRUE;
}
void LauCPFitModel::splitSignalComponent( const Double_t scfFrac, const Bool_t fixed )
{
if ( useSCF_ == kTRUE ) {
std::cerr << "ERROR in LauCPFitModel::splitSignalComponent : Have already setup SCF." << std::endl;
return;
}
scfFrac_.range( 0.0, 1.0 );
scfFrac_.value( scfFrac ); scfFrac_.initValue( scfFrac ); scfFrac_.genValue( scfFrac );
scfFrac_.fixed( fixed );
useSCF_ = kTRUE;
useSCFHist_ = kFALSE;
}
void LauCPFitModel::setBkgndDPModels(const TString& bkgndClass, LauAbsBkgndDPModel* negModel, LauAbsBkgndDPModel* posModel)
{
if ((negModel==0) || (posModel==0)) {
std::cerr << "ERROR in LauCPFitModel::setBkgndDPModels : One or both of the model pointers is null." << std::endl;
return;
}
// check that this background name is valid
if ( ! this->validBkgndClass( bkgndClass) ) {
std::cerr << "ERROR in LauCPFitModel::setBkgndDPModel : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
negBkgndDPModels_[bkgndID] = negModel;
posBkgndDPModels_[bkgndID] = posModel;
usingBkgnd_ = kTRUE;
}
void LauCPFitModel::setSignalPdfs(LauAbsPdf* negPdf, LauAbsPdf* posPdf)
{
if ( tagged_ ) {
if (negPdf==0 || posPdf==0) {
std::cerr << "ERROR in LauCPFitModel::setSignalPdfs : One or both of the PDF pointers is null." << std::endl;
return;
}
} else {
// if we're doing an untagged analysis we will only use the negative PDFs
if ( negPdf==0 ) {
std::cerr << "ERROR in LauCPFitModel::setSignalPdfs : The negative PDF pointer is null." << std::endl;
return;
}
if ( posPdf!=0 ) {
std::cerr << "WARNING in LauCPFitModel::setSignalPdfs : Doing an untagged fit so will not use the positive PDF." << std::endl;
}
}
negSignalPdfs_.push_back(negPdf);
posSignalPdfs_.push_back(posPdf);
}
void LauCPFitModel::setSCFPdfs(LauAbsPdf* negPdf, LauAbsPdf* posPdf)
{
if ( tagged_ ) {
if (negPdf==0 || posPdf==0) {
std::cerr << "ERROR in LauCPFitModel::setSCFPdfs : One or both of the PDF pointers is null." << std::endl;
return;
}
} else {
// if we're doing an untagged analysis we will only use the negative PDFs
if ( negPdf==0 ) {
std::cerr << "ERROR in LauCPFitModel::setSCFPdfs : The negative PDF pointer is null." << std::endl;
return;
}
if ( posPdf!=0 ) {
std::cerr << "WARNING in LauCPFitModel::setSCFPdfs : Doing an untagged fit so will not use the positive PDF." << std::endl;
}
}
negScfPdfs_.push_back(negPdf);
posScfPdfs_.push_back(posPdf);
}
void LauCPFitModel::setBkgndPdfs(const TString& bkgndClass, LauAbsPdf* negPdf, LauAbsPdf* posPdf)
{
if ( tagged_ ) {
if (negPdf==0 || posPdf==0) {
std::cerr << "ERROR in LauCPFitModel::setBkgndPdfs : One or both of the PDF pointers is null." << std::endl;
return;
}
} else {
// if we're doing an untagged analysis we will only use the negative PDFs
if ( negPdf==0 ) {
std::cerr << "ERROR in LauCPFitModel::setBkgndPdfs : The negative PDF pointer is null." << std::endl;
return;
}
if ( posPdf!=0 ) {
std::cerr << "WARNING in LauCPFitModel::setBkgndPdfs : Doing an untagged fit so will not use the positive PDF." << std::endl;
}
}
// check that this background name is valid
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauCPFitModel::setBkgndPdfs : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
negBkgndPdfs_[bkgndID].push_back(negPdf);
posBkgndPdfs_[bkgndID].push_back(posPdf);
usingBkgnd_ = kTRUE;
}
void LauCPFitModel::setAmpCoeffSet(LauAbsCoeffSet* coeffSet)
{
// Resize the coeffPars vector if not already done
if ( coeffPars_.empty() ) {
const UInt_t nNegAmp = negSigModel_->getnTotAmp();
const UInt_t nPosAmp = posSigModel_->getnTotAmp();
if ( nNegAmp != nPosAmp ) {
std::cerr << "ERROR in LauCPFitModel::setAmpCoeffSet : Unequal number of signal DP components in the negative and positive models: " << nNegAmp << " != " << nPosAmp << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
coeffPars_.resize( nNegAmp );
for (std::vector<LauAbsCoeffSet*>::iterator iter = coeffPars_.begin(); iter != coeffPars_.end(); ++iter) {
(*iter) = 0;
}
fitFracAsymm_.resize( nNegAmp );
acp_.resize( nNegAmp );
}
// Is there a component called compName in the signal model?
TString compName(coeffSet->name());
TString conjName = negSigModel_->getConjResName(compName);
const Int_t negIndex = negSigModel_->resonanceIndex(compName);
const Int_t posIndex = posSigModel_->resonanceIndex(conjName);
if ( negIndex < 0 ) {
std::cerr << "ERROR in LauCPFitModel::setAmpCoeffSet : " << negParent_ << " signal DP model doesn't contain component \"" << compName << "\"." << std::endl;
return;
}
if ( posIndex < 0 ) {
std::cerr << "ERROR in LauCPFitModel::setAmpCoeffSet : " << posParent_ << " signal DP model doesn't contain component \"" << conjName << "\"." << std::endl;
return;
}
if ( posIndex != negIndex ) {
std::cerr << "ERROR in LauCPFitModel::setAmpCoeffSet : " << negParent_ << " signal DP model and " << posParent_ << " signal DP model have different indices for components \"" << compName << "\" and \"" << conjName << "\"." << std::endl;
return;
}
// Do we already have it in our list of names?
if ( coeffPars_[negIndex] != 0 && coeffPars_[negIndex]->name() == compName) {
std::cerr << "ERROR in LauCPFitModel::setAmpCoeffSet : Have already set coefficients for \"" << compName << "\"." << std::endl;
return;
}
coeffSet->index(negIndex);
coeffPars_[negIndex] = coeffSet;
TString parName = coeffSet->baseName(); parName += "FitFracAsym";
fitFracAsymm_[negIndex] = LauParameter(parName, 0.0, -1.0, 1.0);
acp_[negIndex] = coeffSet->acp();
++nSigComp_;
std::cout << "INFO in LauCPFitModel::setAmpCoeffSet : Added coefficients for component \"" << compName << "\" to the fit model." << std::endl;
coeffSet->printParValues();
}
void LauCPFitModel::initialise()
{
// Initialisation
if (!this->useDP() && negSignalPdfs_.empty()) {
std::cerr << "ERROR in LauCPFitModel::initialise : Signal model doesn't exist for any variable." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( this->useDP() ) {
// Check that we have all the Dalitz-plot models
if ((negSigModel_ == 0) || (posSigModel_ == 0)) {
std::cerr << "ERROR in LauCPFitModel::initialise : the pointer to one (neg or pos) of the signal DP models is null.\n";
std::cerr << " : Removing the Dalitz Plot from the model." << std::endl;
this->useDP(kFALSE);
}
if ( usingBkgnd_ ) {
if ( negBkgndDPModels_.empty() || posBkgndDPModels_.empty() ) {
std::cerr << "ERROR in LauCPFitModel::initialise : No background DP models found.\n";
std::cerr << " : Removing the Dalitz plot from the model." << std::endl;
this->useDP(kFALSE);
}
for (LauBkgndDPModelList::const_iterator dpmodel_iter = negBkgndDPModels_.begin(); dpmodel_iter != negBkgndDPModels_.end(); ++dpmodel_iter ) {
if ( (*dpmodel_iter) == 0 ) {
std::cerr << "ERROR in LauCPFitModel::initialise : The pointer to one of the background DP models is null.\n";
std::cerr << " : Removing the Dalitz Plot from the model." << std::endl;
this->useDP(kFALSE);
break;
}
}
for (LauBkgndDPModelList::const_iterator dpmodel_iter = posBkgndDPModels_.begin(); dpmodel_iter != posBkgndDPModels_.end(); ++dpmodel_iter ) {
if ( (*dpmodel_iter) == 0 ) {
std::cerr << "ERROR in LauCPFitModel::initialise : The pointer to one of the background DP models is null.\n";
std::cerr << " : Removing the Dalitz Plot from the model." << std::endl;
this->useDP(kFALSE);
break;
}
}
}
// Need to check that the number of components we have and that the dynamics has matches up
const UInt_t nNegAmp = negSigModel_->getnTotAmp();
const UInt_t nPosAmp = posSigModel_->getnTotAmp();
if ( nNegAmp != nPosAmp ) {
std::cerr << "ERROR in LauCPFitModel::initialise : Unequal number of signal DP components in the negative and positive models: " << nNegAmp << " != " << nPosAmp << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( nNegAmp != nSigComp_ ) {
std::cerr << "ERROR in LauCPFitModel::initialise : Number of signal DP components in the model (" << nNegAmp << ") not equal to number of coefficients supplied (" << nSigComp_ << ")." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( !fixParamFileName_.IsNull() || !fixParamMap_.empty() ) {
// Set coefficients
std::vector<LauParameter*> params;
for ( auto itr = coeffPars_.begin(); itr != coeffPars_.end(); ++itr ) {
std::vector<LauParameter*> p = (*itr)->getParameters();
params.insert(params.end(), p.begin(), p.end());
}
this->fixParams(params);
// Set resonance parameters (if they exist)
negSigModel_->collateResonanceParameters();
posSigModel_->collateResonanceParameters();
this->fixParams(negSigModel_->getFloatingParameters());
this->fixParams(posSigModel_->getFloatingParameters());
}
// From the initial parameter values calculate the coefficients
// so they can be passed to the signal model
this->updateCoeffs();
// If all is well, go ahead and initialise them
this->initialiseDPModels();
}
// Next check that, if a given component is being used we've got the
// right number of PDFs for all the variables involved
// TODO - should probably check variable names and so on as well
UInt_t nsigpdfvars(0);
for ( LauPdfList::const_iterator pdf_iter = negSignalPdfs_.begin(); pdf_iter != negSignalPdfs_.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nsigpdfvars;
}
}
}
if (useSCF_) {
UInt_t nscfpdfvars(0);
for ( LauPdfList::const_iterator pdf_iter = negScfPdfs_.begin(); pdf_iter != negScfPdfs_.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nscfpdfvars;
}
}
}
if (nscfpdfvars != nsigpdfvars) {
std::cerr << "ERROR in LauCPFitModel::initialise : There are " << nsigpdfvars << " TM signal PDF variables but " << nscfpdfvars << " SCF signal PDF variables." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
if (usingBkgnd_) {
for (LauBkgndPdfsList::const_iterator bgclass_iter = negBkgndPdfs_.begin(); bgclass_iter != negBkgndPdfs_.end(); ++bgclass_iter) {
UInt_t nbkgndpdfvars(0);
const LauPdfList& pdfList = (*bgclass_iter);
for ( LauPdfList::const_iterator pdf_iter = pdfList.begin(); pdf_iter != pdfList.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nbkgndpdfvars;
}
}
}
if (nbkgndpdfvars != nsigpdfvars) {
std::cerr << "ERROR in LauCPFitModel::initialise : There are " << nsigpdfvars << " signal PDF variables but " << nbkgndpdfvars << " bkgnd PDF variables." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
}
// Clear the vectors of parameter information so we can start from scratch
this->clearFitParVectors();
// Set the fit parameters for signal and background models
this->setSignalDPParameters();
// Set the fit parameters for the various extra PDFs
this->setExtraPdfParameters();
// Set the initial bg and signal events
this->setFitNEvents();
// Check that we have the expected number of fit variables
const LauParameterPList& fitVars = this->fitPars();
if (fitVars.size() != (nSigDPPar_ + nExtraPdfPar_ + nNormPar_)) {
std::cerr << "ERROR in LauCPFitModel::initialise : Number of fit parameters not of expected size. Exiting" << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
this->setExtraNtupleVars();
}
void LauCPFitModel::recalculateNormalisation()
{
//std::cout << "INFO in LauCPFitModel::recalculateNormalizationInDPModels : Recalc Norm in DP model" << std::endl;
negSigModel_->recalculateNormalisation();
posSigModel_->recalculateNormalisation();
negSigModel_->modifyDataTree();
posSigModel_->modifyDataTree();
}
void LauCPFitModel::initialiseDPModels()
{
std::cout << "INFO in LauCPFitModel::initialiseDPModels : Initialising signal DP model" << std::endl;
negSigModel_->initialise(negCoeffs_);
posSigModel_->initialise(posCoeffs_);
if (usingBkgnd_ == kTRUE) {
for (LauBkgndDPModelList::iterator iter = negBkgndDPModels_.begin(); iter != negBkgndDPModels_.end(); ++iter) {
(*iter)->initialise();
}
for (LauBkgndDPModelList::iterator iter = posBkgndDPModels_.begin(); iter != posBkgndDPModels_.end(); ++iter) {
(*iter)->initialise();
}
}
}
void LauCPFitModel::setSignalDPParameters()
{
// Set the fit parameters for the signal model.
nSigDPPar_ = 0;
if ( ! this->useDP() ) {
return;
}
std::cout << "INFO in LauCPFitModel::setSignalDPParameters : Setting the initial fit parameters for the signal DP model." << std::endl;
// Place isobar coefficient parameters in vector of fit variables
LauParameterPList& fitVars = this->fitPars();
for (UInt_t i = 0; i < nSigComp_; i++) {
LauParameterPList pars = coeffPars_[i]->getParameters();
for (LauParameterPList::iterator iter = pars.begin(); iter != pars.end(); ++iter) {
if ( !(*iter)->clone() ) {
fitVars.push_back(*iter);
++nSigDPPar_;
}
}
}
// Obtain the resonance parameters and place them in the vector of fit variables and in a separate vector
// Need to make sure that they are unique because some might appear in both DP models
LauParameterPSet& resVars = this->resPars();
resVars.clear();
LauParameterPList& negSigDPPars = negSigModel_->getFloatingParameters();
LauParameterPList& posSigDPPars = posSigModel_->getFloatingParameters();
for ( LauParameterPList::iterator iter = negSigDPPars.begin(); iter != negSigDPPars.end(); ++iter ) {
if ( resVars.insert(*iter).second ) {
fitVars.push_back(*iter);
++nSigDPPar_;
}
}
for ( LauParameterPList::iterator iter = posSigDPPars.begin(); iter != posSigDPPars.end(); ++iter ) {
if ( resVars.insert(*iter).second ) {
fitVars.push_back(*iter);
++nSigDPPar_;
}
}
}
void LauCPFitModel::setExtraPdfParameters()
{
// Include all the parameters of the PDF in the fit
// NB all of them are passed to the fit, even though some have been fixed through parameter.fixed(kTRUE)
// With the new "cloned parameter" scheme only "original" parameters are passed to the fit.
// Their clones are updated automatically when the originals are updated.
nExtraPdfPar_ = 0;
nExtraPdfPar_ += this->addFitParameters(negSignalPdfs_);
if ( tagged_ ) {
nExtraPdfPar_ += this->addFitParameters(posSignalPdfs_);
}
if (useSCF_ == kTRUE) {
nExtraPdfPar_ += this->addFitParameters(negScfPdfs_);
if ( tagged_ ) {
nExtraPdfPar_ += this->addFitParameters(posScfPdfs_);
}
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndPdfsList::iterator iter = negBkgndPdfs_.begin(); iter != negBkgndPdfs_.end(); ++iter) {
nExtraPdfPar_ += this->addFitParameters(*iter);
}
if ( tagged_ ) {
for (LauBkgndPdfsList::iterator iter = posBkgndPdfs_.begin(); iter != posBkgndPdfs_.end(); ++iter) {
nExtraPdfPar_ += this->addFitParameters(*iter);
}
}
}
}
void LauCPFitModel::setFitNEvents()
{
if ( signalEvents_ == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setFitNEvents : Signal yield not defined." << std::endl;
return;
}
nNormPar_ = 0;
// initialise the total number of events to be the sum of all the hypotheses
Double_t nTotEvts = signalEvents_->value();
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
nTotEvts += (*iter)->value();
if ( (*iter) == 0 ) {
std::cerr << "ERROR in LauCPFitModel::setFitNEvents : Background yield not defined." << std::endl;
return;
}
}
this->eventsPerExpt(TMath::FloorNint(nTotEvts));
LauParameterPList& fitVars = this->fitPars();
// if doing an extended ML fit add the number of signal events into the fit parameters
if (this->doEMLFit()) {
std::cout << "INFO in LauCPFitModel::setFitNEvents : Initialising number of events for signal and background components..." << std::endl;
// add the signal fraction to the list of fit parameters
if(!signalEvents_->fixed()) {
fitVars.push_back(signalEvents_);
++nNormPar_;
}
} else {
std::cout << "INFO in LauCPFitModel::setFitNEvents : Initialising number of events for background components (and hence signal)..." << std::endl;
}
// if not using the DP in the model we need an explicit signal asymmetry parameter
if (this->useDP() == kFALSE) {
if(!signalAsym_->fixed()) {
fitVars.push_back(signalAsym_);
++nNormPar_;
}
}
if (useSCF_ && !useSCFHist_) {
if(!scfFrac_.fixed()) {
fitVars.push_back(&scfFrac_);
++nNormPar_;
}
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
if(!parameter->clone()) {
fitVars.push_back(parameter);
++nNormPar_;
}
}
}
for (LauBkgndYieldList::iterator iter = bkgndAsym_.begin(); iter != bkgndAsym_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
if(!parameter->clone()) {
fitVars.push_back(parameter);
++nNormPar_;
}
}
}
}
}
void LauCPFitModel::setExtraNtupleVars()
{
// Set-up other parameters derived from the fit results, e.g. fit fractions.
if (this->useDP() != kTRUE) {
return;
}
// First clear the vectors so we start from scratch
this->clearExtraVarVectors();
LauParameterList& extraVars = this->extraPars();
// Add the positive and negative fit fractions for each signal component
negFitFrac_ = negSigModel_->getFitFractions();
if (negFitFrac_.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << negFitFrac_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (negFitFrac_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << negFitFrac_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
posFitFrac_ = posSigModel_->getFitFractions();
if (posFitFrac_.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << posFitFrac_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (posFitFrac_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << posFitFrac_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
// Add the positive and negative fit fractions that have not been corrected for the efficiency for each signal component
negFitFracEffUnCorr_ = negSigModel_->getFitFractionsEfficiencyUncorrected();
if (negFitFracEffUnCorr_.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << negFitFracEffUnCorr_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (negFitFracEffUnCorr_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << negFitFracEffUnCorr_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
posFitFracEffUnCorr_ = posSigModel_->getFitFractionsEfficiencyUncorrected();
if (posFitFracEffUnCorr_.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << posFitFracEffUnCorr_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (posFitFracEffUnCorr_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << posFitFracEffUnCorr_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
TString name = negFitFrac_[i][j].name();
name.Insert( name.Index("FitFrac"), "Neg" );
negFitFrac_[i][j].name(name);
extraVars.push_back(negFitFrac_[i][j]);
name = posFitFrac_[i][j].name();
name.Insert( name.Index("FitFrac"), "Pos" );
posFitFrac_[i][j].name(name);
extraVars.push_back(posFitFrac_[i][j]);
name = negFitFracEffUnCorr_[i][j].name();
name.Insert( name.Index("FitFrac"), "Neg" );
negFitFracEffUnCorr_[i][j].name(name);
extraVars.push_back(negFitFracEffUnCorr_[i][j]);
name = posFitFracEffUnCorr_[i][j].name();
name.Insert( name.Index("FitFrac"), "Pos" );
posFitFracEffUnCorr_[i][j].name(name);
extraVars.push_back(posFitFracEffUnCorr_[i][j]);
}
}
// Store any extra parameters/quantities from the DP model (e.g. K-matrix total fit fractions)
std::vector<LauParameter> negExtraPars = negSigModel_->getExtraParameters();
std::vector<LauParameter>::iterator negExtraIter;
for (negExtraIter = negExtraPars.begin(); negExtraIter != negExtraPars.end(); ++negExtraIter) {
LauParameter negExtraParameter = (*negExtraIter);
extraVars.push_back(negExtraParameter);
}
std::vector<LauParameter> posExtraPars = posSigModel_->getExtraParameters();
std::vector<LauParameter>::iterator posExtraIter;
for (posExtraIter = posExtraPars.begin(); posExtraIter != posExtraPars.end(); ++posExtraIter) {
LauParameter posExtraParameter = (*posExtraIter);
extraVars.push_back(posExtraParameter);
}
// Now add in the DP efficiency value
Double_t initMeanEff = negSigModel_->getMeanEff().initValue();
negMeanEff_.value(initMeanEff);
negMeanEff_.genValue(initMeanEff);
negMeanEff_.initValue(initMeanEff);
extraVars.push_back(negMeanEff_);
initMeanEff = posSigModel_->getMeanEff().initValue();
posMeanEff_.value(initMeanEff);
posMeanEff_.genValue(initMeanEff);
posMeanEff_.initValue(initMeanEff);
extraVars.push_back(posMeanEff_);
// Also add in the DP rates
Double_t initDPRate = negSigModel_->getDPRate().initValue();
negDPRate_.value(initDPRate);
negDPRate_.genValue(initDPRate);
negDPRate_.initValue(initDPRate);
extraVars.push_back(negDPRate_);
initDPRate = posSigModel_->getDPRate().initValue();
posDPRate_.value(initDPRate);
posDPRate_.genValue(initDPRate);
posDPRate_.initValue(initDPRate);
extraVars.push_back(posDPRate_);
// Calculate the CPC and CPV Fit Fractions, ACPs and FitFrac asymmetries
this->calcExtraFractions(kTRUE);
this->calcAsymmetries(kTRUE);
// Add the CP violating and CP conserving fit fractions for each signal component
for (UInt_t i = 0; i < nSigComp_; i++) {
for (UInt_t j = i; j < nSigComp_; j++) {
extraVars.push_back(CPVFitFrac_[i][j]);
}
}
for (UInt_t i = 0; i < nSigComp_; i++) {
for (UInt_t j = i; j < nSigComp_; j++) {
extraVars.push_back(CPCFitFrac_[i][j]);
}
}
// Add the Fit Fraction asymmetry for each signal component
for (UInt_t i = 0; i < nSigComp_; i++) {
extraVars.push_back(fitFracAsymm_[i]);
}
// Add the calculated CP asymmetry for each signal component
for (UInt_t i = 0; i < nSigComp_; i++) {
extraVars.push_back(acp_[i]);
}
}
void LauCPFitModel::calcExtraFractions(Bool_t initValues)
{
// Calculate the CP-conserving and CP-violating fit fractions
if (initValues) {
// create the structure
CPCFitFrac_.clear();
CPVFitFrac_.clear();
CPCFitFrac_.resize(nSigComp_);
CPVFitFrac_.resize(nSigComp_);
for (UInt_t i(0); i<nSigComp_; ++i) {
CPCFitFrac_[i].resize(nSigComp_);
CPVFitFrac_[i].resize(nSigComp_);
for (UInt_t j(i); j<nSigComp_; ++j) {
TString name = negFitFrac_[i][j].name();
name.Replace( name.Index("Neg"), 3, "CPC" );
CPCFitFrac_[i][j].name( name );
CPCFitFrac_[i][j].valueAndRange( 0.0, -100.0, 100.0 );
name = negFitFrac_[i][j].name();
name.Replace( name.Index("Neg"), 3, "CPV" );
CPVFitFrac_[i][j].name( name );
CPVFitFrac_[i][j].valueAndRange( 0.0, -100.0, 100.0 );
}
}
}
Double_t denom = negDPRate_.value() + posDPRate_.value();
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
Double_t negTerm = negFitFrac_[i][j].value()*negDPRate_.value();
Double_t posTerm = posFitFrac_[i][j].value()*posDPRate_.value();
Double_t cpcFitFrac = (negTerm + posTerm)/denom;
Double_t cpvFitFrac = (negTerm - posTerm)/denom;
CPCFitFrac_[i][j].value(cpcFitFrac);
CPVFitFrac_[i][j].value(cpvFitFrac);
if (initValues) {
CPCFitFrac_[i][j].genValue(cpcFitFrac);
CPCFitFrac_[i][j].initValue(cpcFitFrac);
CPVFitFrac_[i][j].genValue(cpvFitFrac);
CPVFitFrac_[i][j].initValue(cpvFitFrac);
}
}
}
}
void LauCPFitModel::calcAsymmetries(Bool_t initValues)
{
// Calculate the CP asymmetries
// Also calculate the fit fraction asymmetries
for (UInt_t i = 0; i < nSigComp_; i++) {
acp_[i] = coeffPars_[i]->acp();
LauAsymmCalc asymmCalc(negFitFrac_[i][i].value(), posFitFrac_[i][i].value());
Double_t asym = asymmCalc.getAsymmetry();
fitFracAsymm_[i].value(asym);
if (initValues) {
fitFracAsymm_[i].genValue(asym);
fitFracAsymm_[i].initValue(asym);
}
}
}
void LauCPFitModel::finaliseFitResults(const TString& tablePrefixName)
{
// Retrieve parameters from the fit results for calculations and toy generation
// and eventually store these in output root ntuples/text files
// Now take the fit parameters and update them as necessary
// i.e. to make mag > 0.0, phase in the right range.
// This function will also calculate any other values, such as the
// fit fractions, using any errors provided by fitParErrors as appropriate.
// Also obtain the pull values: (measured - generated)/(average error)
if (this->useDP() == kTRUE) {
for (UInt_t i = 0; i < nSigComp_; ++i) {
// Check whether we have "a/b > 0.0", and phases in the right range
coeffPars_[i]->finaliseValues();
}
}
// update the pulls on the event fractions and asymmetries
if (this->doEMLFit()) {
signalEvents_->updatePull();
}
if (this->useDP() == kFALSE) {
signalAsym_->updatePull();
}
if (useSCF_ && !useSCFHist_) {
scfFrac_.updatePull();
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
parameter->updatePull();
}
}
for (LauBkgndYieldList::iterator iter = bkgndAsym_.begin(); iter != bkgndAsym_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
parameter->updatePull();
}
}
}
// Update the pulls on all the extra PDFs' parameters
this->updateFitParameters(negSignalPdfs_);
this->updateFitParameters(posSignalPdfs_);
if (useSCF_ == kTRUE) {
this->updateFitParameters(negScfPdfs_);
this->updateFitParameters(posScfPdfs_);
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndPdfsList::iterator iter = negBkgndPdfs_.begin(); iter != negBkgndPdfs_.end(); ++iter) {
this->updateFitParameters(*iter);
}
for (LauBkgndPdfsList::iterator iter = posBkgndPdfs_.begin(); iter != posBkgndPdfs_.end(); ++iter) {
this->updateFitParameters(*iter);
}
}
// Fill the fit results to the ntuple
// update the coefficients and then calculate the fit fractions and ACP's
if (this->useDP() == kTRUE) {
this->updateCoeffs();
negSigModel_->updateCoeffs(negCoeffs_); negSigModel_->calcExtraInfo();
posSigModel_->updateCoeffs(posCoeffs_); posSigModel_->calcExtraInfo();
LauParArray negFitFrac = negSigModel_->getFitFractions();
if (negFitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << negFitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (negFitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << negFitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
LauParArray posFitFrac = posSigModel_->getFitFractions();
if (posFitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << posFitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (posFitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << posFitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
LauParArray negFitFracEffUnCorr = negSigModel_->getFitFractionsEfficiencyUncorrected();
if (negFitFracEffUnCorr.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << negFitFracEffUnCorr.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (negFitFracEffUnCorr[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << negFitFracEffUnCorr[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
LauParArray posFitFracEffUnCorr = posSigModel_->getFitFractionsEfficiencyUncorrected();
if (posFitFracEffUnCorr.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << posFitFracEffUnCorr.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (posFitFracEffUnCorr[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << posFitFracEffUnCorr[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
negFitFrac_[i][j].value(negFitFrac[i][j].value());
posFitFrac_[i][j].value(posFitFrac[i][j].value());
negFitFracEffUnCorr_[i][j].value(negFitFracEffUnCorr[i][j].value());
posFitFracEffUnCorr_[i][j].value(posFitFracEffUnCorr[i][j].value());
}
}
negMeanEff_.value(negSigModel_->getMeanEff().value());
posMeanEff_.value(posSigModel_->getMeanEff().value());
negDPRate_.value(negSigModel_->getDPRate().value());
posDPRate_.value(posSigModel_->getDPRate().value());
this->calcExtraFractions();
this->calcAsymmetries();
// Then store the final fit parameters, and any extra parameters for
// the signal model (e.g. fit fractions, FF asymmetries, ACPs, mean efficiency and DP rate)
this->clearExtraVarVectors();
LauParameterList& extraVars = this->extraPars();
// Add the positive and negative fit fractions for each signal component
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
extraVars.push_back(negFitFrac_[i][j]);
extraVars.push_back(posFitFrac_[i][j]);
extraVars.push_back(negFitFracEffUnCorr_[i][j]);
extraVars.push_back(posFitFracEffUnCorr_[i][j]);
}
}
// Store any extra parameters/quantities from the DP model (e.g. K-matrix total fit fractions)
std::vector<LauParameter> negExtraPars = negSigModel_->getExtraParameters();
std::vector<LauParameter>::iterator negExtraIter;
for (negExtraIter = negExtraPars.begin(); negExtraIter != negExtraPars.end(); ++negExtraIter) {
LauParameter negExtraParameter = (*negExtraIter);
extraVars.push_back(negExtraParameter);
}
std::vector<LauParameter> posExtraPars = posSigModel_->getExtraParameters();
std::vector<LauParameter>::iterator posExtraIter;
for (posExtraIter = posExtraPars.begin(); posExtraIter != posExtraPars.end(); ++posExtraIter) {
LauParameter posExtraParameter = (*posExtraIter);
extraVars.push_back(posExtraParameter);
}
extraVars.push_back(negMeanEff_);
extraVars.push_back(posMeanEff_);
extraVars.push_back(negDPRate_);
extraVars.push_back(posDPRate_);
for (UInt_t i = 0; i < nSigComp_; i++) {
for (UInt_t j(i); j<nSigComp_; ++j) {
extraVars.push_back(CPVFitFrac_[i][j]);
}
}
for (UInt_t i = 0; i < nSigComp_; i++) {
for (UInt_t j(i); j<nSigComp_; ++j) {
extraVars.push_back(CPCFitFrac_[i][j]);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
extraVars.push_back(fitFracAsymm_[i]);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
extraVars.push_back(acp_[i]);
}
this->printFitFractions(std::cout);
this->printAsymmetries(std::cout);
}
const LauParameterPList& fitVars = this->fitPars();
const LauParameterList& extraVars = this->extraPars();
LauFitNtuple* ntuple = this->fitNtuple();
ntuple->storeParsAndErrors(fitVars, extraVars);
// find out the correlation matrix for the parameters
ntuple->storeCorrMatrix(this->iExpt(), this->fitStatus(), this->covarianceMatrix());
// Fill the data into ntuple
ntuple->updateFitNtuple();
// Print out the partial fit fractions, phases and the
// averaged efficiency, reweighted by the dynamics (and anything else)
if (this->writeLatexTable()) {
TString sigOutFileName(tablePrefixName);
sigOutFileName += "_"; sigOutFileName += this->iExpt(); sigOutFileName += "Expt.tex";
this->writeOutTable(sigOutFileName);
}
}
void LauCPFitModel::printFitFractions(std::ostream& output)
{
// Print out Fit Fractions, total DP rate and mean efficiency
// First for the B- events
for (UInt_t i = 0; i < nSigComp_; i++) {
const TString compName(coeffPars_[i]->name());
output << negParent_ << " FitFraction for component " << i << " (" << compName << ") = " << negFitFrac_[i][i] << std::endl;
}
output << negParent_ << " overall DP rate (integral of matrix element squared) = " << negDPRate_ << std::endl;
output << negParent_ << " average efficiency weighted by whole DP dynamics = " << negMeanEff_ << std::endl;
// Then for the positive sample
for (UInt_t i = 0; i < nSigComp_; i++) {
const TString compName(coeffPars_[i]->name());
const TString conjName(negSigModel_->getConjResName(compName));
output << posParent_ << " FitFraction for component " << i << " (" << conjName << ") = " << posFitFrac_[i][i] << std::endl;
}
output << posParent_ << " overall DP rate (integral of matrix element squared) = " << posDPRate_ << std::endl;
output << posParent_ << " average efficiency weighted by whole DP dynamics = " << posMeanEff_ << std::endl;
}
void LauCPFitModel::printAsymmetries(std::ostream& output)
{
for (UInt_t i = 0; i < nSigComp_; i++) {
const TString compName(coeffPars_[i]->name());
output << "Fit Fraction asymmetry for component " << i << " (" << compName << ") = " << fitFracAsymm_[i] << std::endl;
}
for (UInt_t i = 0; i < nSigComp_; i++) {
const TString compName(coeffPars_[i]->name());
output << "ACP for component " << i << " (" << compName << ") = " << acp_[i] << std::endl;
}
}
void LauCPFitModel::writeOutTable(const TString& outputFile)
{
// Write out the results of the fit to a tex-readable table
// TODO - need to include the yields in this table
std::ofstream fout(outputFile);
LauPrint print;
std::cout << "INFO in LauCPFitModel::writeOutTable : Writing out results of the fit to the tex file " << outputFile << std::endl;
if (this->useDP() == kTRUE) {
// print the fit coefficients in one table
coeffPars_.front()->printTableHeading(fout);
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffPars_[i]->printTableRow(fout);
}
fout << "\\hline" << std::endl;
fout << "\\end{tabular}" << std::endl << std::endl;
// print the fit fractions and asymmetries in another
fout << "\\begin{tabular}{|l|c|c|c|c|}" << std::endl;
fout << "\\hline" << std::endl;
fout << "Component & " << negParent_ << " Fit Fraction & " << posParent_ << " Fit Fraction & Fit Fraction Asymmetry & ACP \\\\" << std::endl;
fout << "\\hline" << std::endl;
Double_t negFitFracSum(0.0);
Double_t posFitFracSum(0.0);
for (UInt_t i = 0; i < nSigComp_; i++) {
TString resName = coeffPars_[i]->name();
resName = resName.ReplaceAll("_", "\\_");
Double_t negFitFrac = negFitFrac_[i][i].value();
Double_t posFitFrac = posFitFrac_[i][i].value();
negFitFracSum += negFitFrac;
posFitFracSum += posFitFrac;
Double_t fitFracAsymm = fitFracAsymm_[i].value();
Double_t acp = acp_[i].value();
Double_t acpErr = acp_[i].error();
fout << resName << " & $";
print.printFormat(fout, negFitFrac);
fout << "$ & $";
print.printFormat(fout, posFitFrac);
fout << "$ & $";
print.printFormat(fout, fitFracAsymm);
fout << "$ & $";
print.printFormat(fout, acp);
fout << " \\pm ";
print.printFormat(fout, acpErr);
fout << "$ \\\\" << std::endl;
}
fout << "\\hline" << std::endl;
// Also print out sum of fit fractions
fout << "Fit Fraction Sum & $";
print.printFormat(fout, negFitFracSum);
fout << "$ & $";
print.printFormat(fout, posFitFracSum);
fout << "$ & & \\\\" << std::endl;
fout << "\\hline" << std::endl;
fout << "DP rate & $";
print.printFormat(fout, negDPRate_.value());
fout << "$ & $";
print.printFormat(fout, posDPRate_.value());
fout << "$ & & \\\\" << std::endl;
fout << "$< \\varepsilon > $ & $";
print.printFormat(fout, negMeanEff_.value());
fout << "$ & $";
print.printFormat(fout, posMeanEff_.value());
fout << "$ & & \\\\" << std::endl;
fout << "\\hline" << std::endl;
fout << "\\end{tabular}" << std::endl << std::endl;
}
if (!negSignalPdfs_.empty()) {
fout << "\\begin{tabular}{|l|c|}" << std::endl;
fout << "\\hline" << std::endl;
if (useSCF_ == kTRUE) {
fout << "\\Extra TM Signal PDFs' Parameters: & \\\\" << std::endl;
} else {
fout << "\\Extra Signal PDFs' Parameters: & \\\\" << std::endl;
}
this->printFitParameters(negSignalPdfs_, fout);
if ( tagged_ ) {
this->printFitParameters(posSignalPdfs_, fout);
}
if (useSCF_ == kTRUE && !negScfPdfs_.empty()) {
fout << "\\hline" << std::endl;
fout << "\\Extra SCF Signal PDFs' Parameters: & \\\\" << std::endl;
this->printFitParameters(negScfPdfs_, fout);
if ( tagged_ ) {
this->printFitParameters(posScfPdfs_, fout);
}
}
if (usingBkgnd_ == kTRUE && !negBkgndPdfs_.empty()) {
fout << "\\hline" << std::endl;
fout << "\\Extra Background PDFs' Parameters: & \\\\" << std::endl;
for (LauBkgndPdfsList::const_iterator iter = negBkgndPdfs_.begin(); iter != negBkgndPdfs_.end(); ++iter) {
this->printFitParameters(*iter, fout);
}
if ( tagged_ ) {
for (LauBkgndPdfsList::const_iterator iter = posBkgndPdfs_.begin(); iter != posBkgndPdfs_.end(); ++iter) {
this->printFitParameters(*iter, fout);
}
}
}
fout << "\\hline \n\\end{tabular}" << std::endl << std::endl;
}
}
void LauCPFitModel::checkInitFitParams()
{
// Update the number of signal events to be total-sum(background events)
this->updateSigEvents();
// Check whether we want to have randomised initial fit parameters for the signal model
if (this->useRandomInitFitPars() == kTRUE) {
std::cout << "INFO in LauCPFitModel::checkInitFitParams : Setting random parameters for the signal model" << std::endl;
this->randomiseInitFitPars();
}
}
void LauCPFitModel::randomiseInitFitPars()
{
// Only randomise those parameters that are not fixed!
std::cout << "INFO in LauCPFitModel::randomiseInitFitPars : Randomising the initial fit magnitudes and phases of the components..." << std::endl;
if ( fixParamFileName_.IsNull() && fixParamMap_.empty() ) {
// No params are imported - randomise as normal
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffPars_[i]->randomiseInitValues();
}
} else {
// Only randomise those that are not imported (i.e., not found in allImportedFreeParams_)
// by temporarily fixing all imported parameters, and then freeing those not set to be fixed when imported,
// except those that are previously set to be fixed anyhow.
// Convoluted, but beats changing the behaviour of functions that call checkInitFitParams or the coeffSet
// itself.
for (auto p : allImportedFreeParams_) { p->fixed(kTRUE); }
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffPars_[i]->randomiseInitValues();
}
for (auto p : allImportedFreeParams_) { p->fixed(kFALSE); }
}
}
std::pair<LauCPFitModel::LauGenInfo,Bool_t> LauCPFitModel::eventsToGenerate()
{
// Determine the number of events to generate for each hypothesis
// If we're smearing then smear each one individually
LauGenInfo nEvtsGen;
// Keep track of whether any yield or asymmetry parameters are blinded
Bool_t blind = kFALSE;
// Signal
+ if ( signalEvents_->blind() ) {
+ blind = kTRUE;
+ }
+
Double_t evtWeight(1.0);
Double_t nEvts = signalEvents_->genValue();
if ( nEvts < 0.0 ) {
evtWeight = -1.0;
nEvts = TMath::Abs( nEvts );
}
- if ( signalEvents_->blind() ) {
- blind = kTRUE;
- }
- Double_t asym(0.0);
+
Double_t sigAsym(0.0);
// need to include this as an alternative in case the DP isn't in the model
if ( !this->useDP() || forceAsym_ ) {
sigAsym = signalAsym_->genValue();
if ( signalAsym_->blind() ) {
blind = kTRUE;
}
} else {
Double_t negRate = negSigModel_->getDPNorm();
Double_t posRate = posSigModel_->getDPNorm();
if (negRate+posRate>1e-30) {
sigAsym = (negRate-posRate)/(negRate+posRate);
}
}
- asym = sigAsym;
- Int_t nPosEvts = static_cast<Int_t>((nEvts/2.0 * (1.0 - asym)) + 0.5);
- Int_t nNegEvts = static_cast<Int_t>((nEvts/2.0 * (1.0 + asym)) + 0.5);
+ Double_t nPosEvts = (nEvts/2.0 * (1.0 - sigAsym));
+ Double_t nNegEvts = (nEvts/2.0 * (1.0 + sigAsym));
+
+ Int_t nPosEvtsToGen { static_cast<Int_t>(nPosEvts) };
+ Int_t nNegEvtsToGen { static_cast<Int_t>(nNegEvts) };
if (this->doPoissonSmearing()) {
- nNegEvts = LauRandom::randomFun()->Poisson(nNegEvts);
- nPosEvts = LauRandom::randomFun()->Poisson(nPosEvts);
+ nPosEvtsToGen = LauRandom::randomFun()->Poisson(nPosEvts);
+ nNegEvtsToGen = LauRandom::randomFun()->Poisson(nNegEvts);
}
- nEvtsGen[std::make_pair("signal",-1)] = std::make_pair(nNegEvts,evtWeight);
- nEvtsGen[std::make_pair("signal",+1)] = std::make_pair(nPosEvts,evtWeight);
+
+ nEvtsGen[std::make_pair("signal",+1)] = std::make_pair(nPosEvtsToGen,evtWeight);
+ nEvtsGen[std::make_pair("signal",-1)] = std::make_pair(nNegEvtsToGen,evtWeight);
// backgrounds
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
- const TString& bkgndClass = this->bkgndClassName(bkgndID);
const LauAbsRValue* evtsPar = bkgndEvents_[bkgndID];
const LauAbsRValue* asymPar = bkgndAsym_[bkgndID];
if ( evtsPar->blind() || asymPar->blind() ) {
blind = kTRUE;
}
+
evtWeight = 1.0;
- nEvts = TMath::FloorNint( evtsPar->genValue() );
+ nEvts = evtsPar->genValue();
if ( nEvts < 0 ) {
evtWeight = -1.0;
nEvts = TMath::Abs( nEvts );
}
- asym = asymPar->genValue();
- nPosEvts = static_cast<Int_t>((nEvts/2.0 * (1.0 - asym)) + 0.5);
- nNegEvts = static_cast<Int_t>((nEvts/2.0 * (1.0 + asym)) + 0.5);
+
+ const Double_t asym = asymPar->genValue();
+ nPosEvts = (nEvts/2.0 * (1.0 - asym));
+ nNegEvts = (nEvts/2.0 * (1.0 + asym));
+
+ nPosEvtsToGen = static_cast<Int_t>(nPosEvts);
+ nNegEvtsToGen = static_cast<Int_t>(nNegEvts);
if (this->doPoissonSmearing()) {
- nNegEvts = LauRandom::randomFun()->Poisson(nNegEvts);
- nPosEvts = LauRandom::randomFun()->Poisson(nPosEvts);
+ nPosEvtsToGen = LauRandom::randomFun()->Poisson(nPosEvts);
+ nNegEvtsToGen = LauRandom::randomFun()->Poisson(nNegEvts);
}
- nEvtsGen[std::make_pair(bkgndClass,-1)] = std::make_pair(nNegEvts,evtWeight);
+
+ const TString& bkgndClass = this->bkgndClassName(bkgndID);
nEvtsGen[std::make_pair(bkgndClass,+1)] = std::make_pair(nPosEvts,evtWeight);
+ nEvtsGen[std::make_pair(bkgndClass,-1)] = std::make_pair(nNegEvts,evtWeight);
}
// Print out the information on what we're generating, but only if none of the parameters are blind (otherwise we risk unblinding them!)
if ( !blind ) {
std::cout << "INFO in LauCPFitModel::eventsToGenerate : Generating toy MC with:" << std::endl;
std::cout << " : Signal asymmetry = " << sigAsym << " and number of signal events = " << signalEvents_->genValue() << std::endl;
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
const TString& bkgndClass = this->bkgndClassName(bkgndID);
const LauAbsRValue* evtsPar = bkgndEvents_[bkgndID];
const LauAbsRValue* asymPar = bkgndAsym_[bkgndID];
std::cout << " : " << bkgndClass << " asymmetry = " << asymPar->genValue() << " and number of " << bkgndClass << " events = " << evtsPar->genValue() << std::endl;
}
}
return std::make_pair( nEvtsGen, blind );
}
Bool_t LauCPFitModel::genExpt()
{
// Routine to generate toy Monte Carlo events according to the various models we have defined.
// Determine the number of events to generate for each hypothesis
std::pair<LauGenInfo,Bool_t> info = this->eventsToGenerate();
LauGenInfo nEvts = info.first;
const Bool_t blind = info.second;
Bool_t genOK(kTRUE);
Int_t evtNum(0);
const UInt_t nBkgnds = this->nBkgndClasses();
std::vector<TString> bkgndClassNames(nBkgnds);
std::vector<TString> bkgndClassNamesGen(nBkgnds);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
bkgndClassNames[iBkgnd] = name;
bkgndClassNamesGen[iBkgnd] = "gen"+name;
}
const Bool_t storeSCFTruthInfo = ( useSCF_ || ( this->enableEmbedding() &&
negSignalTree_ != 0 && negSignalTree_->haveBranch("mcMatch") &&
posSignalTree_ != 0 && posSignalTree_->haveBranch("mcMatch") ) );
// Loop over the hypotheses and generate the requested number of events for each one
for (LauGenInfo::const_iterator iter = nEvts.begin(); iter != nEvts.end(); ++iter) {
const TString& type(iter->first.first);
curEvtCharge_ = iter->first.second;
Double_t evtWeight( iter->second.second );
Int_t nEvtsGen( iter->second.first );
for (Int_t iEvt(0); iEvt<nEvtsGen; ++iEvt) {
this->setGenNtupleDoubleBranchValue( "evtWeight", evtWeight );
this->setGenNtupleDoubleBranchValue( "efficiency", 1.0 );
if (type == "signal") {
this->setGenNtupleIntegerBranchValue("genSig",1);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
this->setGenNtupleIntegerBranchValue( bkgndClassNamesGen[iBkgnd], 0 );
}
genOK = this->generateSignalEvent();
if ( curEvtCharge_ > 0 ){
this->setGenNtupleDoubleBranchValue( "efficiency", posSigModel_->getEvtEff() );
} else {
this->setGenNtupleDoubleBranchValue( "efficiency", negSigModel_->getEvtEff() );
}
} else {
this->setGenNtupleIntegerBranchValue("genSig",0);
if ( storeSCFTruthInfo ) {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
}
UInt_t bkgndID(0);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
Int_t gen(0);
if ( bkgndClassNames[iBkgnd] == type ) {
gen = 1;
bkgndID = iBkgnd;
}
this->setGenNtupleIntegerBranchValue( bkgndClassNamesGen[iBkgnd], gen );
}
genOK = this->generateBkgndEvent(bkgndID);
}
if (!genOK) {
// If there was a problem with the generation then break out and return.
// The problem model will have adjusted itself so that all should be OK next time.
break;
}
if (this->useDP() == kTRUE) {
this->setDPBranchValues();
}
// Store the event charge
this->setGenNtupleIntegerBranchValue(tagVarName_,curEvtCharge_);
// Store the event number (within this experiment)
// and then increment it
this->setGenNtupleIntegerBranchValue("iEvtWithinExpt",evtNum);
++evtNum;
this->fillGenNtupleBranches();
if ( !blind && (iEvt%500 == 0) ) {
std::cout << "INFO in LauCPFitModel::genExpt : Generated event number " << iEvt << " out of " << nEvtsGen << " " << type << " events." << std::endl;
}
}
if (!genOK) {
break;
}
}
if (this->useDP() && genOK) {
negSigModel_->checkToyMC(kTRUE,kTRUE);
posSigModel_->checkToyMC(kTRUE,kTRUE);
// Get the fit fractions if they're to be written into the latex table
if (this->writeLatexTable()) {
LauParArray negFitFrac = negSigModel_->getFitFractions();
if (negFitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::genExpt : Fit Fraction array of unexpected dimension: " << negFitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (negFitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::genExpt : Fit Fraction array of unexpected dimension: " << negFitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
LauParArray posFitFrac = posSigModel_->getFitFractions();
if (posFitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::genExpt : Fit Fraction array of unexpected dimension: " << posFitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (posFitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauCPFitModel::genExpt : Fit Fraction array of unexpected dimension: " << posFitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
negFitFrac_[i][j].value(negFitFrac[i][j].value());
posFitFrac_[i][j].value(posFitFrac[i][j].value());
}
}
negMeanEff_.value(negSigModel_->getMeanEff().value());
posMeanEff_.value(posSigModel_->getMeanEff().value());
negDPRate_.value(negSigModel_->getDPRate().value());
posDPRate_.value(posSigModel_->getDPRate().value());
}
}
// If we're reusing embedded events or if the generation is being
// reset then clear the lists of used events
if (reuseSignal_ || !genOK) {
if (negSignalTree_) {
negSignalTree_->clearUsedList();
}
if (posSignalTree_) {
posSignalTree_->clearUsedList();
}
}
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
LauEmbeddedData* data = negBkgndTree_[bkgndID];
if (reuseBkgnd_[bkgndID] || !genOK) {
if (data) {
data->clearUsedList();
}
}
}
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
LauEmbeddedData* data = posBkgndTree_[bkgndID];
if (reuseBkgnd_[bkgndID] || !genOK) {
if (data) {
data->clearUsedList();
}
}
}
return genOK;
}
Bool_t LauCPFitModel::generateSignalEvent()
{
// Generate signal event
Bool_t genOK(kTRUE);
Bool_t genSCF(kFALSE);
LauIsobarDynamics* model(0);
LauKinematics* kinematics(0);
LauEmbeddedData* embeddedData(0);
LauPdfList* sigPdfs(0);
LauPdfList* scfPdfs(0);
Bool_t doReweighting(kFALSE);
if (curEvtCharge_<0) {
model = negSigModel_;
kinematics = negKinematics_;
sigPdfs = &negSignalPdfs_;
scfPdfs = &negScfPdfs_;
if (this->enableEmbedding()) {
embeddedData = negSignalTree_;
doReweighting = useNegReweighting_;
}
} else {
model = posSigModel_;
kinematics = posKinematics_;
if ( tagged_ ) {
sigPdfs = &posSignalPdfs_;
scfPdfs = &posScfPdfs_;
} else {
sigPdfs = &negSignalPdfs_;
scfPdfs = &negScfPdfs_;
}
if (this->enableEmbedding()) {
embeddedData = posSignalTree_;
doReweighting = usePosReweighting_;
}
}
if (this->useDP()) {
if (embeddedData) {
if (doReweighting) {
// Select a (random) event from the generated data. Then store the
// reconstructed DP co-ords, together with other pdf information,
// as the embedded data.
genOK = embeddedData->getReweightedEvent(model);
} else {
// Just get the information of a (randomly) selected event in the
// embedded data
embeddedData->getEmbeddedEvent(kinematics);
}
genSCF = this->storeSignalMCMatch( embeddedData );
} else {
genOK = model->generate();
if ( genOK && useSCF_ ) {
Double_t frac(0.0);
if ( useSCFHist_ ) {
frac = scfFracHist_->calcEfficiency( kinematics );
} else {
frac = scfFrac_.genValue();
}
if ( frac < LauRandom::randomFun()->Rndm() ) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
// Optionally smear the DP position
// of the SCF event
if ( scfMap_ != 0 ) {
Double_t xCoord(0.0), yCoord(0.0);
if ( kinematics->squareDP() ) {
xCoord = kinematics->getmPrime();
yCoord = kinematics->getThetaPrime();
} else {
xCoord = kinematics->getm13Sq();
yCoord = kinematics->getm23Sq();
}
// Find the bin number where this event is generated
Int_t binNo = scfMap_->binNumber( xCoord, yCoord );
// Retrieve the migration histogram
TH2* histo = scfMap_->trueHist( binNo );
const LauAbsEffModel * effModel = model->getEffModel();
do {
// Get a random point from the histogram
histo->GetRandom2( xCoord, yCoord );
// Update the kinematics
if ( kinematics->squareDP() ) {
kinematics->updateSqDPKinematics( xCoord, yCoord );
} else {
kinematics->updateKinematics( xCoord, yCoord );
}
} while ( ! effModel->passVeto( kinematics ) );
}
}
}
}
} else {
if (embeddedData) {
embeddedData->getEmbeddedEvent(0);
genSCF = this->storeSignalMCMatch( embeddedData );
} else if ( useSCF_ ) {
Double_t frac = scfFrac_.genValue();
if ( frac < LauRandom::randomFun()->Rndm() ) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
}
}
}
if (genOK) {
if ( useSCF_ ) {
if ( genSCF ) {
this->generateExtraPdfValues(scfPdfs, embeddedData);
} else {
this->generateExtraPdfValues(sigPdfs, embeddedData);
}
} else {
this->generateExtraPdfValues(sigPdfs, embeddedData);
}
}
// Check for problems with the embedding
if (embeddedData && (embeddedData->nEvents() == embeddedData->nUsedEvents())) {
std::cerr << "WARNING in LauCPFitModel::generateSignalEvent : Source of embedded signal events used up, clearing the list of used events." << std::endl;
embeddedData->clearUsedList();
}
return genOK;
}
Bool_t LauCPFitModel::generateBkgndEvent(UInt_t bkgndID)
{
// Generate Bkgnd event
Bool_t genOK(kTRUE);
LauAbsBkgndDPModel* model(0);
LauEmbeddedData* embeddedData(0);
LauPdfList* extraPdfs(0);
LauKinematics* kinematics(0);
if (curEvtCharge_<0) {
model = negBkgndDPModels_[bkgndID];
if (this->enableEmbedding()) {
embeddedData = negBkgndTree_[bkgndID];
}
extraPdfs = &negBkgndPdfs_[bkgndID];
kinematics = negKinematics_;
} else {
model = posBkgndDPModels_[bkgndID];
if (this->enableEmbedding()) {
embeddedData = posBkgndTree_[bkgndID];
}
if ( tagged_ ) {
extraPdfs = &posBkgndPdfs_[bkgndID];
} else {
extraPdfs = &negBkgndPdfs_[bkgndID];
}
kinematics = posKinematics_;
}
if (this->useDP()) {
if (embeddedData) {
embeddedData->getEmbeddedEvent(kinematics);
} else {
if (model == 0) {
const TString& bkgndClass = this->bkgndClassName(bkgndID);
std::cerr << "ERROR in LauCPFitModel::generateBkgndEvent : Can't find the DP model for background class \"" << bkgndClass << "\"." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
genOK = model->generate();
}
} else {
if (embeddedData) {
embeddedData->getEmbeddedEvent(0);
}
}
if (genOK) {
this->generateExtraPdfValues(extraPdfs, embeddedData);
}
// Check for problems with the embedding
if (embeddedData && (embeddedData->nEvents() == embeddedData->nUsedEvents())) {
const TString& bkgndClass = this->bkgndClassName(bkgndID);
std::cerr << "WARNING in LauCPFitModel::generateBkgndEvent : Source of embedded " << bkgndClass << " events used up, clearing the list of used events." << std::endl;
embeddedData->clearUsedList();
}
return genOK;
}
void LauCPFitModel::setupGenNtupleBranches()
{
// Setup the required ntuple branches
this->addGenNtupleDoubleBranch("evtWeight");
this->addGenNtupleIntegerBranch("genSig");
this->addGenNtupleDoubleBranch("efficiency");
if ( useSCF_ || ( this->enableEmbedding() &&
negSignalTree_ != 0 && negSignalTree_->haveBranch("mcMatch") &&
posSignalTree_ != 0 && posSignalTree_->haveBranch("mcMatch") ) ) {
this->addGenNtupleIntegerBranch("genTMSig");
this->addGenNtupleIntegerBranch("genSCFSig");
}
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name.Prepend("gen");
this->addGenNtupleIntegerBranch(name);
}
this->addGenNtupleIntegerBranch("charge");
if (this->useDP() == kTRUE) {
this->addGenNtupleDoubleBranch("m12");
this->addGenNtupleDoubleBranch("m23");
this->addGenNtupleDoubleBranch("m13");
this->addGenNtupleDoubleBranch("m12Sq");
this->addGenNtupleDoubleBranch("m23Sq");
this->addGenNtupleDoubleBranch("m13Sq");
this->addGenNtupleDoubleBranch("cosHel12");
this->addGenNtupleDoubleBranch("cosHel23");
this->addGenNtupleDoubleBranch("cosHel13");
if (negKinematics_->squareDP() && posKinematics_->squareDP()) {
this->addGenNtupleDoubleBranch("mPrime");
this->addGenNtupleDoubleBranch("thPrime");
}
}
for (LauPdfList::const_iterator pdf_iter = negSignalPdfs_.begin(); pdf_iter != negSignalPdfs_.end(); ++pdf_iter) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
this->addGenNtupleDoubleBranch( (*var_iter) );
}
}
}
}
void LauCPFitModel::setDPBranchValues()
{
LauKinematics* kinematics(0);
if (curEvtCharge_<0) {
kinematics = negKinematics_;
} else {
kinematics = posKinematics_;
}
// Store all the DP information
this->setGenNtupleDoubleBranchValue("m12", kinematics->getm12());
this->setGenNtupleDoubleBranchValue("m23", kinematics->getm23());
this->setGenNtupleDoubleBranchValue("m13", kinematics->getm13());
this->setGenNtupleDoubleBranchValue("m12Sq", kinematics->getm12Sq());
this->setGenNtupleDoubleBranchValue("m23Sq", kinematics->getm23Sq());
this->setGenNtupleDoubleBranchValue("m13Sq", kinematics->getm13Sq());
this->setGenNtupleDoubleBranchValue("cosHel12", kinematics->getc12());
this->setGenNtupleDoubleBranchValue("cosHel23", kinematics->getc23());
this->setGenNtupleDoubleBranchValue("cosHel13", kinematics->getc13());
if (kinematics->squareDP()) {
this->setGenNtupleDoubleBranchValue("mPrime", kinematics->getmPrime());
this->setGenNtupleDoubleBranchValue("thPrime", kinematics->getThetaPrime());
}
}
void LauCPFitModel::generateExtraPdfValues(LauPdfList* extraPdfs, LauEmbeddedData* embeddedData)
{
LauKinematics* kinematics(0);
if (curEvtCharge_<0) {
kinematics = negKinematics_;
} else {
kinematics = posKinematics_;
}
if (!extraPdfs) {
std::cerr << "ERROR in LauCPFitModel::generateExtraPdfValues : Null pointer to PDF list." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if (extraPdfs->empty()) {
//std::cerr << "WARNING in LauCPFitModel::generateExtraPdfValues : PDF list is empty." << std::endl;
return;
}
// Generate from the extra PDFs
for (LauPdfList::iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
LauFitData genValues;
if (embeddedData) {
genValues = embeddedData->getValues( (*pdf_iter)->varNames() );
} else {
genValues = (*pdf_iter)->generate(kinematics);
}
for ( LauFitData::const_iterator var_iter = genValues.begin(); var_iter != genValues.end(); ++var_iter ) {
TString varName = var_iter->first;
if ( varName != "m13Sq" && varName != "m23Sq" ) {
Double_t value = var_iter->second;
this->setGenNtupleDoubleBranchValue(varName,value);
}
}
}
}
Bool_t LauCPFitModel::storeSignalMCMatch(LauEmbeddedData* embeddedData)
{
// Default to TM
Bool_t genSCF(kFALSE);
Int_t match(1);
// Check that we have a valid pointer and that embedded data has
// the mcMatch branch. If so then get the match value.
if ( embeddedData && embeddedData->haveBranch("mcMatch") ) {
match = TMath::Nint( embeddedData->getValue("mcMatch") );
}
// Set the variables accordingly.
if (match) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
}
return genSCF;
}
void LauCPFitModel::propagateParUpdates()
{
// Update the signal parameters and then the total normalisation for the signal likelihood
if (this->useDP() == kTRUE) {
this->updateCoeffs();
negSigModel_->updateCoeffs(negCoeffs_);
posSigModel_->updateCoeffs(posCoeffs_);
}
// Update the signal fraction from the background fractions if not doing an extended fit
if ( !this->doEMLFit() && !signalEvents_->fixed() ) {
this->updateSigEvents();
}
}
void LauCPFitModel::updateSigEvents()
{
// The background parameters will have been set from Minuit.
// We need to update the signal events using these.
Double_t nTotEvts = this->eventsPerExpt();
signalEvents_->range(-2.0*nTotEvts,2.0*nTotEvts);
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
LauAbsRValue* nBkgndEvents = (*iter);
if ( nBkgndEvents->isLValue() ) {
LauParameter* yield = dynamic_cast<LauParameter*>( nBkgndEvents );
yield->range(-2.0*nTotEvts,2.0*nTotEvts);
}
}
if (signalEvents_->fixed()) {
return;
}
// Subtract background events (if any) from signal.
Double_t signalEvents = nTotEvts;
if (usingBkgnd_ == kTRUE) {
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
signalEvents -= (*iter)->value();
}
}
signalEvents_->value(signalEvents);
}
void LauCPFitModel::cacheInputFitVars()
{
// Fill the internal data trees of the signal and background models.
// Note that we store the events of both charges in both the
// negative and the positive models. It's only later, at the stage
// when the likelihood is being calculated, that we separate them.
LauFitDataTree* inputFitData = this->fitData();
// First the Dalitz plot variables (m_ij^2)
if (this->useDP() == kTRUE) {
// need to append SCF smearing bins before caching DP amplitudes
if ( scfMap_ != 0 ) {
this->appendBinCentres( inputFitData );
}
negSigModel_->fillDataTree(*inputFitData);
posSigModel_->fillDataTree(*inputFitData);
if (usingBkgnd_ == kTRUE) {
for (LauBkgndDPModelList::iterator iter = negBkgndDPModels_.begin(); iter != negBkgndDPModels_.end(); ++iter) {
(*iter)->fillDataTree(*inputFitData);
}
for (LauBkgndDPModelList::iterator iter = posBkgndDPModels_.begin(); iter != posBkgndDPModels_.end(); ++iter) {
(*iter)->fillDataTree(*inputFitData);
}
}
}
// ...and then the extra PDFs
this->cacheInfo(negSignalPdfs_, *inputFitData);
this->cacheInfo(negScfPdfs_, *inputFitData);
for (LauBkgndPdfsList::iterator iter = negBkgndPdfs_.begin(); iter != negBkgndPdfs_.end(); ++iter) {
this->cacheInfo((*iter), *inputFitData);
}
if ( tagged_ ) {
this->cacheInfo(posSignalPdfs_, *inputFitData);
this->cacheInfo(posScfPdfs_, *inputFitData);
for (LauBkgndPdfsList::iterator iter = posBkgndPdfs_.begin(); iter != posBkgndPdfs_.end(); ++iter) {
this->cacheInfo((*iter), *inputFitData);
}
}
// the SCF fractions and jacobians
if ( useSCF_ && useSCFHist_ ) {
if ( !inputFitData->haveBranch( "m13Sq" ) || !inputFitData->haveBranch( "m23Sq" ) ) {
std::cerr << "ERROR in LauCPFitModel::cacheInputFitVars : Input data does not contain DP branches and so can't cache the SCF fraction." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t nEvents = inputFitData->nEvents();
recoSCFFracs_.clear();
recoSCFFracs_.reserve( nEvents );
if ( negKinematics_->squareDP() ) {
recoJacobians_.clear();
recoJacobians_.reserve( nEvents );
}
for (UInt_t iEvt = 0; iEvt < nEvents; iEvt++) {
const LauFitData& dataValues = inputFitData->getData(iEvt);
LauFitData::const_iterator m13_iter = dataValues.find("m13Sq");
LauFitData::const_iterator m23_iter = dataValues.find("m23Sq");
negKinematics_->updateKinematics( m13_iter->second, m23_iter->second );
Double_t scfFrac = scfFracHist_->calcEfficiency( negKinematics_ );
recoSCFFracs_.push_back( scfFrac );
if ( negKinematics_->squareDP() ) {
recoJacobians_.push_back( negKinematics_->calcSqDPJacobian() );
}
}
}
// finally cache the event charge
evtCharges_.clear();
if ( tagged_ ) {
if ( !inputFitData->haveBranch( tagVarName_ ) ) {
std::cerr << "ERROR in LauCPFitModel::cacheInputFitVars : Input data does not contain branch \"" << tagVarName_ << "\"." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t nEvents = inputFitData->nEvents();
evtCharges_.reserve( nEvents );
for (UInt_t iEvt = 0; iEvt < nEvents; iEvt++) {
const LauFitData& dataValues = inputFitData->getData(iEvt);
LauFitData::const_iterator iter = dataValues.find( tagVarName_ );
curEvtCharge_ = static_cast<Int_t>( iter->second );
evtCharges_.push_back( curEvtCharge_ );
}
}
}
void LauCPFitModel::appendBinCentres( LauFitDataTree* inputData )
{
// We'll be caching the DP amplitudes and efficiencies of the centres of the true bins.
// To do so, we attach some fake points at the end of inputData, the number of the entry
// minus the total number of events corresponding to the number of the histogram for that
// given true bin in the LauScfMap object. (What this means is that when Laura is provided with
// the LauScfMap object by the user, it's the latter who has to make sure that it contains the
// right number of histograms and in exactly the right order!)
// Get the x and y co-ordinates of the bin centres
std::vector<Double_t> binCentresXCoords;
std::vector<Double_t> binCentresYCoords;
scfMap_->listBinCentres(binCentresXCoords, binCentresYCoords);
// The SCF histograms could be in square Dalitz plot histograms.
// The dynamics takes normal Dalitz plot coords, so we might have to convert them back.
Bool_t sqDP = negKinematics_->squareDP();
UInt_t nBins = binCentresXCoords.size();
fakeSCFFracs_.clear();
fakeSCFFracs_.reserve( nBins );
if ( sqDP ) {
fakeJacobians_.clear();
fakeJacobians_.reserve( nBins );
}
for (UInt_t iBin = 0; iBin < nBins; ++iBin) {
if ( sqDP ) {
negKinematics_->updateSqDPKinematics(binCentresXCoords[iBin],binCentresYCoords[iBin]);
binCentresXCoords[iBin] = negKinematics_->getm13Sq();
binCentresYCoords[iBin] = negKinematics_->getm23Sq();
fakeJacobians_.push_back( negKinematics_->calcSqDPJacobian() );
} else {
negKinematics_->updateKinematics(binCentresXCoords[iBin],binCentresYCoords[iBin]);
}
fakeSCFFracs_.push_back( scfFracHist_->calcEfficiency( negKinematics_ ) );
}
// Set up inputFitVars_ object to hold the fake events
inputData->appendFakePoints(binCentresXCoords,binCentresYCoords);
}
Double_t LauCPFitModel::getTotEvtLikelihood(UInt_t iEvt)
{
// Find out whether we have B- or B+
if ( tagged_ ) {
curEvtCharge_ = evtCharges_[iEvt];
// check that the charge is either +1 or -1
if (TMath::Abs(curEvtCharge_)!=1) {
std::cerr << "ERROR in LauCPFitModel::getTotEvtLikelihood : Charge/tag not accepted value: " << curEvtCharge_ << std::endl;
if (curEvtCharge_>0) {
curEvtCharge_ = +1;
} else {
curEvtCharge_ = -1;
}
std::cerr << " : Making it: " << curEvtCharge_ << "." << std::endl;
}
}
// Get the DP likelihood for signal and backgrounds
this->getEvtDPLikelihood(iEvt);
// Get the combined extra PDFs likelihood for signal and backgrounds
this->getEvtExtraLikelihoods(iEvt);
// If appropriate, combine the TM and SCF likelihoods
Double_t sigLike = sigDPLike_ * sigExtraLike_;
if ( useSCF_ ) {
Double_t scfFrac(0.0);
if (useSCFHist_) {
scfFrac = recoSCFFracs_[iEvt];
} else {
scfFrac = scfFrac_.unblindValue();
}
sigLike *= (1.0 - scfFrac);
if ( (scfMap_ != 0) && (this->useDP() == kTRUE) ) {
// if we're smearing the SCF DP PDF then the SCF frac
// is already included in the SCF DP likelihood
sigLike += (scfDPLike_ * scfExtraLike_);
} else {
sigLike += (scfFrac * scfDPLike_ * scfExtraLike_);
}
}
// Get the correct event fractions depending on the charge
// Signal asymmetry is built into the DP model... but when the DP
// isn't in the fit we need an explicit parameter
Double_t signalEvents = signalEvents_->unblindValue() * 0.5;
if (this->useDP() == kFALSE) {
signalEvents *= (1.0 - curEvtCharge_ * signalAsym_->unblindValue());
}
// Construct the total event likelihood
Double_t likelihood(0.0);
if (usingBkgnd_) {
likelihood = sigLike*signalEvents;
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
Double_t bkgndEvents = bkgndEvents_[bkgndID]->unblindValue() * 0.5 * (1.0 - curEvtCharge_ * bkgndAsym_[bkgndID]->unblindValue());
likelihood += bkgndEvents*bkgndDPLike_[bkgndID]*bkgndExtraLike_[bkgndID];
}
} else {
likelihood = sigLike*0.5;
}
return likelihood;
}
Double_t LauCPFitModel::getEventSum() const
{
Double_t eventSum(0.0);
eventSum += signalEvents_->unblindValue();
if (usingBkgnd_) {
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
eventSum += (*iter)->unblindValue();
}
}
return eventSum;
}
void LauCPFitModel::getEvtDPLikelihood(UInt_t iEvt)
{
// Function to return the signal and background likelihoods for the
// Dalitz plot for the given event evtNo.
if ( ! this->useDP() ) {
// There's always going to be a term in the likelihood for the
// signal, so we'd better not zero it.
sigDPLike_ = 1.0;
scfDPLike_ = 1.0;
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = 1.0;
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
return;
}
const UInt_t nBkgnds = this->nBkgndClasses();
if ( tagged_ ) {
if (curEvtCharge_==+1) {
posSigModel_->calcLikelihoodInfo(iEvt);
sigDPLike_ = posSigModel_->getEvtIntensity();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = posBkgndDPModels_[bkgndID]->getLikelihood(iEvt);
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
} else {
negSigModel_->calcLikelihoodInfo(iEvt);
sigDPLike_ = negSigModel_->getEvtIntensity();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = negBkgndDPModels_[bkgndID]->getLikelihood(iEvt);
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
}
} else {
posSigModel_->calcLikelihoodInfo(iEvt);
negSigModel_->calcLikelihoodInfo(iEvt);
sigDPLike_ = 0.5 * ( posSigModel_->getEvtIntensity() + negSigModel_->getEvtIntensity() );
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = 0.5 * ( posBkgndDPModels_[bkgndID]->getLikelihood(iEvt) +
negBkgndDPModels_[bkgndID]->getLikelihood(iEvt) );
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
}
if ( useSCF_ == kTRUE ) {
if ( scfMap_ == 0 ) {
// we're not smearing the SCF DP position
// so the likelihood is the same as the TM
scfDPLike_ = sigDPLike_;
} else {
// calculate the smeared SCF DP likelihood
scfDPLike_ = this->getEvtSCFDPLikelihood(iEvt);
}
}
// Calculate the signal normalisation
// NB the 2.0 is there so that the 0.5 factor is applied to
// signal and background in the same place otherwise you get
// normalisation problems when you switch off the DP in the fit
Double_t norm = negSigModel_->getDPNorm() + posSigModel_->getDPNorm();
sigDPLike_ *= 2.0/norm;
scfDPLike_ *= 2.0/norm;
}
Double_t LauCPFitModel::getEvtSCFDPLikelihood(UInt_t iEvt)
{
Double_t scfDPLike(0.0);
Double_t recoJacobian(1.0);
Double_t xCoord(0.0);
Double_t yCoord(0.0);
Bool_t squareDP = negKinematics_->squareDP();
if ( squareDP ) {
xCoord = negSigModel_->getEvtmPrime();
yCoord = negSigModel_->getEvtthPrime();
recoJacobian = recoJacobians_[iEvt];
} else {
xCoord = negSigModel_->getEvtm13Sq();
yCoord = negSigModel_->getEvtm23Sq();
}
// Find the bin that our reco event falls in
Int_t recoBin = scfMap_->binNumber( xCoord, yCoord );
// Find out which true Bins contribute to the given reco bin
const std::vector<Int_t>* trueBins = scfMap_->trueBins(recoBin);
const Int_t nDataEvents = this->eventsPerExpt();
// Loop over the true bins
for (std::vector<Int_t>::const_iterator iter = trueBins->begin(); iter != trueBins->end(); ++iter)
{
Int_t trueBin = (*iter);
// prob of a true event in the given true bin migrating to the reco bin
Double_t pRecoGivenTrue = scfMap_->prob( recoBin, trueBin );
Double_t pTrue(0.0);
// We've cached the DP amplitudes and the efficiency for the
// true bin centres, just after the data points
if ( tagged_ ) {
LauIsobarDynamics* sigModel(0);
if (curEvtCharge_<0) {
sigModel = negSigModel_;
} else {
sigModel = posSigModel_;
}
sigModel->calcLikelihoodInfo( nDataEvents + trueBin );
pTrue = sigModel->getEvtIntensity();
} else {
posSigModel_->calcLikelihoodInfo( nDataEvents + trueBin );
negSigModel_->calcLikelihoodInfo( nDataEvents + trueBin );
pTrue = 0.5 * ( posSigModel_->getEvtIntensity() + negSigModel_->getEvtIntensity() );
}
// Get the cached SCF fraction (and jacobian if we're using the square DP)
Double_t scfFraction = fakeSCFFracs_[ trueBin ];
Double_t jacobian(1.0);
if ( squareDP ) {
jacobian = fakeJacobians_[ trueBin ];
}
scfDPLike += pTrue * jacobian * scfFraction * pRecoGivenTrue;
}
// Divide by the reco jacobian
scfDPLike /= recoJacobian;
return scfDPLike;
}
void LauCPFitModel::getEvtExtraLikelihoods(UInt_t iEvt)
{
// Function to return the signal and background likelihoods for the
// extra variables for the given event evtNo.
sigExtraLike_ = 1.0;
const UInt_t nBkgnds = this->nBkgndClasses();
if ( ! tagged_ || curEvtCharge_ < 0 ) {
sigExtraLike_ = this->prodPdfValue( negSignalPdfs_, iEvt );
if (useSCF_) {
scfExtraLike_ = this->prodPdfValue( negScfPdfs_, iEvt );
}
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_) {
bkgndExtraLike_[bkgndID] = this->prodPdfValue( negBkgndPdfs_[bkgndID], iEvt );
} else {
bkgndExtraLike_[bkgndID] = 0.0;
}
}
} else {
sigExtraLike_ = this->prodPdfValue( posSignalPdfs_, iEvt );
if (useSCF_) {
scfExtraLike_ = this->prodPdfValue( posScfPdfs_, iEvt );
}
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_) {
bkgndExtraLike_[bkgndID] = this->prodPdfValue( posBkgndPdfs_[bkgndID], iEvt );
} else {
bkgndExtraLike_[bkgndID] = 0.0;
}
}
}
}
void LauCPFitModel::updateCoeffs()
{
negCoeffs_.clear(); posCoeffs_.clear();
negCoeffs_.reserve(nSigComp_); posCoeffs_.reserve(nSigComp_);
for (UInt_t i = 0; i < nSigComp_; i++) {
negCoeffs_.push_back(coeffPars_[i]->antiparticleCoeff());
posCoeffs_.push_back(coeffPars_[i]->particleCoeff());
}
}
void LauCPFitModel::setupSPlotNtupleBranches()
{
// add branches for storing the experiment number and the number of
// the event within the current experiment
this->addSPlotNtupleIntegerBranch("iExpt");
this->addSPlotNtupleIntegerBranch("iEvtWithinExpt");
// Store the efficiency of the event (for inclusive BF calculations).
if (this->storeDPEff()) {
this->addSPlotNtupleDoubleBranch("efficiency");
if ( negSigModel_->usingScfModel() && posSigModel_->usingScfModel() ) {
this->addSPlotNtupleDoubleBranch("scffraction");
}
}
// Store the total event likelihood for each species.
if (useSCF_) {
this->addSPlotNtupleDoubleBranch("sigTMTotalLike");
this->addSPlotNtupleDoubleBranch("sigSCFTotalLike");
this->addSPlotNtupleDoubleBranch("sigSCFFrac");
} else {
this->addSPlotNtupleDoubleBranch("sigTotalLike");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name += "TotalLike";
this->addSPlotNtupleDoubleBranch(name);
}
}
// Store the DP likelihoods
if (this->useDP()) {
if (useSCF_) {
this->addSPlotNtupleDoubleBranch("sigTMDPLike");
this->addSPlotNtupleDoubleBranch("sigSCFDPLike");
} else {
this->addSPlotNtupleDoubleBranch("sigDPLike");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name += "DPLike";
this->addSPlotNtupleDoubleBranch(name);
}
}
}
// Store the likelihoods for each extra PDF
if (useSCF_) {
this->addSPlotNtupleBranches(&negSignalPdfs_, "sigTM");
this->addSPlotNtupleBranches(&negScfPdfs_, "sigSCF");
} else {
this->addSPlotNtupleBranches(&negSignalPdfs_, "sig");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauPdfList* pdfList = &(negBkgndPdfs_[iBkgnd]);
this->addSPlotNtupleBranches(pdfList, bkgndClass);
}
}
}
void LauCPFitModel::addSPlotNtupleBranches(const LauPdfList* extraPdfs, const TString& prefix)
{
if (extraPdfs) {
// Loop through each of the PDFs
for (LauPdfList::const_iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
// Count the number of input variables that are not
// DP variables (used in the case where there is DP
// dependence for e.g. MVA)
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 1 ) {
// If the PDF only has one variable then
// simply add one branch for that variable
TString varName = (*pdf_iter)->varName();
TString name(prefix);
name += varName;
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
} else if ( nVars == 2 ) {
// If the PDF has two variables then we
// need a branch for them both together and
// branches for each
TString allVars("");
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
allVars += (*var_iter);
TString name(prefix);
name += (*var_iter);
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
}
TString name(prefix);
name += allVars;
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
} else {
std::cerr << "WARNING in LauCPFitModel::addSPlotNtupleBranches : Can't yet deal with 3D PDFs." << std::endl;
}
}
}
}
Double_t LauCPFitModel::setSPlotNtupleBranchValues(LauPdfList* extraPdfs, const TString& prefix, UInt_t iEvt)
{
// Store the PDF value for each variable in the list
Double_t totalLike(1.0);
Double_t extraLike(0.0);
if (extraPdfs) {
for (LauPdfList::iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
// calculate the likelihood for this event
(*pdf_iter)->calcLikelihoodInfo(iEvt);
extraLike = (*pdf_iter)->getLikelihood();
totalLike *= extraLike;
// Count the number of input variables that are not
// DP variables (used in the case where there is DP
// dependence for e.g. MVA)
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 1 ) {
// If the PDF only has one variable then
// simply store the value for that variable
TString varName = (*pdf_iter)->varName();
TString name(prefix);
name += varName;
name += "Like";
this->setSPlotNtupleDoubleBranchValue(name, extraLike);
} else if ( nVars == 2 ) {
// If the PDF has two variables then we
// store the value for them both together
// and for each on their own
TString allVars("");
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
allVars += (*var_iter);
TString name(prefix);
name += (*var_iter);
name += "Like";
Double_t indivLike = (*pdf_iter)->getLikelihood( (*var_iter) );
this->setSPlotNtupleDoubleBranchValue(name, indivLike);
}
TString name(prefix);
name += allVars;
name += "Like";
this->setSPlotNtupleDoubleBranchValue(name, extraLike);
} else {
std::cerr << "WARNING in LauCPFitModel::setSPlotNtupleBranchValues : Can't yet deal with 3D PDFs." << std::endl;
}
}
}
return totalLike;
}
LauSPlot::NameSet LauCPFitModel::variableNames() const
{
LauSPlot::NameSet nameSet;
if (this->useDP()) {
nameSet.insert("DP");
}
// Loop through all the signal PDFs
for (LauPdfList::const_iterator pdf_iter = negSignalPdfs_.begin(); pdf_iter != negSignalPdfs_.end(); ++pdf_iter) {
// Loop over the variables involved in each PDF
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
// If they are not DP coordinates then add them
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
nameSet.insert( (*var_iter) );
}
}
}
return nameSet;
}
LauSPlot::NumbMap LauCPFitModel::freeSpeciesNames() const
{
LauSPlot::NumbMap numbMap;
if (!signalEvents_->fixed() && this->doEMLFit()) {
numbMap["sig"] = signalEvents_->genValue();
}
if ( usingBkgnd_ ) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauAbsRValue* par = bkgndEvents_[iBkgnd];
if (!par->fixed()) {
numbMap[bkgndClass] = par->genValue();
if ( ! par->isLValue() ) {
std::cerr << "WARNING in LauCPFitModel::freeSpeciesNames : \"" << par->name() << "\" is a LauFormulaPar, which implies it is perhaps not entirely free to float in the fit, so the sWeight calculation may not be reliable" << std::endl;
}
}
}
}
return numbMap;
}
LauSPlot::NumbMap LauCPFitModel::fixdSpeciesNames() const
{
LauSPlot::NumbMap numbMap;
if (signalEvents_->fixed() && this->doEMLFit()) {
numbMap["sig"] = signalEvents_->genValue();
}
if ( usingBkgnd_ ) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauAbsRValue* par = bkgndEvents_[iBkgnd];
if (par->fixed()) {
numbMap[bkgndClass] = par->genValue();
}
}
}
return numbMap;
}
LauSPlot::TwoDMap LauCPFitModel::twodimPDFs() const
{
// This makes the assumption that the form of the positive and
// negative PDFs are the same, which seems reasonable to me
LauSPlot::TwoDMap twodimMap;
for (LauPdfList::const_iterator pdf_iter = negSignalPdfs_.begin(); pdf_iter != negSignalPdfs_.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
if (useSCF_) {
twodimMap.insert( std::make_pair( "sigTM", std::make_pair( varNames[0], varNames[1] ) ) );
} else {
twodimMap.insert( std::make_pair( "sig", std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
if ( useSCF_ ) {
for (LauPdfList::const_iterator pdf_iter = negScfPdfs_.begin(); pdf_iter != negScfPdfs_.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
twodimMap.insert( std::make_pair( "sigSCF", std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauPdfList& pdfList = negBkgndPdfs_[iBkgnd];
for (LauPdfList::const_iterator pdf_iter = pdfList.begin(); pdf_iter != pdfList.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
twodimMap.insert( std::make_pair( bkgndClass, std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
}
return twodimMap;
}
void LauCPFitModel::storePerEvtLlhds()
{
std::cout << "INFO in LauCPFitModel::storePerEvtLlhds : Storing per-event likelihood values..." << std::endl;
// if we've not been using the DP model then we need to cache all
// the info here so that we can get the efficiency from it
LauFitDataTree* inputFitData = this->fitData();
if (!this->useDP() && this->storeDPEff()) {
negSigModel_->initialise(negCoeffs_);
posSigModel_->initialise(posCoeffs_);
negSigModel_->fillDataTree(*inputFitData);
posSigModel_->fillDataTree(*inputFitData);
}
UInt_t evtsPerExpt(this->eventsPerExpt());
LauIsobarDynamics* sigModel(0);
LauPdfList* sigPdfs(0);
LauPdfList* scfPdfs(0);
LauBkgndPdfsList* bkgndPdfs(0);
for (UInt_t iEvt = 0; iEvt < evtsPerExpt; ++iEvt) {
this->setSPlotNtupleIntegerBranchValue("iExpt",this->iExpt());
this->setSPlotNtupleIntegerBranchValue("iEvtWithinExpt",iEvt);
// Find out whether we have B- or B+
if ( tagged_ ) {
const LauFitData& dataValues = inputFitData->getData(iEvt);
LauFitData::const_iterator iter = dataValues.find("charge");
curEvtCharge_ = static_cast<Int_t>(iter->second);
if (curEvtCharge_==+1) {
sigModel = posSigModel_;
sigPdfs = &posSignalPdfs_;
scfPdfs = &posScfPdfs_;
bkgndPdfs = &posBkgndPdfs_;
} else {
sigModel = negSigModel_;
sigPdfs = &negSignalPdfs_;
scfPdfs = &negScfPdfs_;
bkgndPdfs = &negBkgndPdfs_;
}
} else {
sigPdfs = &negSignalPdfs_;
scfPdfs = &negScfPdfs_;
bkgndPdfs = &negBkgndPdfs_;
}
// the DP information
this->getEvtDPLikelihood(iEvt);
if (this->storeDPEff()) {
if (!this->useDP()) {
posSigModel_->calcLikelihoodInfo(iEvt);
negSigModel_->calcLikelihoodInfo(iEvt);
}
if ( tagged_ ) {
this->setSPlotNtupleDoubleBranchValue("efficiency",sigModel->getEvtEff());
if ( negSigModel_->usingScfModel() && posSigModel_->usingScfModel() ) {
this->setSPlotNtupleDoubleBranchValue("scffraction",sigModel->getEvtScfFraction());
}
} else {
this->setSPlotNtupleDoubleBranchValue("efficiency",0.5*(posSigModel_->getEvtEff() + negSigModel_->getEvtEff()) );
if ( negSigModel_->usingScfModel() && posSigModel_->usingScfModel() ) {
this->setSPlotNtupleDoubleBranchValue("scffraction",0.5*(posSigModel_->getEvtScfFraction() + negSigModel_->getEvtScfFraction()));
}
}
}
if (this->useDP()) {
sigTotalLike_ = sigDPLike_;
if (useSCF_) {
scfTotalLike_ = scfDPLike_;
this->setSPlotNtupleDoubleBranchValue("sigTMDPLike",sigDPLike_);
this->setSPlotNtupleDoubleBranchValue("sigSCFDPLike",scfDPLike_);
} else {
this->setSPlotNtupleDoubleBranchValue("sigDPLike",sigDPLike_);
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name = this->bkgndClassName(iBkgnd);
name += "DPLike";
this->setSPlotNtupleDoubleBranchValue(name,bkgndDPLike_[iBkgnd]);
}
}
} else {
sigTotalLike_ = 1.0;
if (useSCF_) {
scfTotalLike_ = 1.0;
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
bkgndTotalLike_[iBkgnd] = 1.0;
}
}
}
// the signal PDF values
if ( useSCF_ ) {
sigTotalLike_ *= this->setSPlotNtupleBranchValues(sigPdfs, "sigTM", iEvt);
scfTotalLike_ *= this->setSPlotNtupleBranchValues(scfPdfs, "sigSCF", iEvt);
} else {
sigTotalLike_ *= this->setSPlotNtupleBranchValues(sigPdfs, "sig", iEvt);
}
// the background PDF values
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
LauPdfList& pdfs = (*bkgndPdfs)[iBkgnd];
bkgndTotalLike_[iBkgnd] *= this->setSPlotNtupleBranchValues(&(pdfs), bkgndClass, iEvt);
}
}
// the total likelihoods
if (useSCF_) {
Double_t scfFrac(0.0);
if ( useSCFHist_ ) {
scfFrac = recoSCFFracs_[iEvt];
} else {
scfFrac = scfFrac_.unblindValue();
}
this->setSPlotNtupleDoubleBranchValue("sigSCFFrac",scfFrac);
sigTotalLike_ *= ( 1.0 - scfFrac );
if ( scfMap_ == 0 ) {
scfTotalLike_ *= scfFrac;
}
this->setSPlotNtupleDoubleBranchValue("sigTMTotalLike",sigTotalLike_);
this->setSPlotNtupleDoubleBranchValue("sigSCFTotalLike",scfTotalLike_);
} else {
this->setSPlotNtupleDoubleBranchValue("sigTotalLike",sigTotalLike_);
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name = this->bkgndClassName(iBkgnd);
name += "TotalLike";
this->setSPlotNtupleDoubleBranchValue(name,bkgndTotalLike_[iBkgnd]);
}
}
// fill the tree
this->fillSPlotNtupleBranches();
}
std::cout << "INFO in LauCPFitModel::storePerEvtLlhds : Finished storing per-event likelihood values." << std::endl;
}
void LauCPFitModel::embedNegSignal(const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment,
Bool_t useReweighting)
{
if (negSignalTree_) {
std::cerr << "ERROR in LauCPFitModel::embedNegSignal : Already embedding signal from a file." << std::endl;
return;
}
negSignalTree_ = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = negSignalTree_->findBranches();
if (!dataOK) {
delete negSignalTree_; negSignalTree_ = 0;
std::cerr << "ERROR in LauCPFitModel::embedNegSignal : Problem creating data tree for embedding." << std::endl;
return;
}
reuseSignal_ = reuseEventsWithinEnsemble;
useNegReweighting_ = useReweighting;
if (this->enableEmbedding() == kFALSE) {this->enableEmbedding(kTRUE);}
}
void LauCPFitModel::embedNegBkgnd(const TString& bkgndClass, const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment)
{
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauCPFitModel::embedBkgnd : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
if (negBkgndTree_[bkgndID]) {
std::cerr << "ERROR in LauCPFitModel::embedNegBkgnd : Already embedding background from a file." << std::endl;
return;
}
negBkgndTree_[bkgndID] = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = negBkgndTree_[bkgndID]->findBranches();
if (!dataOK) {
delete negBkgndTree_[bkgndID]; negBkgndTree_[bkgndID] = 0;
std::cerr << "ERROR in LauCPFitModel::embedNegBkgnd : Problem creating data tree for embedding." << std::endl;
return;
}
reuseBkgnd_[bkgndID] = reuseEventsWithinEnsemble;
if (this->enableEmbedding() == kFALSE) {this->enableEmbedding(kTRUE);}
}
void LauCPFitModel::embedPosSignal(const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment,
Bool_t useReweighting)
{
if (posSignalTree_) {
std::cerr << "ERROR in LauCPFitModel::embedPosSignal : Already embedding signal from a file." << std::endl;
return;
}
posSignalTree_ = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = posSignalTree_->findBranches();
if (!dataOK) {
delete posSignalTree_; posSignalTree_ = 0;
std::cerr << "ERROR in LauCPFitModel::embedPosSignal : Problem creating data tree for embedding." << std::endl;
return;
}
reuseSignal_ = reuseEventsWithinEnsemble;
usePosReweighting_ = useReweighting;
if (this->enableEmbedding() == kFALSE) {this->enableEmbedding(kTRUE);}
}
void LauCPFitModel::embedPosBkgnd(const TString& bkgndClass, const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment)
{
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauCPFitModel::embedBkgnd : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
if (posBkgndTree_[bkgndID]) {
std::cerr << "ERROR in LauCPFitModel::embedPosBkgnd : Already embedding background from a file." << std::endl;
return;
}
posBkgndTree_[bkgndID] = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = posBkgndTree_[bkgndID]->findBranches();
if (!dataOK) {
delete posBkgndTree_[bkgndID]; posBkgndTree_[bkgndID] = 0;
std::cerr << "ERROR in LauCPFitModel::embedPosBkgnd : Problem creating data tree for embedding." << std::endl;
return;
}
reuseBkgnd_[bkgndID] = reuseEventsWithinEnsemble;
if (this->enableEmbedding() == kFALSE) {this->enableEmbedding(kTRUE);}
}
void LauCPFitModel::weightEvents( const TString& dataFileName, const TString& dataTreeName )
{
// Routine to provide weights for events that are uniformly distributed
// in the DP (or square DP) so as to reproduce the given DP model
if ( posKinematics_->squareDP() ) {
std::cout << "INFO in LauCPFitModel::weightEvents : will create weights assuming events were generated flat in the square DP" << std::endl;
} else {
std::cout << "INFO in LauCPFitModel::weightEvents : will create weights assuming events were generated flat in phase space" << std::endl;
}
// This reads in the given dataFile and creates an input
// fit data tree that stores them for all events and experiments.
Bool_t dataOK = this->verifyFitData(dataFileName,dataTreeName);
if (!dataOK) {
std::cerr << "ERROR in LauCPFitModel::weightEvents : Problem caching the data." << std::endl;
return;
}
LauFitDataTree* inputFitData = this->fitData();
if ( ! inputFitData->haveBranch( "m13Sq_MC" ) || ! inputFitData->haveBranch( "m23Sq_MC" ) ) {
std::cerr << "WARNING in LauCPFitModel::weightEvents : Cannot find MC truth DP coordinate branches in supplied data, aborting." << std::endl;
return;
}
if ( ! inputFitData->haveBranch( "charge" ) ) {
std::cerr << "WARNING in LauCPFitModel::weightEvents : Cannot find branch specifying event charge in supplied data, aborting." << std::endl;
return;
}
// Create the ntuple to hold the DP weights
TString weightsFileName( dataFileName );
Ssiz_t index = weightsFileName.Last('.');
weightsFileName.Insert( index, "_DPweights" );
LauGenNtuple * weightsTuple = new LauGenNtuple( weightsFileName, dataTreeName );
weightsTuple->addIntegerBranch("iExpt");
weightsTuple->addIntegerBranch("iEvtWithinExpt");
weightsTuple->addDoubleBranch("dpModelWeight");
UInt_t iExpmt = this->iExpt();
UInt_t nExpmt = this->nExpt();
UInt_t firstExpmt = this->firstExpt();
for (iExpmt = firstExpmt; iExpmt < (firstExpmt+nExpmt); ++iExpmt) {
inputFitData->readExperimentData(iExpmt);
UInt_t nEvents = inputFitData->nEvents();
if (nEvents < 1) {
std::cerr << "WARNING in LauCPFitModel::weightEvents : Zero events in experiment " << iExpmt << ", skipping..." << std::endl;
continue;
}
weightsTuple->setIntegerBranchValue( "iExpt", iExpmt );
// Calculate and store the weights for the events in this experiment
for ( UInt_t iEvent(0); iEvent < nEvents; ++iEvent ) {
weightsTuple->setIntegerBranchValue( "iEvtWithinExpt", iEvent );
const LauFitData& evtData = inputFitData->getData( iEvent );
Double_t m13Sq_MC = evtData.find("m13Sq_MC")->second;
Double_t m23Sq_MC = evtData.find("m23Sq_MC")->second;
Int_t charge = evtData.find("charge")->second;
Double_t dpModelWeight(0.0);
LauKinematics * kinematics;
LauIsobarDynamics * dpModel;
if (charge > 0) {
kinematics = posKinematics_;
dpModel = posSigModel_;
} else {
kinematics = negKinematics_;
dpModel = negSigModel_;
}
if ( kinematics->withinDPLimits( m13Sq_MC, m23Sq_MC ) ) {
kinematics->updateKinematics( m13Sq_MC, m23Sq_MC );
dpModelWeight = dpModel->getEventWeight();
if ( kinematics->squareDP() ) {
dpModelWeight *= kinematics->calcSqDPJacobian();
}
const Double_t norm = (negSigModel_->getDPNorm() + posSigModel_->getDPNorm())/2.0;
dpModelWeight /= norm;
}
weightsTuple->setDoubleBranchValue( "dpModelWeight", dpModelWeight );
weightsTuple->fillBranches();
}
}
weightsTuple->buildIndex( "iExpt", "iEvtWithinExpt" );
weightsTuple->addFriendTree(dataFileName, dataTreeName);
weightsTuple->writeOutGenResults();
delete weightsTuple;
}
void LauCPFitModel::savePDFPlots(const TString& label)
{
savePDFPlotsWave(label, 0);
savePDFPlotsWave(label, 1);
savePDFPlotsWave(label, 2);
std::cout << "LauCPFitModel::plot" << std::endl;
// ((LauIsobarDynamics*)negSigModel_)->plot();
//Double_t minm13 = negSigModel_->getKinematics()->getm13Min();
Double_t minm13 = 0.0;
Double_t maxm13 = negSigModel_->getKinematics()->getm13Max();
//Double_t minm23 = negSigModel_->getKinematics()->getm23Min();
Double_t minm23 = 0.0;
Double_t maxm23 = negSigModel_->getKinematics()->getm23Max();
Double_t mins13 = minm13*minm13;
Double_t maxs13 = maxm13*maxm13;
Double_t mins23 = minm23*minm23;
Double_t maxs23 = maxm23*maxm23;
Double_t s13, s23, posChPdf, negChPdf;
TString xLabel = "s13";
TString yLabel = "s23";
if (negSigModel_->getDaughters()->gotSymmetricalDP()) { xLabel = "sHigh"; yLabel = "sLow";}
Int_t n13=200.00, n23=200.00;
Double_t delta13, delta23;
delta13 = (maxs13 - mins13)/n13;
delta23 = (maxs23 - mins23)/n23;
UInt_t nAmp = negSigModel_->getnCohAmp();
for (UInt_t resID = 0; resID <= nAmp; ++resID)
{
TGraph2D *posDt = new TGraph2D();
TGraph2D *negDt = new TGraph2D();
TGraph2D *acpDt = new TGraph2D();
TString resName = "TotalAmp";
if (resID != nAmp){
TString tStrResID = Form("%d", resID);
const LauIsobarDynamics* model = negSigModel_;
const LauAbsResonance* resonance = model->getResonance(resID);
resName = resonance->getResonanceName();
std::cout << "resName = " << resName << std::endl;
}
resName.ReplaceAll("(", "");
resName.ReplaceAll(")", "");
resName.ReplaceAll("*", "Star");
posDt->SetName(resName+label);
posDt->SetTitle(resName+" ("+label+") Positive");
negDt->SetName(resName+label);
negDt->SetTitle(resName+" ("+label+") Negative");
acpDt->SetName(resName+label);
acpDt->SetTitle(resName+" ("+label+") Asymmetry");
Int_t count=0;
for (Int_t i=0; i<n13; i++) {
s13 = mins13 + i*delta13;
for (Int_t j=0; j<n23; j++) {
s23 = mins23 + j*delta23;
if (negSigModel_->getKinematics()->withinDPLimits2(s23, s13))
{
if (negSigModel_->getDaughters()->gotSymmetricalDP() && (s13>s23) ) continue;
negSigModel_->calcLikelihoodInfo(s13, s23);
posSigModel_->calcLikelihoodInfo(s13, s23);
LauComplex negChAmp = negSigModel_->getEvtDPAmp();
LauComplex posChAmp = posSigModel_->getEvtDPAmp();
if (resID != nAmp){
negChAmp = negSigModel_->getFullAmplitude(resID);
posChAmp = posSigModel_->getFullAmplitude(resID);
}
negChPdf = negChAmp.abs2();
posChPdf = posChAmp.abs2();
negDt->SetPoint(count,s23,s13,negChPdf); // s23=sHigh, s13 = sLow
posDt->SetPoint(count,s23,s13,posChPdf); // s23=sHigh, s13 = sLow
acpDt->SetPoint(count,s23,s13, negChPdf - posChPdf); // s23=sHigh, s13 = sLow
count++;
}
}
}
gStyle->SetPalette(1);
TCanvas *posC = new TCanvas("c"+resName+label + "Positive",resName+" ("+label+") Positive",0,0,600,400);
posDt->GetXaxis()->SetTitle(xLabel);
posDt->GetYaxis()->SetTitle(yLabel);
posDt->Draw("SURF1");
posDt->GetXaxis()->SetTitle(xLabel);
posDt->GetYaxis()->SetTitle(yLabel);
posC->SaveAs("plot_2D_"+resName + "_"+label+"Positive.C");
TCanvas *negC = new TCanvas("c"+resName+label + "Negative",resName+" ("+label+") Negative",0,0,600,400);
negDt->GetXaxis()->SetTitle(xLabel);
negDt->GetYaxis()->SetTitle(yLabel);
negDt->Draw("SURF1");
negDt->GetXaxis()->SetTitle(xLabel);
negDt->GetYaxis()->SetTitle(yLabel);
negC->SaveAs("plot_2D_"+resName + "_"+label+"Negative.C");
TCanvas *acpC = new TCanvas("c"+resName+label + "Asymmetry",resName+" ("+label+") Asymmetry",0,0,600,400);
acpDt->GetXaxis()->SetTitle(xLabel);
acpDt->GetYaxis()->SetTitle(yLabel);
acpDt->Draw("SURF1");
acpDt->GetXaxis()->SetTitle(xLabel);
acpDt->GetYaxis()->SetTitle(yLabel);
acpC->SaveAs("plot_2D_"+resName + "_"+label+"Asymmetry.C");
}
}
void LauCPFitModel::savePDFPlotsWave(const TString& label, const Int_t& spin)
{
std::cout << "label = "<< label << ", spin = "<< spin << std::endl;
TString tStrResID = "S_Wave";
if (spin == 1) tStrResID = "P_Wave";
if (spin == 2) tStrResID = "D_Wave";
TString xLabel = "s13";
TString yLabel = "s23";
std::cout << "LauCPFitModel::savePDFPlotsWave: "<< tStrResID << std::endl;
Double_t minm13 = 0.0;
Double_t maxm13 = negSigModel_->getKinematics()->getm13Max();
Double_t minm23 = 0.0;
Double_t maxm23 = negSigModel_->getKinematics()->getm23Max();
Double_t mins13 = minm13*minm13;
Double_t maxs13 = maxm13*maxm13;
Double_t mins23 = minm23*minm23;
Double_t maxs23 = maxm23*maxm23;
Double_t s13, s23, posChPdf, negChPdf;
TGraph2D *posDt = new TGraph2D();
TGraph2D *negDt = new TGraph2D();
TGraph2D *acpDt = new TGraph2D();
posDt->SetName(tStrResID+label);
posDt->SetTitle(tStrResID+" ("+label+") Positive");
negDt->SetName(tStrResID+label);
negDt->SetTitle(tStrResID+" ("+label+") Negative");
acpDt->SetName(tStrResID+label);
acpDt->SetTitle(tStrResID+" ("+label+") Asymmetry");
Int_t n13=200.00, n23=200.00;
Double_t delta13, delta23;
delta13 = (maxs13 - mins13)/n13;
delta23 = (maxs23 - mins23)/n23;
UInt_t nAmp = negSigModel_->getnCohAmp();
Int_t count=0;
for (Int_t i=0; i<n13; i++)
{
s13 = mins13 + i*delta13;
for (Int_t j=0; j<n23; j++)
{
s23 = mins23 + j*delta23;
if (negSigModel_->getKinematics()->withinDPLimits2(s23, s13))
{
if (negSigModel_->getDaughters()->gotSymmetricalDP() && (s13>s23) ) continue;
LauComplex negChAmp(0,0);
LauComplex posChAmp(0,0);
Bool_t noWaveRes = kTRUE;
negSigModel_->calcLikelihoodInfo(s13, s23);
for (UInt_t resID = 0; resID < nAmp; ++resID)
{
const LauIsobarDynamics* model = negSigModel_;
const LauAbsResonance* resonance = model->getResonance(resID);
Int_t spin_res = resonance->getSpin();
if (spin != spin_res) continue;
noWaveRes = kFALSE;
negChAmp += negSigModel_->getFullAmplitude(resID);
posChAmp += posSigModel_->getFullAmplitude(resID);
}
if (noWaveRes) return;
negChPdf = negChAmp.abs2();
posChPdf = posChAmp.abs2();
negDt->SetPoint(count,s23,s13,negChPdf); // s23=sHigh, s13 = sLow
posDt->SetPoint(count,s23,s13,posChPdf); // s23=sHigh, s13 = sLow
acpDt->SetPoint(count,s23,s13, negChPdf - posChPdf); // s23=sHigh, s13 = sLow
count++;
}
}
}
gStyle->SetPalette(1);
TCanvas *posC = new TCanvas("c"+tStrResID+label + "Positive",tStrResID+" ("+label+") Positive",0,0,600,400);
posDt->GetXaxis()->SetTitle(xLabel);
posDt->GetYaxis()->SetTitle(yLabel);
posDt->Draw("SURF1");
posDt->GetXaxis()->SetTitle(xLabel);
posDt->GetYaxis()->SetTitle(yLabel);
posC->SaveAs("plot_2D_"+tStrResID + "_"+label+"Positive.C");
TCanvas *negC = new TCanvas("c"+tStrResID+label + "Negative",tStrResID+" ("+label+") Negative",0,0,600,400);
negDt->GetXaxis()->SetTitle(xLabel);
negDt->GetYaxis()->SetTitle(yLabel);
negDt->Draw("SURF1");
negDt->GetXaxis()->SetTitle(xLabel);
negDt->GetYaxis()->SetTitle(yLabel);
negC->SaveAs("plot_2D_"+tStrResID + "_"+label+"Negative.C");
TCanvas *acpC = new TCanvas("c"+tStrResID+label + "Asymmetry",tStrResID+" ("+label+") Asymmetry",0,0,600,400);
acpDt->GetXaxis()->SetTitle(xLabel);
acpDt->GetYaxis()->SetTitle(yLabel);
acpDt->Draw("SURF1");
acpDt->GetXaxis()->SetTitle(xLabel);
acpDt->GetYaxis()->SetTitle(yLabel);
acpC->SaveAs("plot_2D_"+tStrResID + "_"+label+"Asymmetry.C");
}
Double_t LauCPFitModel::getParamFromTree( TTree& tree, const TString& name )
{
TBranch* branch{tree.FindBranch( name )};
if ( branch ) {
TLeaf* leaf{branch->GetLeaf( name )};
if ( leaf ) {
tree.GetEntry(0);
return leaf->GetValue();
} else {
std::cout << "ERROR in LauCPFitModel::getParamFromTree : Leaf name " + name + " not found in parameter file!" << std::endl;
}
} else {
std::cout << "ERROR in LauCPFitModel::getParamFromTree : Branch name " + name + " not found in parameter file!" << std::endl;
}
return -1.1;
}
void LauCPFitModel::fixParam( LauParameter* param, const Double_t val, const Bool_t fix)
{
std::cout << "INFO in LauCPFitModel::fixParam : Setting " << param->name() << " to " << val << std::endl;
param->value(val);
param->genValue(val);
param->initValue(val);
if (fix) {
param->fixed(kTRUE);
} else if (!param->fixed()){
// Add parameter name to list to indicate that this should not be randomised by randomiseInitFitPars
// (otherwise only those that are fixed are not randomised).
// This is only done to those that are not already fixed (see randomiseInitFitPars).
allImportedFreeParams_.insert(param);
}
}
void LauCPFitModel::fixParams( std::vector<LauParameter*>& params )
{
const Bool_t fix{fixParams_};
// TODO: Allow some parameters to be fixed and some to remain floating (but initialised)
if ( !fixParamFileName_.IsNull() ) {
// Take param values from a file
TFile * paramFile = TFile::Open(fixParamFileName_, "READ");
if (!paramFile) {
std::cerr << "ERROR in LauCPFitModel::fixParams : File '" + fixParamFileName_ + "' could not be opened for reading!" << std::endl;
return;
}
TTree * paramTree = dynamic_cast<TTree*>(paramFile->Get(fixParamTreeName_));
if (!paramTree) {
std::cerr << "ERROR in LauCPFitModel::fixParams : Tree '" + fixParamTreeName_ + "' not found in parameter file!" << std::endl;
return;
}
if ( !fixParamNames_.empty() ) {
// Fix params from file, according to vector of names
for( auto itr = params.begin(); itr != params.end(); ++itr ) {
auto itrName = fixParamNames_.find( (*itr)->name() );
if ( itrName != fixParamNames_.end() ) {
this->fixParam(*itr, this->getParamFromTree(*paramTree, *itrName), fix);
}
}
} else {
// Fix some (unspecified) parameters from file, prioritising the map (if it exists)
for( auto itr = params.begin(); itr != params.end(); ++itr) {
const TString& name = (*itr)->name();
if ( ! fixParamMap_.empty() ) {
auto nameValItr = fixParamMap_.find(name);
if ( nameValItr != fixParamMap_.end() ) {
this->fixParam(*itr, nameValItr->second, fix);
}
} else {
this->fixParam(*itr, this->getParamFromTree(*paramTree, name), fix);
}
}
} // Vector of names?
} else {
// Fix param names fom map, leave others floating
for( auto itr = params.begin(); itr != params.end(); ++itr ) {
auto nameValItr = this->fixParamMap_.find( (*itr)->name() );
if ( nameValItr != this->fixParamMap_.end() ) {
this->fixParam(*itr, nameValItr->second, fix);
}
}
}
}
diff --git a/src/LauSimpleFitModel.cc b/src/LauSimpleFitModel.cc
index 30a002e..48bd16f 100644
--- a/src/LauSimpleFitModel.cc
+++ b/src/LauSimpleFitModel.cc
@@ -1,2348 +1,2356 @@
/*
Copyright 2004 University of Warwick
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
Laura++ package authors:
John Back
Paul Harrison
Thomas Latham
*/
/*! \file LauSimpleFitModel.cc
\brief File containing implementation of LauSimpleFitModel class.
*/
#include <iostream>
#include <iomanip>
#include <fstream>
#include <typeinfo>
#include "TFile.h"
#include "TH2.h"
#include "TMinuit.h"
#include "TRandom.h"
#include "TSystem.h"
#include "TVirtualFitter.h"
#include "LauAbsBkgndDPModel.hh"
#include "LauAbsCoeffSet.hh"
#include "LauIsobarDynamics.hh"
#include "LauAbsPdf.hh"
#include "LauComplex.hh"
#include "LauConstants.hh"
#include "LauDaughters.hh"
#include "LauEmbeddedData.hh"
#include "LauEffModel.hh"
#include "LauFitNtuple.hh"
#include "LauGenNtuple.hh"
#include "LauKinematics.hh"
#include "LauPrint.hh"
#include "LauRandom.hh"
#include "LauScfMap.hh"
#include "LauSimpleFitModel.hh"
#include "TGraph2D.h"
#include "TGraph.h"
#include "TStyle.h"
#include "TCanvas.h"
ClassImp(LauSimpleFitModel)
LauSimpleFitModel::LauSimpleFitModel(LauIsobarDynamics* sigModel) : LauAbsFitModel(),
sigDPModel_(sigModel),
kinematics_(sigModel ? sigModel->getKinematics() : 0),
usingBkgnd_(kFALSE),
nSigComp_(0),
nSigDPPar_(0),
nExtraPdfPar_(0),
nNormPar_(0),
meanEff_("meanEff",0.0,0.0,1.0),
dpRate_("dpRate",0.0,0.0,100.0),
//signalEvents_("signalEvents",1.0,0.0,1.0),
signalEvents_(0),
useSCF_(kFALSE),
useSCFHist_(kFALSE),
scfFrac_("scfFrac",0.0,0.0,1.0),
scfFracHist_(0),
scfMap_(0),
compareFitData_(kFALSE),
signalTree_(0),
reuseSignal_(kFALSE),
useReweighting_(kFALSE),
sigDPLike_(0.0),
scfDPLike_(0.0),
sigExtraLike_(0.0),
scfExtraLike_(0.0),
sigTotalLike_(0.0),
scfTotalLike_(0.0)
{
}
LauSimpleFitModel::~LauSimpleFitModel()
{
delete signalTree_;
for (LauBkgndEmbDataList::iterator iter = bkgndTree_.begin(); iter != bkgndTree_.end(); ++iter) {
delete (*iter);
}
delete scfFracHist_;
}
void LauSimpleFitModel::setupBkgndVectors()
{
UInt_t nBkgnds = this->nBkgndClasses();
bkgndDPModels_.resize( nBkgnds );
bkgndPdfs_.resize( nBkgnds );
bkgndEvents_.resize( nBkgnds );
bkgndTree_.resize( nBkgnds );
reuseBkgnd_.resize( nBkgnds );
bkgndDPLike_.resize( nBkgnds );
bkgndExtraLike_.resize( nBkgnds );
bkgndTotalLike_.resize( nBkgnds );
}
void LauSimpleFitModel::setNSigEvents(LauParameter* nSigEvents)
{
if ( nSigEvents == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setNSigEvents : The signal yield LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( signalEvents_ != 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setNSigEvents : You are trying to overwrite the signal yield." << std::endl;
return;
}
signalEvents_ = nSigEvents;
TString name = signalEvents_->name();
if ( ! name.Contains("signalEvents") && !( name.BeginsWith("signal") && name.EndsWith("Events") ) ) {
signalEvents_->name("signalEvents");
}
Double_t value = nSigEvents->value();
signalEvents_->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
}
void LauSimpleFitModel::setNBkgndEvents(LauAbsRValue* nBkgndEvents)
{
if ( nBkgndEvents == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setNBkgndEvents : The background yield LauParameter pointer is null." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if ( ! this->validBkgndClass( nBkgndEvents->name() ) ) {
std::cerr << "ERROR in LauSimpleFitModel::setNBkgndEvents : Invalid background class \"" << nBkgndEvents->name() << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t bkgndID = this->bkgndClassID( nBkgndEvents->name() );
if ( bkgndEvents_[bkgndID] != 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setNBkgndEvents : You are trying to overwrite the background yield." << std::endl;
return;
}
nBkgndEvents->name( nBkgndEvents->name()+"Events" );
if ( nBkgndEvents->isLValue() ) {
Double_t value = nBkgndEvents->value();
LauParameter* yield = dynamic_cast<LauParameter*>( nBkgndEvents );
yield->range(-2.0*(TMath::Abs(value)+1.0), 2.0*(TMath::Abs(value)+1.0));
}
bkgndEvents_[bkgndID] = nBkgndEvents;
}
void LauSimpleFitModel::splitSignalComponent( const TH2* dpHisto, const Bool_t upperHalf, const Bool_t fluctuateBins, LauScfMap* scfMap )
{
if ( useSCF_ == kTRUE ) {
std::cerr << "ERROR in LauSimpleFitModel::splitSignalComponent : Have already setup SCF." << std::endl;
return;
}
if ( dpHisto == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::splitSignalComponent : The histogram pointer is null." << std::endl;
return;
}
const LauDaughters* daughters = sigDPModel_->getDaughters();
scfFracHist_ = new LauEffModel( daughters, 0 );
scfFracHist_->setEffHisto( dpHisto, kTRUE, fluctuateBins, 0.0, 0.0, upperHalf, daughters->squareDP() );
scfMap_ = scfMap;
useSCF_ = kTRUE;
useSCFHist_ = kTRUE;
}
void LauSimpleFitModel::splitSignalComponent( const Double_t scfFrac, const Bool_t fixed )
{
if ( useSCF_ == kTRUE ) {
std::cerr << "ERROR in LauSimpleFitModel::splitSignalComponent : Have already setup SCF." << std::endl;
return;
}
scfFrac_.range( 0.0, 1.0 );
scfFrac_.value( scfFrac ); scfFrac_.initValue( scfFrac ); scfFrac_.genValue( scfFrac );
scfFrac_.fixed( fixed );
useSCF_ = kTRUE;
useSCFHist_ = kFALSE;
}
void LauSimpleFitModel::setBkgndDPModel(const TString& bkgndClass, LauAbsBkgndDPModel* bkgndDPModel)
{
if (bkgndDPModel == 0) {
std::cerr << "ERROR in LauSimpleFitModel::setBkgndDPModel : The model pointer is null." << std::endl;
return;
}
// check that this background name is valid
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauSimpleFitModel::setBkgndDPModel : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
bkgndDPModels_[bkgndID] = bkgndDPModel;
usingBkgnd_ = kTRUE;
}
void LauSimpleFitModel::setSignalPdf(LauAbsPdf* pdf)
{
if (pdf==0) {
std::cerr << "ERROR in LauSimpleFitModel::setSignalPdf : The PDF pointer is null." << std::endl;
return;
}
signalPdfs_.push_back(pdf);
}
void LauSimpleFitModel::setSCFPdf(LauAbsPdf* pdf)
{
if (pdf==0) {
std::cerr << "ERROR in LauSimpleFitModel::setSCFPdf : The PDF pointer is null." << std::endl;
return;
}
scfPdfs_.push_back(pdf);
}
void LauSimpleFitModel::setBkgndPdf(const TString& bkgndClass, LauAbsPdf* pdf)
{
if (pdf == 0) {
std::cerr << "ERROR in LauSimpleFitModel::setBkgndPdf : The PDF pointer is null." << std::endl;
return;
}
// check that this background name is valid
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauSimpleFitModel::setBkgndPdf : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
bkgndPdfs_[bkgndID].push_back(pdf);
usingBkgnd_ = kTRUE;
}
void LauSimpleFitModel::setAmpCoeffSet(LauAbsCoeffSet* coeffSet)
{
// Resize the coeffPars vector if not already done
if ( coeffPars_.empty() ) {
coeffPars_.resize( sigDPModel_->getnTotAmp() );
for (std::vector<LauAbsCoeffSet*>::iterator iter = coeffPars_.begin(); iter != coeffPars_.end(); ++iter) {
(*iter) = 0;
}
}
// Is there a component called compName in the signal model?
TString compName(coeffSet->name());
const Int_t index = sigDPModel_->resonanceIndex(compName);
if ( index < 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setAmpCoeffSet : Signal DP model doesn't contain component \"" << compName << "\"." << std::endl;
return;
}
// Do we already have it in our list of names?
if ( coeffPars_[index] != 0 && coeffPars_[index]->name() == compName) {
std::cerr << "ERROR in LauSimpleFitModel::setAmpCoeffSet : Have already set coefficients for \"" << compName << "\"." << std::endl;
return;
}
coeffSet->index(index);
coeffPars_[index] = coeffSet;
++nSigComp_;
std::cout << "INFO in LauSimpleFitModel::setAmpCoeffSet : Added coefficients for component A"<< index << ": \"" << compName << "\" to the fit model." << std::endl;
coeffSet->printParValues();
}
void LauSimpleFitModel::initialise()
{
// Initialisation
if (!this->useDP() && signalPdfs_.empty()) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : Signal model doesn't exist for any variable." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
if (this->useDP()) {
// Check that we have all the Dalitz-plot models
if ( sigDPModel_ == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : The pointer to the signal DP model is null.\n";
std::cerr << " : Removing the Dalitz Plot from the model." << std::endl;
this->useDP(kFALSE);
}
if ( usingBkgnd_ ) {
for (LauBkgndDPModelList::const_iterator dpmodel_iter = bkgndDPModels_.begin(); dpmodel_iter != bkgndDPModels_.end(); ++dpmodel_iter ) {
if ( (*dpmodel_iter) == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : The pointer to one of the background DP models is null.\n";
std::cerr << " : Removing the Dalitz Plot from the model." << std::endl;
this->useDP(kFALSE);
break;
}
}
}
// Need to check that the number of components we have and that the dynamics has matches up
UInt_t nAmp = sigDPModel_->getnTotAmp();
if (nAmp != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : Number of signal DP components with magnitude and phase set not right." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
// From the initial parameter values calculate the coefficients
// so they can be passed to the signal model
this->updateCoeffs();
// If all is well, go ahead and initialise them
this->initialiseDPModels();
}
// Next check that, if a given component is being used we've got the
// right number of PDFs for all the variables involved
// TODO - should probably check variable names and so on as well
UInt_t nsigpdfvars(0);
for ( LauPdfList::const_iterator pdf_iter = signalPdfs_.begin(); pdf_iter != signalPdfs_.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nsigpdfvars;
}
}
}
if (useSCF_) {
UInt_t nscfpdfvars(0);
for ( LauPdfList::const_iterator pdf_iter = scfPdfs_.begin(); pdf_iter != scfPdfs_.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nscfpdfvars;
}
}
}
if (nscfpdfvars != nsigpdfvars) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : There are " << nsigpdfvars << " TM signal PDF variables but " << nscfpdfvars << " SCF signal PDF variables." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
if (usingBkgnd_) {
for (LauBkgndPdfsList::const_iterator bgclass_iter = bkgndPdfs_.begin(); bgclass_iter != bkgndPdfs_.end(); ++bgclass_iter) {
UInt_t nbkgndpdfvars(0);
const LauPdfList& pdfList = (*bgclass_iter);
for ( LauPdfList::const_iterator pdf_iter = pdfList.begin(); pdf_iter != pdfList.end(); ++pdf_iter ) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nbkgndpdfvars;
}
}
}
if (nbkgndpdfvars != nsigpdfvars) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : There are " << nsigpdfvars << " signal PDF variables but " << nbkgndpdfvars << " bkgnd PDF variables." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
}
// Clear the vectors of parameter information so we can start from scratch
this->clearFitParVectors();
// Set the fit parameters for signal and background models
this->setSignalDPParameters();
// Set the fit parameters for the various extra PDFs
this->setExtraPdfParameters();
// Set the initial bg and signal events
this->setFitNEvents();
// Check that we have the expected number of fit variables
const LauParameterPList& fitVars = this->fitPars();
if (fitVars.size() != (nSigDPPar_ + nExtraPdfPar_ + nNormPar_)) {
std::cerr << "ERROR in LauSimpleFitModel::initialise : Number of fit parameters not of expected size." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
this->setExtraNtupleVars();
}
void LauSimpleFitModel::initialiseDPModels()
{
std::cout << "INFO in LauSimpleFitModel::initialiseDPModels : Initialising DP models" << std::endl;
sigDPModel_->initialise(coeffs_);
if (usingBkgnd_ == kTRUE) {
for (LauBkgndDPModelList::iterator iter = bkgndDPModels_.begin(); iter != bkgndDPModels_.end(); ++iter) {
(*iter)->initialise();
}
}
}
void LauSimpleFitModel::recalculateNormalisation()
{
//std::cout << "INFO in LauSimpleFitModel::recalculateNormalizationInDPModels : Recalc Norm in DP model" << std::endl;
sigDPModel_->recalculateNormalisation();
sigDPModel_->modifyDataTree();
}
void LauSimpleFitModel::setSignalDPParameters()
{
// Set the fit parameters for the signal model.
nSigDPPar_ = 0;
if ( ! this->useDP() ) {
return;
}
std::cout << "INFO in LauSimpleFitModel::setSignalDPParameters : Setting the initial fit parameters for the signal DP model." << std::endl;
// Place isobar coefficient parameters in vector of fit variables
LauParameterPList& fitVars = this->fitPars();
for (UInt_t i = 0; i < nSigComp_; i++) {
LauParameterPList pars = coeffPars_[i]->getParameters();
for (LauParameterPList::iterator iter = pars.begin(); iter != pars.end(); ++iter) {
if ( !(*iter)->clone() ) {
fitVars.push_back(*iter);
++nSigDPPar_;
}
}
}
// Obtain the resonance parameters and place them in the vector of fit variables and in a separate vector
LauParameterPSet& resVars = this->resPars();
resVars.clear();
LauParameterPList& sigDPPars = sigDPModel_->getFloatingParameters();
for ( LauParameterPList::iterator iter = sigDPPars.begin(); iter != sigDPPars.end(); ++iter ) {
if ( resVars.insert(*iter).second ) {
fitVars.push_back(*iter);
++nSigDPPar_;
}
}
}
void LauSimpleFitModel::setExtraPdfParameters()
{
// Include all the parameters of the various PDFs in the fit
// NB all of them are passed to the fit, even though some have been fixed through parameter.fixed(kTRUE)
// With the new "cloned parameter" scheme only "original" parameters are passed to the fit.
// Their clones are updated automatically when the originals are updated.
nExtraPdfPar_ = 0;
nExtraPdfPar_ += this->addFitParameters(signalPdfs_);
if (useSCF_ == kTRUE) {
nExtraPdfPar_ += this->addFitParameters(scfPdfs_);
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndPdfsList::iterator iter = bkgndPdfs_.begin(); iter != bkgndPdfs_.end(); ++iter) {
nExtraPdfPar_ += this->addFitParameters(*iter);
}
}
}
void LauSimpleFitModel::setFitNEvents()
{
if ( signalEvents_ == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setFitNEvents : Signal yield not defined." << std::endl;
return;
}
nNormPar_ = 0;
// initialise the total number of events to be the sum of all the hypotheses
Double_t nTotEvts = signalEvents_->value();
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
nTotEvts += (*iter)->value();
if ( (*iter) == 0 ) {
std::cerr << "ERROR in LauSimpleFitModel::setFitNEvents : Background yield not defined." << std::endl;
return;
}
}
this->eventsPerExpt(TMath::FloorNint(nTotEvts));
LauParameterPList& fitVars = this->fitPars();
// if doing an extended ML fit add the number of signal events into the fit parameters
if (this->doEMLFit()) {
std::cout << "INFO in LauSimpleFitModel::setFitNEvents : Initialising number of events for signal and background components..." << std::endl;
// add the signal events to the list of fit parameters
fitVars.push_back(signalEvents_);
++nNormPar_;
} else {
std::cout << "INFO in LauSimpleFitModel::setFitNEvents : Initialising number of events for background components (and hence signal)..." << std::endl;
}
if (useSCF_ && !useSCFHist_) {
fitVars.push_back(&scfFrac_);
++nNormPar_;
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
if ( ! parameter->clone() ) {
fitVars.push_back(parameter);
++nNormPar_;
}
}
}
}
}
void LauSimpleFitModel::setExtraNtupleVars()
{
// Set-up other parameters derived from the fit results, e.g. fit fractions.
if (this->useDP() != kTRUE) {
return;
}
// First clear the vectors so we start from scratch
this->clearExtraVarVectors();
LauParameterList& extraVars = this->extraPars();
// Add a fit fraction for each signal component
fitFrac_ = sigDPModel_->getFitFractions();
if (fitFrac_.size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << fitFrac_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (fitFrac_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << fitFrac_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
// Add the fit fraction that has not been corrected for the efficiency for each signal component
fitFracEffUnCorr_ = sigDPModel_->getFitFractionsEfficiencyUncorrected();
if (fitFracEffUnCorr_.size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << fitFracEffUnCorr_.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (fitFracEffUnCorr_[i].size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::setExtraNtupleVars : Initial Fit Fraction array of unexpected dimension: " << fitFracEffUnCorr_[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i = 0; i < nSigComp_; i++) {
for (UInt_t j = i; j < nSigComp_; j++) {
extraVars.push_back(fitFrac_[i][j]);
extraVars.push_back(fitFracEffUnCorr_[i][j]);
}
}
// Store any extra parameters/quantities from the DP model (e.g. K-matrix total fit fractions)
std::vector<LauParameter> extraParams = sigDPModel_->getExtraParameters();
std::vector<LauParameter>::iterator extraIter;
for (extraIter = extraParams.begin(); extraIter != extraParams.end(); ++extraIter) {
LauParameter extraParameter = (*extraIter);
extraVars.push_back(extraParameter);
}
// Now add in the DP efficiency value
Double_t initMeanEff = sigDPModel_->getMeanEff().initValue();
meanEff_.value(initMeanEff); meanEff_.initValue(initMeanEff); meanEff_.genValue(initMeanEff);
extraVars.push_back(meanEff_);
// Also add in the DP rate
Double_t initDPRate = sigDPModel_->getDPRate().initValue();
dpRate_.value(initDPRate); dpRate_.initValue(initDPRate); dpRate_.genValue(initDPRate);
extraVars.push_back(dpRate_);
}
void LauSimpleFitModel::finaliseFitResults(const TString& tablePrefixName)
{
// Retrieve parameters from the fit results for calculations and toy generation
// and eventually store these in output root ntuples/text files
// Now take the fit parameters and update them as necessary
// e.g. to make mag > 0.0 and phase in the right range.
// This function will also calculate any other values, such as the
// fit fractions, using any errors provided by fitParErrors as appropriate.
// Also obtain the pull values: (measured - generated)/(average error)
if (this->useDP() == kTRUE) {
for (UInt_t i = 0; i < nSigComp_; i++) {
// Check whether we have mag > 0.0, and phase in the right range
coeffPars_[i]->finaliseValues();
}
}
// update the pulls on the events
if (this->doEMLFit()) {
signalEvents_->updatePull();
}
if (useSCF_ && !useSCFHist_) {
scfFrac_.updatePull();
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
std::vector<LauParameter*> parameters = (*iter)->getPars();
for ( LauParameter* parameter : parameters ) {
parameter->updatePull();
}
}
}
// Update the pulls on all the extra PDFs' parameters
this->updateFitParameters(signalPdfs_);
if (useSCF_ == kTRUE) {
this->updateFitParameters(scfPdfs_);
}
if (usingBkgnd_ == kTRUE) {
for (LauBkgndPdfsList::iterator iter = bkgndPdfs_.begin(); iter != bkgndPdfs_.end(); ++iter) {
this->updateFitParameters(*iter);
}
}
// Fill the fit results to the ntuple for current experiment
// update the coefficients and then calculate the fit fractions
if (this->useDP() == kTRUE) {
this->updateCoeffs();
sigDPModel_->updateCoeffs(coeffs_);
sigDPModel_->calcExtraInfo();
LauParArray fitFrac = sigDPModel_->getFitFractions();
if (fitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << fitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (fitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << fitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
LauParArray fitFracEffUnCorr = sigDPModel_->getFitFractionsEfficiencyUncorrected();
if (fitFracEffUnCorr.size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << fitFracEffUnCorr.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (fitFracEffUnCorr[i].size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::finaliseFitResults : Fit Fraction array of unexpected dimension: " << fitFracEffUnCorr[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
fitFrac_[i][j].value(fitFrac[i][j].value());
fitFracEffUnCorr_[i][j].value(fitFracEffUnCorr[i][j].value());
}
}
meanEff_.value(sigDPModel_->getMeanEff().value());
dpRate_.value(sigDPModel_->getDPRate().value());
this->clearExtraVarVectors();
LauParameterList& extraVars = this->extraPars();
// Then store the final fit parameters, and any extra parameters for
// the signal model (e.g. fit fractions)
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j(i); j<nSigComp_; ++j) {
extraVars.push_back(fitFrac_[i][j]);
extraVars.push_back(fitFracEffUnCorr_[i][j]);
}
}
// Store any extra parameters/quantities from the DP model (e.g. K-matrix total fit fractions)
std::vector<LauParameter> extraParams = sigDPModel_->getExtraParameters();
std::vector<LauParameter>::iterator extraIter;
for (extraIter = extraParams.begin(); extraIter != extraParams.end(); ++extraIter) {
LauParameter extraParameter = (*extraIter);
extraVars.push_back(extraParameter);
}
// Now add in the DP efficiency value
extraVars.push_back(meanEff_);
// Also add in the DP rate
extraVars.push_back(dpRate_);
this->printFitFractions(std::cout);
}
const LauParameterPList& fitVars = this->fitPars();
const LauParameterList& extraVars = this->extraPars();
LauFitNtuple* ntuple = this->fitNtuple();
ntuple->storeParsAndErrors(fitVars, extraVars);
// find out the correlation matrix for the parameters
ntuple->storeCorrMatrix(this->iExpt(), this->fitStatus(), this->covarianceMatrix());
// Fill the data into ntuple
ntuple->updateFitNtuple();
// Print out the partial fit fractions, phases and the
// averaged efficiency, reweighted by the dynamics (and anything else)
if (this->writeLatexTable()) {
TString sigOutFileName(tablePrefixName);
sigOutFileName += "_"; sigOutFileName += this->iExpt(); sigOutFileName += "Expt.tex";
this->writeOutTable(sigOutFileName);
}
}
void LauSimpleFitModel::printFitFractions(std::ostream& output)
{
// Print out Fit Fractions, total DP rate and mean efficiency
for (UInt_t i = 0; i < nSigComp_; i++) {
output << "FitFraction for component " << i << " (" << coeffPars_[i]->name() << ") = " << fitFrac_[i][i] << std::endl;
}
output << "Overall DP rate (integral of matrix element squared) = " << dpRate_ << std::endl;
output << "Average efficiency weighted by whole DP dynamics = " << meanEff_ << std::endl;
}
void LauSimpleFitModel::writeOutTable(const TString& outputFile)
{
// Write out the results of the fit to a tex-readable table
// TODO - need to include the yields in this table
std::ofstream fout(outputFile);
LauPrint print;
std::cout << "INFO in LauSimpleFitModel::writeOutTable : Writing out results of the fit to the tex file " << outputFile << std::endl;
if (this->useDP() == kTRUE) {
// print the fit coefficients in one table
coeffPars_.front()->printTableHeading(fout);
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffPars_[i]->printTableRow(fout);
}
fout << "\\hline" << std::endl;
fout << "\\end{tabular}" << std::endl << std::endl;
// print the fit fractions in another
fout << "\\begin{tabular}{|l|c|}" << std::endl;
fout << "\\hline" << std::endl;
fout << "Component & FitFraction \\\\" << std::endl;
fout << "\\hline" << std::endl;
Double_t fitFracSum(0.0);
for (UInt_t i = 0; i < nSigComp_; i++) {
TString resName = coeffPars_[i]->name();
resName = resName.ReplaceAll("_", "\\_");
fout << resName << " & $";
Double_t fitFrac = fitFrac_[i][i].value();
fitFracSum += fitFrac;
print.printFormat(fout, fitFrac);
fout << "$ \\\\" << std::endl;
}
fout << "\\hline" << std::endl;
// Also print out sum of fit fractions
fout << "Fit Fraction Sum & $";
print.printFormat(fout, fitFracSum);
fout << "$ \\\\" << std::endl;
fout << "\\hline" << std::endl;
fout << "DP rate & $";
print.printFormat(fout, dpRate_.value());
fout << "$ \\\\" << std::endl;
fout << "\\hline" << std::endl;
fout << "$< \\varepsilon >$ & $";
print.printFormat(fout, meanEff_.value());
fout << "$ \\\\" << std::endl;
fout << "\\hline" << std::endl;
fout << "\\end{tabular}" << std::endl << std::endl;
}
if (!signalPdfs_.empty()) {
fout << "\\begin{tabular}{|l|c|}" << std::endl;
fout << "\\hline" << std::endl;
if (useSCF_ == kTRUE) {
fout << "\\Extra TM Signal PDFs' Parameters: & \\\\" << std::endl;
} else {
fout << "\\Extra Signal PDFs' Parameters: & \\\\" << std::endl;
}
this->printFitParameters(signalPdfs_, fout);
if (useSCF_ == kTRUE && !scfPdfs_.empty()) {
fout << "\\hline" << std::endl;
fout << "\\Extra SCF Signal PDFs' Parameters: & \\\\" << std::endl;
this->printFitParameters(scfPdfs_, fout);
}
if (usingBkgnd_ == kTRUE && !bkgndPdfs_.empty()) {
fout << "\\hline" << std::endl;
fout << "\\Extra Background PDFs' Parameters: & \\\\" << std::endl;
for (LauBkgndPdfsList::const_iterator iter = bkgndPdfs_.begin(); iter != bkgndPdfs_.end(); ++iter) {
this->printFitParameters(*iter, fout);
}
}
fout << "\\hline \n\\end{tabular}" << std::endl << std::endl;
}
}
void LauSimpleFitModel::checkInitFitParams()
{
// Update the number of signal events to be total-sum(background events)
this->updateSigEvents();
// Check whether we want to have randomised initial fit parameters for the signal model
if (this->useRandomInitFitPars() == kTRUE) {
std::cout << "INFO in LauSimpleFitModel::checkInitFitParams : Setting random parameters for the signal DP model" << std::endl;
this->randomiseInitFitPars();
}
}
void LauSimpleFitModel::randomiseInitFitPars()
{
// Only randomise those parameters that are not fixed!
std::cout << "INFO in LauSimpleFitModel::randomiseInitFitPars : Randomising the initial fit magnitudes and phases of the resonances..." << std::endl;
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffPars_[i]->randomiseInitValues();
}
}
std::pair<LauSimpleFitModel::LauGenInfo,Bool_t> LauSimpleFitModel::eventsToGenerate()
{
// Determine the number of events to generate for each hypothesis
// If we're smearing then smear each one individually
LauGenInfo nEvtsGen;
// Keep track of whether any yield or asymmetry parameters are blinded
Bool_t blind = kFALSE;
// Signal
+ if ( signalEvents_->blind() ) {
+ blind = kTRUE;
+ }
+
Double_t evtWeight(1.0);
- Int_t nEvts = TMath::FloorNint(signalEvents_->genValue());
+ Double_t nEvts = signalEvents_->genValue();
if ( nEvts < 0 ) {
evtWeight = -1.0;
nEvts = TMath::Abs( nEvts );
}
+
+ Int_t nEvtsToGen { static_cast<Int_t>(nEvts) };
if (this->doPoissonSmearing()) {
- nEvts = LauRandom::randomFun()->Poisson(nEvts);
- }
- nEvtsGen["signal"] = std::make_pair( nEvts, evtWeight );
- if ( signalEvents_->blind() ) {
- blind = kTRUE;
+ nEvtsToGen = LauRandom::randomFun()->Poisson(nEvts);
}
+ nEvtsGen["signal"] = std::make_pair( nEvtsToGen, evtWeight );
+
// Backgrounds
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
- const TString& bkgndClass = this->bkgndClassName(bkgndID);
const LauAbsRValue* evtsPar = bkgndEvents_[bkgndID];
+ if ( evtsPar->blind() ) {
+ blind = kTRUE;
+ }
+
evtWeight = 1.0;
- nEvts = TMath::FloorNint( evtsPar->genValue() );
+ nEvts = evtsPar->genValue();
if ( nEvts < 0 ) {
evtWeight = -1.0;
nEvts = TMath::Abs( nEvts );
}
+
+ nEvtsToGen = static_cast<Int_t>(nEvts);
if (this->doPoissonSmearing()) {
- nEvts = LauRandom::randomFun()->Poisson(nEvts);
+ nEvtsToGen = LauRandom::randomFun()->Poisson(nEvts);
}
+
+ const TString& bkgndClass = this->bkgndClassName(bkgndID);
nEvtsGen[bkgndClass] = std::make_pair( nEvts, evtWeight );
- if ( evtsPar->blind() ) {
- blind = kTRUE;
- }
}
return std::make_pair( nEvtsGen, blind );
}
Bool_t LauSimpleFitModel::genExpt()
{
// Routine to generate toy Monte Carlo events according to the various models we have defined.
// Determine the number of events to generate for each hypothesis
std::pair<LauGenInfo,Bool_t> info = this->eventsToGenerate();
LauGenInfo nEvts = info.first;
const Bool_t blind = info.second;
Bool_t genOK(kTRUE);
Int_t evtNum(0);
const UInt_t nBkgnds = this->nBkgndClasses();
std::vector<TString> bkgndClassNames(nBkgnds);
std::vector<TString> bkgndClassNamesGen(nBkgnds);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
bkgndClassNames[iBkgnd] = name;
bkgndClassNamesGen[iBkgnd] = "gen"+name;
}
const Bool_t storeSCFTruthInfo = ( useSCF_ || ( this->enableEmbedding() && signalTree_ != 0 && signalTree_->haveBranch("mcMatch") ) );
// Loop over the hypotheses and generate the requested number of events for each one
for (LauGenInfo::const_iterator iter = nEvts.begin(); iter != nEvts.end(); ++iter) {
const TString& type(iter->first);
Int_t nEvtsGen( iter->second.first );
Double_t evtWeight( iter->second.second );
for (Int_t iEvt(0); iEvt<nEvtsGen; ++iEvt) {
this->setGenNtupleDoubleBranchValue( "evtWeight", evtWeight );
// Add efficiency information
this->setGenNtupleDoubleBranchValue( "efficiency", 1 );
if (type == "signal") {
this->setGenNtupleIntegerBranchValue("genSig",1);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
this->setGenNtupleIntegerBranchValue( bkgndClassNamesGen[iBkgnd], 0 );
}
genOK = this->generateSignalEvent();
this->setGenNtupleDoubleBranchValue( "efficiency", sigDPModel_->getEvtEff() );
} else {
this->setGenNtupleIntegerBranchValue("genSig",0);
if ( storeSCFTruthInfo ) {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
}
UInt_t bkgndID(0);
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
Int_t gen(0);
if ( bkgndClassNames[iBkgnd] == type ) {
gen = 1;
bkgndID = iBkgnd;
}
this->setGenNtupleIntegerBranchValue( bkgndClassNamesGen[iBkgnd], gen );
}
genOK = this->generateBkgndEvent(bkgndID);
}
if (!genOK) {
// If there was a problem with the generation then break out and return.
// The problem model will have adjusted itself so that all should be OK next time.
break;
}
if (this->useDP() == kTRUE) {
this->setDPBranchValues();
}
// Store the event number (within this experiment)
this->setGenNtupleIntegerBranchValue("iEvtWithinExpt",evtNum);
// and then increment it
++evtNum;
this->fillGenNtupleBranches();
if ( !blind && (iEvt%500 == 0) ) {
std::cout << "INFO in LauSimpleFitModel::genExpt : Generated event number " << iEvt << " out of " << nEvtsGen << " " << type << " events." << std::endl;
}
}
if (!genOK) {
break;
}
}
if (this->useDP() && genOK) {
sigDPModel_->checkToyMC(kTRUE,kTRUE);
// Get the fit fractions if they're to be written into the latex table
if (this->writeLatexTable()) {
LauParArray fitFrac = sigDPModel_->getFitFractions();
if (fitFrac.size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::genExpt : Fit Fraction array of unexpected dimension: " << fitFrac.size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
for (UInt_t i(0); i<nSigComp_; ++i) {
if (fitFrac[i].size() != nSigComp_) {
std::cerr << "ERROR in LauSimpleFitModel::genExpt : Fit Fraction array of unexpected dimension: " << fitFrac[i].size() << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
}
for (UInt_t i(0); i<nSigComp_; ++i) {
for (UInt_t j = i; j < nSigComp_; j++) {
fitFrac_[i][j].value(fitFrac[i][j].value());
}
}
meanEff_.value(sigDPModel_->getMeanEff().value());
dpRate_.value(sigDPModel_->getDPRate().value());
}
}
// If we're reusing embedded events or if the generation is being
// reset then clear the lists of used events
if (reuseSignal_ || !genOK) {
if (signalTree_) {
signalTree_->clearUsedList();
}
}
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
LauEmbeddedData* data = bkgndTree_[bkgndID];
if (reuseBkgnd_[bkgndID] || !genOK) {
if (data) {
data->clearUsedList();
}
}
}
return genOK;
}
Bool_t LauSimpleFitModel::generateSignalEvent()
{
// Generate signal event
Bool_t genOK(kTRUE);
Bool_t genSCF(kFALSE);
if (this->useDP()) {
if (this->enableEmbedding() && signalTree_) {
if (useReweighting_) {
// Select a (random) event from the generated data. Then store the
// reconstructed DP co-ords, together with other pdf information,
// as the embedded data.
genOK = signalTree_->getReweightedEvent(sigDPModel_);
} else {
signalTree_->getEmbeddedEvent(kinematics_);
}
if (signalTree_->haveBranch("mcMatch")) {
Int_t match = static_cast<Int_t>(signalTree_->getValue("mcMatch"));
if (match) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
}
}
} else {
genOK = sigDPModel_->generate();
if ( genOK && useSCF_ ) {
Double_t frac(0.0);
if ( useSCFHist_ ) {
frac = scfFracHist_->calcEfficiency( kinematics_ );
} else {
frac = scfFrac_.genValue();
}
if ( frac < LauRandom::randomFun()->Rndm() ) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
// Optionally smear the DP position
// of the SCF event
if ( scfMap_ != 0 ) {
Double_t xCoord(0.0), yCoord(0.0);
if ( kinematics_->squareDP() ) {
xCoord = kinematics_->getmPrime();
yCoord = kinematics_->getThetaPrime();
} else {
xCoord = kinematics_->getm13Sq();
yCoord = kinematics_->getm23Sq();
}
// Find the bin number where this event is generated
Int_t binNo = scfMap_->binNumber( xCoord, yCoord );
// Retrieve the migration histogram
TH2* histo = scfMap_->trueHist( binNo );
const LauAbsEffModel * effModel = sigDPModel_->getEffModel();
do {
// Get a random point from the histogram
histo->GetRandom2( xCoord, yCoord );
// Update the kinematics
if ( kinematics_->squareDP() ) {
kinematics_->updateSqDPKinematics( xCoord, yCoord );
} else {
kinematics_->updateKinematics( xCoord, yCoord );
}
} while ( ! effModel->passVeto( kinematics_ ) );
}
}
}
}
} else {
if (this->enableEmbedding() && signalTree_) {
signalTree_->getEmbeddedEvent(0);
if (signalTree_->haveBranch("mcMatch")) {
Int_t match = static_cast<Int_t>(signalTree_->getValue("mcMatch"));
if (match) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
}
}
} else if ( useSCF_ ) {
Double_t frac = scfFrac_.genValue();
if ( frac < LauRandom::randomFun()->Rndm() ) {
this->setGenNtupleIntegerBranchValue("genTMSig",1);
this->setGenNtupleIntegerBranchValue("genSCFSig",0);
genSCF = kFALSE;
} else {
this->setGenNtupleIntegerBranchValue("genTMSig",0);
this->setGenNtupleIntegerBranchValue("genSCFSig",1);
genSCF = kTRUE;
}
}
}
if (genOK) {
if ( useSCF_ ) {
if ( genSCF ) {
this->generateExtraPdfValues(&scfPdfs_, signalTree_);
} else {
this->generateExtraPdfValues(&signalPdfs_, signalTree_);
}
} else {
this->generateExtraPdfValues(&signalPdfs_, signalTree_);
}
}
// Check for problems with the embedding
if (this->enableEmbedding() && signalTree_ && (signalTree_->nEvents() == signalTree_->nUsedEvents())) {
std::cerr << "WARNING in LauSimpleFitModel::generateSignalEvent : Source of embedded signal events used up, clearing the list of used events." << std::endl;
signalTree_->clearUsedList();
}
return genOK;
}
Bool_t LauSimpleFitModel::generateBkgndEvent(UInt_t bkgndID)
{
// Generate background event
Bool_t genOK(kTRUE);
LauAbsBkgndDPModel* model = bkgndDPModels_[bkgndID];
LauEmbeddedData* embeddedData(0);
if (this->enableEmbedding()) {
embeddedData = bkgndTree_[bkgndID];
}
LauPdfList* extraPdfs = &bkgndPdfs_[bkgndID];
if (this->useDP()) {
if (embeddedData) {
embeddedData->getEmbeddedEvent(kinematics_);
} else {
if (model == 0) {
std::cerr << "ERROR in LauSimpleFitModel::generateBkgndEvent : Can't find the DP model for background class \"" << this->bkgndClassName(bkgndID) << "\"." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
genOK = model->generate();
}
} else {
if (embeddedData) {
embeddedData->getEmbeddedEvent(0);
}
}
if (genOK) {
this->generateExtraPdfValues(extraPdfs, embeddedData);
}
// Check for problems with the embedding
if (embeddedData && (embeddedData->nEvents() == embeddedData->nUsedEvents())) {
std::cerr << "WARNING in LauSimpleFitModel::generateBkgndEvent : Source of embedded " << this->bkgndClassName(bkgndID) << " events used up, clearing the list of used events." << std::endl;
embeddedData->clearUsedList();
}
return genOK;
}
void LauSimpleFitModel::setupGenNtupleBranches()
{
// Setup the required ntuple branches
this->addGenNtupleDoubleBranch("evtWeight");
this->addGenNtupleIntegerBranch("genSig");
this->addGenNtupleDoubleBranch("efficiency");
if ( useSCF_ || ( this->enableEmbedding() && signalTree_ != 0 && signalTree_->haveBranch("mcMatch") ) ) {
this->addGenNtupleIntegerBranch("genTMSig");
this->addGenNtupleIntegerBranch("genSCFSig");
}
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name.Prepend("gen");
this->addGenNtupleIntegerBranch(name);
}
if (this->useDP() == kTRUE) {
this->addGenNtupleDoubleBranch("m12");
this->addGenNtupleDoubleBranch("m23");
this->addGenNtupleDoubleBranch("m13");
this->addGenNtupleDoubleBranch("m12Sq");
this->addGenNtupleDoubleBranch("m23Sq");
this->addGenNtupleDoubleBranch("m13Sq");
this->addGenNtupleDoubleBranch("cosHel12");
this->addGenNtupleDoubleBranch("cosHel23");
this->addGenNtupleDoubleBranch("cosHel13");
if (kinematics_->squareDP()) {
this->addGenNtupleDoubleBranch("mPrime");
this->addGenNtupleDoubleBranch("thPrime");
}
}
for (LauPdfList::const_iterator pdf_iter = signalPdfs_.begin(); pdf_iter != signalPdfs_.end(); ++pdf_iter) {
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
this->addGenNtupleDoubleBranch( (*var_iter) );
}
}
}
}
void LauSimpleFitModel::setDPBranchValues()
{
// Store all the DP information
this->setGenNtupleDoubleBranchValue("m12", kinematics_->getm12());
this->setGenNtupleDoubleBranchValue("m23", kinematics_->getm23());
this->setGenNtupleDoubleBranchValue("m13", kinematics_->getm13());
this->setGenNtupleDoubleBranchValue("m12Sq", kinematics_->getm12Sq());
this->setGenNtupleDoubleBranchValue("m23Sq", kinematics_->getm23Sq());
this->setGenNtupleDoubleBranchValue("m13Sq", kinematics_->getm13Sq());
this->setGenNtupleDoubleBranchValue("cosHel12", kinematics_->getc12());
this->setGenNtupleDoubleBranchValue("cosHel23", kinematics_->getc23());
this->setGenNtupleDoubleBranchValue("cosHel13", kinematics_->getc13());
if (kinematics_->squareDP()) {
this->setGenNtupleDoubleBranchValue("mPrime", kinematics_->getmPrime());
this->setGenNtupleDoubleBranchValue("thPrime", kinematics_->getThetaPrime());
}
}
void LauSimpleFitModel::generateExtraPdfValues(LauPdfList* extraPdfs, LauEmbeddedData* embeddedData)
{
// Generate from the extra PDFs
if (extraPdfs) {
for (LauPdfList::iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
LauFitData genValues;
if (embeddedData) {
genValues = embeddedData->getValues( (*pdf_iter)->varNames() );
} else {
genValues = (*pdf_iter)->generate(kinematics_);
}
for ( LauFitData::const_iterator var_iter = genValues.begin(); var_iter != genValues.end(); ++var_iter ) {
TString varName = var_iter->first;
if ( varName != "m13Sq" && varName != "m23Sq" ) {
Double_t value = var_iter->second;
this->setGenNtupleDoubleBranchValue(varName,value);
}
}
}
}
}
void LauSimpleFitModel::propagateParUpdates()
{
// Update the total normalisation for the signal likelihood
if (this->useDP() == kTRUE) {
this->updateCoeffs();
sigDPModel_->updateCoeffs(coeffs_);
}
// Update the signal events from the background events if not doing an extended fit
if ( !this->doEMLFit() && !signalEvents_->fixed() ) {
this->updateSigEvents();
}
}
void LauSimpleFitModel::updateSigEvents()
{
// The background parameters will have been set from Minuit.
// We need to update the signal events using these.
Double_t nTotEvts = this->eventsPerExpt();
signalEvents_->range(-2.0*nTotEvts,2.0*nTotEvts);
for (LauBkgndYieldList::iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
LauAbsRValue* nBkgndEvents = (*iter);
if ( nBkgndEvents->isLValue() ) {
LauParameter* yield = dynamic_cast<LauParameter*>( nBkgndEvents );
yield->range(-2.0*nTotEvts,2.0*nTotEvts);
}
}
if ( signalEvents_->fixed() ) {
return;
}
// Subtract background events (if any) from signal.
Double_t signalEvents = nTotEvts;
if ( usingBkgnd_ == kTRUE ) {
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
signalEvents -= (*iter)->value();
}
}
signalEvents_->value(signalEvents);
}
void LauSimpleFitModel::cacheInputFitVars()
{
// Fill the internal data trees of the signal and backgrond models.
LauFitDataTree* inputFitData = this->fitData();
// First the Dalitz plot variables (m_ij^2)
if (this->useDP() == kTRUE) {
// need to append SCF smearing bins before caching DP amplitudes
if ( scfMap_ != 0 ) {
this->appendBinCentres( inputFitData );
}
sigDPModel_->fillDataTree(*inputFitData);
if (usingBkgnd_ == kTRUE) {
for (LauBkgndDPModelList::iterator iter = bkgndDPModels_.begin(); iter != bkgndDPModels_.end(); ++iter) {
(*iter)->fillDataTree(*inputFitData);
}
}
}
// ...and then the extra PDFs
this->cacheInfo(signalPdfs_, *inputFitData);
this->cacheInfo(scfPdfs_, *inputFitData);
for (LauBkgndPdfsList::iterator iter = bkgndPdfs_.begin(); iter != bkgndPdfs_.end(); ++iter) {
this->cacheInfo((*iter), *inputFitData);
}
// and finally the SCF fractions and jacobians
if ( useSCF_ && useSCFHist_ ) {
if ( !inputFitData->haveBranch( "m13Sq" ) || !inputFitData->haveBranch( "m23Sq" ) ) {
std::cerr << "ERROR in LauSimpleFitModel::cacheInputFitVars : Input data does not contain DP branches and so can't cache the SCF fraction." << std::endl;
gSystem->Exit(EXIT_FAILURE);
}
UInt_t nEvents = inputFitData->nEvents();
recoSCFFracs_.clear();
recoSCFFracs_.reserve( nEvents );
if ( kinematics_->squareDP() ) {
recoJacobians_.clear();
recoJacobians_.reserve( nEvents );
}
for (UInt_t iEvt = 0; iEvt < nEvents; iEvt++) {
const LauFitData& dataValues = inputFitData->getData(iEvt);
LauFitData::const_iterator m13_iter = dataValues.find("m13Sq");
LauFitData::const_iterator m23_iter = dataValues.find("m23Sq");
kinematics_->updateKinematics( m13_iter->second, m23_iter->second );
Double_t scfFrac = scfFracHist_->calcEfficiency( kinematics_ );
recoSCFFracs_.push_back( scfFrac );
if ( kinematics_->squareDP() ) {
recoJacobians_.push_back( kinematics_->calcSqDPJacobian() );
}
}
}
}
void LauSimpleFitModel::appendBinCentres( LauFitDataTree* inputData )
{
// We'll be caching the DP amplitudes and efficiencies of the centres of the true bins.
// To do so, we attach some fake points at the end of inputData, the number of the entry
// minus the total number of events corresponding to the number of the histogram for that
// given true bin in the LauScfMap object. (What this means is that when Laura is provided with
// the LauScfMap object by the user, it's the latter who has to make sure that it contains the
// right number of histograms and in exactly the right order!)
// Get the x and y co-ordinates of the bin centres
std::vector<Double_t> binCentresXCoords;
std::vector<Double_t> binCentresYCoords;
scfMap_->listBinCentres(binCentresXCoords, binCentresYCoords);
// The SCF histograms could be in square Dalitz plot histograms.
// The dynamics takes normal Dalitz plot coords, so we might have to convert them back.
Bool_t sqDP = kinematics_->squareDP();
UInt_t nBins = binCentresXCoords.size();
fakeSCFFracs_.clear();
fakeSCFFracs_.reserve( nBins );
if ( sqDP ) {
fakeJacobians_.clear();
fakeJacobians_.reserve( nBins );
}
for (UInt_t iBin = 0; iBin < nBins; ++iBin) {
if ( sqDP ) {
kinematics_->updateSqDPKinematics(binCentresXCoords[iBin],binCentresYCoords[iBin]);
binCentresXCoords[iBin] = kinematics_->getm13Sq();
binCentresYCoords[iBin] = kinematics_->getm23Sq();
fakeJacobians_.push_back( kinematics_->calcSqDPJacobian() );
} else {
kinematics_->updateKinematics(binCentresXCoords[iBin],binCentresYCoords[iBin]);
}
fakeSCFFracs_.push_back( scfFracHist_->calcEfficiency( kinematics_ ) );
}
// Set up inputFitVars_ object to hold the fake events
inputData->appendFakePoints(binCentresXCoords,binCentresYCoords);
}
Double_t LauSimpleFitModel::getTotEvtLikelihood(UInt_t iEvt)
{
// Get the DP likelihood for signal and backgrounds
this->getEvtDPLikelihood(iEvt);
// Get the combined extra PDFs likelihood for signal and backgrounds
this->getEvtExtraLikelihoods(iEvt);
// If appropriate, combine the TM and SCF likelihoods
Double_t sigLike = sigDPLike_ * sigExtraLike_;
if ( useSCF_ ) {
Double_t scfFrac(0.0);
if (useSCFHist_) {
scfFrac = recoSCFFracs_[iEvt];
} else {
scfFrac = scfFrac_.unblindValue();
}
sigLike *= (1.0 - scfFrac);
if ( (scfMap_ != 0) && (this->useDP() == kTRUE) ) {
// if we're smearing the SCF DP PDF then the SCF frac
// is already included in the SCF DP likelihood
sigLike += (scfDPLike_ * scfExtraLike_);
} else {
sigLike += (scfFrac * scfDPLike_ * scfExtraLike_);
}
}
// Construct the total event likelihood
Double_t likelihood = signalEvents_->unblindValue() * sigLike;
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
likelihood += (bkgndEvents_[bkgndID]->unblindValue() * bkgndDPLike_[bkgndID] * bkgndExtraLike_[bkgndID]);
}
return likelihood;
}
Double_t LauSimpleFitModel::getEventSum() const
{
Double_t eventSum(0.0);
eventSum += signalEvents_->unblindValue();
for (LauBkgndYieldList::const_iterator iter = bkgndEvents_.begin(); iter != bkgndEvents_.end(); ++iter) {
eventSum += (*iter)->unblindValue();
}
return eventSum;
}
void LauSimpleFitModel::getEvtDPLikelihood(UInt_t iEvt)
{
// Function to return the signal and background likelihoods for the
// Dalitz plot for the given event evtNo.
if (this->useDP() == kTRUE) {
sigDPModel_->calcLikelihoodInfo(iEvt);
sigDPLike_ = sigDPModel_->getEvtLikelihood();
if ( useSCF_ == kTRUE ) {
if ( scfMap_ == 0 ) {
// we're not smearing the SCF DP position
// so the likelihood is the same as the TM
scfDPLike_ = sigDPLike_;
} else {
// calculate the smeared SCF DP likelihood
scfDPLike_ = this->getEvtSCFDPLikelihood(iEvt);
}
}
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = bkgndDPModels_[bkgndID]->getLikelihood(iEvt);
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
} else {
// There's always going to be a term in the likelihood for the
// signal, so we'd better not zero it.
sigDPLike_ = 1.0;
scfDPLike_ = 1.0;
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_ == kTRUE) {
bkgndDPLike_[bkgndID] = 1.0;
} else {
bkgndDPLike_[bkgndID] = 0.0;
}
}
}
}
Double_t LauSimpleFitModel::getEvtSCFDPLikelihood(UInt_t iEvt)
{
Double_t scfDPLike(0.0);
Double_t recoJacobian(1.0);
Double_t xCoord(0.0);
Double_t yCoord(0.0);
Bool_t squareDP = kinematics_->squareDP();
if ( squareDP ) {
xCoord = sigDPModel_->getEvtmPrime();
yCoord = sigDPModel_->getEvtthPrime();
recoJacobian = recoJacobians_[iEvt];
} else {
xCoord = sigDPModel_->getEvtm13Sq();
yCoord = sigDPModel_->getEvtm23Sq();
}
// Find the bin that our reco event falls in
Int_t recoBin = scfMap_->binNumber( xCoord, yCoord );
// Find out which true Bins contribute to the given reco bin
const std::vector<Int_t>* trueBins = scfMap_->trueBins(recoBin);
Int_t nDataEvents = this->eventsPerExpt();
// Loop over the true bins
for (std::vector<Int_t>::const_iterator iter = trueBins->begin(); iter != trueBins->end(); ++iter)
{
Int_t trueBin = (*iter);
// prob of a true event in the given true bin migrating to the reco bin
Double_t pRecoGivenTrue = scfMap_->prob( recoBin, trueBin );
// We've cached the DP amplitudes and the efficiency for the
// true bin centres, just after the data points
sigDPModel_->calcLikelihoodInfo( nDataEvents + trueBin );
Double_t pTrue = sigDPModel_->getEvtLikelihood();
// Get the cached SCF fraction (and jacobian if we're using the square DP)
Double_t scfFraction = fakeSCFFracs_[ trueBin ];
Double_t jacobian(1.0);
if ( squareDP ) {
jacobian = fakeJacobians_[ trueBin ];
}
scfDPLike += pTrue * jacobian * scfFraction * pRecoGivenTrue;
}
// Divide by the reco jacobian
scfDPLike /= recoJacobian;
return scfDPLike;
}
void LauSimpleFitModel::getEvtExtraLikelihoods(UInt_t iEvt)
{
// Function to return the signal and background likelihoods for the
// extra variables for the given event evtNo.
sigExtraLike_ = 1.0;
for (LauPdfList::iterator iter = signalPdfs_.begin(); iter != signalPdfs_.end(); ++iter) {
(*iter)->calcLikelihoodInfo(iEvt);
sigExtraLike_ *= (*iter)->getLikelihood();
}
if (useSCF_) {
scfExtraLike_ = 1.0;
for (LauPdfList::iterator iter = scfPdfs_.begin(); iter != scfPdfs_.end(); ++iter) {
(*iter)->calcLikelihoodInfo(iEvt);
scfExtraLike_ *= (*iter)->getLikelihood();
}
}
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t bkgndID(0); bkgndID < nBkgnds; ++bkgndID ) {
if (usingBkgnd_) {
bkgndExtraLike_[bkgndID] = 1.0;
LauPdfList& pdfList = bkgndPdfs_[bkgndID];
for (LauPdfList::iterator pdf_iter = pdfList.begin(); pdf_iter != pdfList.end(); ++pdf_iter) {
(*pdf_iter)->calcLikelihoodInfo(iEvt);
bkgndExtraLike_[bkgndID] *= (*pdf_iter)->getLikelihood();
}
} else {
bkgndExtraLike_[bkgndID] = 0.0;
}
}
}
void LauSimpleFitModel::updateCoeffs()
{
coeffs_.clear();
coeffs_.reserve(nSigComp_);
for (UInt_t i = 0; i < nSigComp_; i++) {
coeffs_.push_back(coeffPars_[i]->particleCoeff());
}
}
void LauSimpleFitModel::setupSPlotNtupleBranches()
{
// add branches for storing the experiment number and the number of
// the event within the current experiment
this->addSPlotNtupleIntegerBranch("iExpt");
this->addSPlotNtupleIntegerBranch("iEvtWithinExpt");
// Store the efficiency of the event (for inclusive BF calculations).
if (this->storeDPEff()) {
this->addSPlotNtupleDoubleBranch("efficiency");
if ( sigDPModel_->usingScfModel() ) {
this->addSPlotNtupleDoubleBranch("scffraction");
}
}
// Store the total event likelihood for each species.
if (useSCF_) {
this->addSPlotNtupleDoubleBranch("sigTMTotalLike");
this->addSPlotNtupleDoubleBranch("sigSCFTotalLike");
this->addSPlotNtupleDoubleBranch("sigSCFFrac");
} else {
this->addSPlotNtupleDoubleBranch("sigTotalLike");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name += "TotalLike";
this->addSPlotNtupleDoubleBranch(name);
}
}
// Store the DP likelihoods
if (this->useDP()) {
if (useSCF_) {
this->addSPlotNtupleDoubleBranch("sigTMDPLike");
this->addSPlotNtupleDoubleBranch("sigSCFDPLike");
} else {
this->addSPlotNtupleDoubleBranch("sigDPLike");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name( this->bkgndClassName(iBkgnd) );
name += "DPLike";
this->addSPlotNtupleDoubleBranch(name);
}
}
}
// Store the likelihoods for each extra PDF
if (useSCF_) {
this->addSPlotNtupleBranches(&signalPdfs_, "sigTM");
this->addSPlotNtupleBranches(&scfPdfs_, "sigSCF");
} else {
this->addSPlotNtupleBranches(&signalPdfs_, "sig");
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauPdfList* pdfList = &(bkgndPdfs_[iBkgnd]);
this->addSPlotNtupleBranches(pdfList, bkgndClass);
}
}
}
void LauSimpleFitModel::addSPlotNtupleBranches(const LauPdfList* extraPdfs, const TString& prefix)
{
if (extraPdfs) {
// Loop through each of the PDFs
for (LauPdfList::const_iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
// Count the number of input variables that are not
// DP variables (used in the case where there is DP
// dependence for e.g. MVA)
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 1 ) {
// If the PDF only has one variable then
// simply add one branch for that variable
TString varName = (*pdf_iter)->varName();
TString name(prefix);
name += varName;
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
} else if ( nVars == 2 ) {
// If the PDF has two variables then we
// need a branch for them both together and
// branches for each
TString allVars("");
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
allVars += (*var_iter);
TString name(prefix);
name += (*var_iter);
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
}
TString name(prefix);
name += allVars;
name += "Like";
this->addSPlotNtupleDoubleBranch(name);
} else {
std::cerr << "WARNING in LauSimpleFitModel::addSPlotNtupleBranches : Can't yet deal with 3D PDFs." << std::endl;
}
}
}
}
Double_t LauSimpleFitModel::setSPlotNtupleBranchValues(LauPdfList* extraPdfs, const TString& prefix, UInt_t iEvt)
{
// Store the PDF value for each variable in the list
Double_t totalLike(1.0);
Double_t extraLike(0.0);
if (extraPdfs) {
for (LauPdfList::iterator pdf_iter = extraPdfs->begin(); pdf_iter != extraPdfs->end(); ++pdf_iter) {
// calculate the likelihood for this event
(*pdf_iter)->calcLikelihoodInfo(iEvt);
extraLike = (*pdf_iter)->getLikelihood();
totalLike *= extraLike;
// Count the number of input variables that are not
// DP variables (used in the case where there is DP
// dependence for e.g. MVA)
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 1 ) {
// If the PDF only has one variable then
// simply store the value for that variable
TString varName = (*pdf_iter)->varName();
TString name(prefix);
name += varName;
name += "Like";
this->setSPlotNtupleDoubleBranchValue(name, extraLike);
} else if ( nVars == 2 ) {
// If the PDF has two variables then we
// store the value for them both together
// and for each on their own
TString allVars("");
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
allVars += (*var_iter);
TString name(prefix);
name += (*var_iter);
name += "Like";
Double_t indivLike = (*pdf_iter)->getLikelihood( (*var_iter) );
this->setSPlotNtupleDoubleBranchValue(name, indivLike);
}
TString name(prefix);
name += allVars;
name += "Like";
this->setSPlotNtupleDoubleBranchValue(name, extraLike);
} else {
std::cerr << "WARNING in LauSimpleFitModel::setSPlotNtupleBranchValues : Can't yet deal with 3D PDFs." << std::endl;
}
}
}
return totalLike;
}
LauSPlot::NameSet LauSimpleFitModel::variableNames() const
{
LauSPlot::NameSet nameSet;
if (this->useDP()) {
nameSet.insert("DP");
}
// Loop through all the signal PDFs
for (LauPdfList::const_iterator pdf_iter = signalPdfs_.begin(); pdf_iter != signalPdfs_.end(); ++pdf_iter) {
// Loop over the variables involved in each PDF
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
// If they are not DP coordinates then add them
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
nameSet.insert( (*var_iter) );
}
}
}
return nameSet;
}
LauSPlot::NumbMap LauSimpleFitModel::freeSpeciesNames() const
{
LauSPlot::NumbMap numbMap;
if (!signalEvents_->fixed() && this->doEMLFit()) {
numbMap["sig"] = signalEvents_->genValue();
}
if ( usingBkgnd_ ) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauAbsRValue* par = bkgndEvents_[iBkgnd];
if (!par->fixed()) {
numbMap[bkgndClass] = par->genValue();
if ( ! par->isLValue() ) {
std::cerr << "WARNING in LauSimpleFitModel::freeSpeciesNames : \"" << par->name() << "\" is a LauFormulaPar, which implies it is perhaps not entirely free to float in the fit, so the sWeight calculation may not be reliable" << std::endl;
}
}
}
}
return numbMap;
}
LauSPlot::NumbMap LauSimpleFitModel::fixdSpeciesNames() const
{
LauSPlot::NumbMap numbMap;
if (signalEvents_->fixed() && this->doEMLFit()) {
numbMap["sig"] = signalEvents_->genValue();
}
if ( usingBkgnd_ ) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauAbsRValue* par = bkgndEvents_[iBkgnd];
if (par->fixed()) {
numbMap[bkgndClass] = par->genValue();
}
}
}
return numbMap;
}
LauSPlot::TwoDMap LauSimpleFitModel::twodimPDFs() const
{
LauSPlot::TwoDMap twodimMap;
for (LauPdfList::const_iterator pdf_iter = signalPdfs_.begin(); pdf_iter != signalPdfs_.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
if (useSCF_) {
twodimMap.insert( std::make_pair( "sigTM", std::make_pair( varNames[0], varNames[1] ) ) );
} else {
twodimMap.insert( std::make_pair( "sig", std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
if ( useSCF_ ) {
for (LauPdfList::const_iterator pdf_iter = scfPdfs_.begin(); pdf_iter != scfPdfs_.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
twodimMap.insert( std::make_pair( "sigSCF", std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
const LauPdfList& pdfList = bkgndPdfs_[iBkgnd];
for (LauPdfList::const_iterator pdf_iter = pdfList.begin(); pdf_iter != pdfList.end(); ++pdf_iter) {
// Count the number of input variables that are not DP variables
UInt_t nVars(0);
std::vector<TString> varNames = (*pdf_iter)->varNames();
for ( std::vector<TString>::const_iterator var_iter = varNames.begin(); var_iter != varNames.end(); ++var_iter ) {
if ( (*var_iter) != "m13Sq" && (*var_iter) != "m23Sq" ) {
++nVars;
}
}
if ( nVars == 2 ) {
twodimMap.insert( std::make_pair( bkgndClass, std::make_pair( varNames[0], varNames[1] ) ) );
}
}
}
}
return twodimMap;
}
void LauSimpleFitModel::storePerEvtLlhds()
{
std::cout << "INFO in LauSimpleFitModel::storePerEvtLlhds : Storing per-event likelihood values..." << std::endl;
// if we've not been using the DP model then we need to cache all
// the info here so that we can get the efficiency from it
LauFitDataTree* inputFitData = this->fitData();
if (!this->useDP() && this->storeDPEff()) {
sigDPModel_->initialise(coeffs_);
sigDPModel_->fillDataTree(*inputFitData);
}
UInt_t evtsPerExpt(this->eventsPerExpt());
for (UInt_t iEvt = 0; iEvt < evtsPerExpt; ++iEvt) {
this->setSPlotNtupleIntegerBranchValue("iExpt",this->iExpt());
this->setSPlotNtupleIntegerBranchValue("iEvtWithinExpt",iEvt);
// the DP information
this->getEvtDPLikelihood(iEvt);
if (this->storeDPEff()) {
if (!this->useDP()) {
sigDPModel_->calcLikelihoodInfo(iEvt);
}
this->setSPlotNtupleDoubleBranchValue("efficiency",sigDPModel_->getEvtEff());
if ( sigDPModel_->usingScfModel() ) {
this->setSPlotNtupleDoubleBranchValue("scffraction",sigDPModel_->getEvtScfFraction());
}
}
if (this->useDP()) {
sigTotalLike_ = sigDPLike_;
if (useSCF_) {
scfTotalLike_ = scfDPLike_;
this->setSPlotNtupleDoubleBranchValue("sigTMDPLike",sigDPLike_);
this->setSPlotNtupleDoubleBranchValue("sigSCFDPLike",scfDPLike_);
} else {
this->setSPlotNtupleDoubleBranchValue("sigDPLike",sigDPLike_);
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name = this->bkgndClassName(iBkgnd);
name += "DPLike";
this->setSPlotNtupleDoubleBranchValue(name,bkgndDPLike_[iBkgnd]);
}
}
} else {
sigTotalLike_ = 1.0;
if (useSCF_) {
scfTotalLike_ = 1.0;
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
bkgndTotalLike_[iBkgnd] = 1.0;
}
}
}
// the signal PDF values
if ( useSCF_ ) {
sigTotalLike_ *= this->setSPlotNtupleBranchValues(&signalPdfs_, "sigTM", iEvt);
scfTotalLike_ *= this->setSPlotNtupleBranchValues(&scfPdfs_, "sigSCF", iEvt);
} else {
sigTotalLike_ *= this->setSPlotNtupleBranchValues(&signalPdfs_, "sig", iEvt);
}
// the background PDF values
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
const TString& bkgndClass = this->bkgndClassName(iBkgnd);
LauPdfList& pdfs = bkgndPdfs_[iBkgnd];
bkgndTotalLike_[iBkgnd] *= this->setSPlotNtupleBranchValues(&(pdfs), bkgndClass, iEvt);
}
}
// the total likelihoods
if (useSCF_) {
Double_t scfFrac(0.0);
if ( useSCFHist_ ) {
scfFrac = recoSCFFracs_[iEvt];
} else {
scfFrac = scfFrac_.unblindValue();
}
this->setSPlotNtupleDoubleBranchValue("sigSCFFrac",scfFrac);
sigTotalLike_ *= ( 1.0 - scfFrac );
if ( scfMap_ == 0 ) {
scfTotalLike_ *= scfFrac;
}
this->setSPlotNtupleDoubleBranchValue("sigTMTotalLike",sigTotalLike_);
this->setSPlotNtupleDoubleBranchValue("sigSCFTotalLike",scfTotalLike_);
} else {
this->setSPlotNtupleDoubleBranchValue("sigTotalLike",sigTotalLike_);
}
if (usingBkgnd_) {
const UInt_t nBkgnds = this->nBkgndClasses();
for ( UInt_t iBkgnd(0); iBkgnd < nBkgnds; ++iBkgnd ) {
TString name = this->bkgndClassName(iBkgnd);
name += "TotalLike";
this->setSPlotNtupleDoubleBranchValue(name,bkgndTotalLike_[iBkgnd]);
}
}
// fill the tree
this->fillSPlotNtupleBranches();
}
std::cout << "INFO in LauSimpleFitModel::storePerEvtLlhds : Finished storing per-event likelihood values." << std::endl;
}
void LauSimpleFitModel::embedSignal(const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment,
Bool_t useReweighting)
{
if (signalTree_) {
std::cerr << "ERROR in LauSimpleFitModel::embedSignal : Already embedding signal from a file." << std::endl;
return;
}
signalTree_ = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = signalTree_->findBranches();
if (!dataOK) {
delete signalTree_; signalTree_ = 0;
std::cerr << "ERROR in LauSimpleFitModel::embedSignal : Problem creating data tree for embedding." << std::endl;
return;
}
reuseSignal_ = reuseEventsWithinEnsemble;
useReweighting_ = useReweighting;
if (this->enableEmbedding() == kFALSE) {
this->enableEmbedding(kTRUE);
}
}
void LauSimpleFitModel::embedBkgnd(const TString& bkgndClass, const TString& fileName, const TString& treeName,
Bool_t reuseEventsWithinEnsemble, Bool_t reuseEventsWithinExperiment)
{
if ( ! this->validBkgndClass( bkgndClass ) ) {
std::cerr << "ERROR in LauSimpleFitModel::embedBkgnd : Invalid background class \"" << bkgndClass << "\"." << std::endl;
std::cerr << " : Background class names must be provided in \"setBkgndClassNames\" before any other background-related actions can be performed." << std::endl;
return;
}
UInt_t bkgndID = this->bkgndClassID( bkgndClass );
if (bkgndTree_[bkgndID]) {
std::cerr << "ERROR in LauSimpleFitModel::embedBkgnd : Already embedding background from a file." << std::endl;
return;
}
bkgndTree_[bkgndID] = new LauEmbeddedData(fileName,treeName,reuseEventsWithinExperiment);
Bool_t dataOK = bkgndTree_[bkgndID]->findBranches();
if (!dataOK) {
delete bkgndTree_[bkgndID]; bkgndTree_[bkgndID] = 0;
std::cerr << "ERROR in LauSimpleFitModel::embedBkgnd : Problem creating data tree for embedding." << std::endl;
return;
}
reuseBkgnd_[bkgndID] = reuseEventsWithinEnsemble;
if (this->enableEmbedding() == kFALSE) {
this->enableEmbedding(kTRUE);
}
}
void LauSimpleFitModel::weightEvents( const TString& dataFileName, const TString& dataTreeName )
{
// Routine to provide weights for events that are uniformly distributed
// in the DP (or square DP) so as to reproduce the given DP model
if ( kinematics_->squareDP() ) {
std::cout << "INFO in LauSimpleFitModel::weightEvents : will create weights assuming events were generated flat in the square DP" << std::endl;
} else {
std::cout << "INFO in LauSimpleFitModel::weightEvents : will create weights assuming events were generated flat in phase space" << std::endl;
}
// This reads in the given dataFile and creates an input
// fit data tree that stores them for all events and experiments.
Bool_t dataOK = this->verifyFitData(dataFileName,dataTreeName);
if (!dataOK) {
std::cerr << "ERROR in LauSimpleFitModel::weightEvents : Problem caching the data." << std::endl;
return;
}
LauFitDataTree* inputFitData = this->fitData();
if ( ! inputFitData->haveBranch( "m13Sq_MC" ) || ! inputFitData->haveBranch( "m23Sq_MC" ) ) {
std::cerr << "WARNING in LauSimpleFitModel::weightEvents : Cannot find MC truth DP coordinate branches in supplied data, aborting." << std::endl;
return;
}
// Create the ntuple to hold the DP weights
TString weightsFileName( dataFileName );
Ssiz_t index = weightsFileName.Last('.');
weightsFileName.Insert( index, "_DPweights" );
LauGenNtuple * weightsTuple = new LauGenNtuple( weightsFileName, dataTreeName );
weightsTuple->addIntegerBranch("iExpt");
weightsTuple->addIntegerBranch("iEvtWithinExpt");
weightsTuple->addDoubleBranch("dpModelWeight");
UInt_t nExpmt = this->nExpt();
UInt_t firstExpmt = this->firstExpt();
for (UInt_t iExpmt = firstExpmt; iExpmt < (firstExpmt+nExpmt); ++iExpmt) {
inputFitData->readExperimentData(iExpmt);
UInt_t nEvents = inputFitData->nEvents();
if (nEvents < 1) {
std::cerr << "WARNING in LauSimpleFitModel::weightEvents : Zero events in experiment " << iExpmt << ", skipping..." << std::endl;
continue;
}
weightsTuple->setIntegerBranchValue( "iExpt", iExpmt );
// Calculate and store the weights for the events in this experiment
for ( UInt_t iEvent(0); iEvent < nEvents; ++iEvent ) {
weightsTuple->setIntegerBranchValue( "iEvtWithinExpt", iEvent );
const LauFitData& evtData = inputFitData->getData( iEvent );
Double_t m13Sq_MC = evtData.find("m13Sq_MC")->second;
Double_t m23Sq_MC = evtData.find("m23Sq_MC")->second;
Double_t dpModelWeight(0.0);
if ( kinematics_->withinDPLimits( m13Sq_MC, m23Sq_MC ) ) {
kinematics_->updateKinematics( m13Sq_MC, m23Sq_MC );
dpModelWeight = sigDPModel_->getEventWeight();
if ( kinematics_->squareDP() ) {
dpModelWeight *= kinematics_->calcSqDPJacobian();
}
dpModelWeight /= sigDPModel_->getDPNorm();
}
weightsTuple->setDoubleBranchValue( "dpModelWeight", dpModelWeight );
weightsTuple->fillBranches();
}
}
weightsTuple->buildIndex( "iExpt", "iEvtWithinExpt" );
weightsTuple->addFriendTree(dataFileName, dataTreeName);
weightsTuple->writeOutGenResults();
delete weightsTuple;
}
void LauSimpleFitModel::savePDFPlots(const TString& label)
{
savePDFPlotsWave(label, 0);
savePDFPlotsWave(label, 1);
savePDFPlotsWave(label, 2);
std::cout << "LauCPFitModel::plot" << std::endl;
// ((LauIsobarDynamics*)sigDPModel_)->plot();
//Double_t minm13 = sigDPModel_->getKinematics()->getm13Min();
Double_t minm13 = 0.0;
Double_t maxm13 = sigDPModel_->getKinematics()->getm13Max();
//Double_t minm23 = sigDPModel_->getKinematics()->getm23Min();
Double_t minm23 = 0.0;
Double_t maxm23 = sigDPModel_->getKinematics()->getm23Max();
Double_t mins13 = minm13*minm13;
Double_t maxs13 = maxm13*maxm13;
Double_t mins23 = minm23*minm23;
Double_t maxs23 = maxm23*maxm23;
Double_t s13, s23, chPdf;
Int_t n13=200.00, n23=200.00;
Double_t delta13, delta23;
delta13 = (maxs13 - mins13)/n13;
delta23 = (maxs23 - mins23)/n23;
UInt_t nAmp = sigDPModel_->getnCohAmp();
for (UInt_t resID = 0; resID <= nAmp; ++resID)
{
TGraph2D *dt = new TGraph2D();
TString resName = "TotalAmp";
if (resID != nAmp){
TString tStrResID = Form("%d", resID);
const LauIsobarDynamics* model = sigDPModel_;
const LauAbsResonance* resonance = model->getResonance(resID);
resName = resonance->getResonanceName();
std::cout << "resName = " << resName << std::endl;
}
resName.ReplaceAll("(", "");
resName.ReplaceAll(")", "");
resName.ReplaceAll("*", "Star");
TCanvas *c = new TCanvas("c"+resName+label,resName+" ("+label+")",0,0,600,400);
dt->SetName(resName+label);
dt->SetTitle(resName+" ("+label+")");
Int_t count=0;
for (Int_t i=0; i<n13; i++) {
s13 = mins13 + i*delta13;
for (Int_t j=0; j<n23; j++) {
s23 = mins23 + j*delta23;
if (sigDPModel_->getKinematics()->withinDPLimits2(s23, s13))
{
//if (s13 > 4) continue;
sigDPModel_->calcLikelihoodInfo(s13, s23);
LauComplex chAmp = sigDPModel_->getEvtDPAmp();
if (resID != nAmp){
chAmp = sigDPModel_->getFullAmplitude(resID);
}
chPdf = chAmp.abs2();
//if ((z > 0.04)||(z < -0.03)) continue;
//z = TMath::Log(z);
if (sigDPModel_->getDaughters()->gotSymmetricalDP()){
Double_t sLow = s13;
Double_t sHigh = s23;
if (sLow>sHigh) {
continue;
//sLow = s23;
//sHigh = s13;
}
//if (sLow > 3.5) continue;
//if (i<10) std::cout << "SymmetricalDP" << std::endl;
//if (z>0.02) z = 0.02;
//if (z<-0.02) z = -0.02;
dt->SetPoint(count,sHigh,sLow,chPdf);
count++;
}
else {
dt->SetPoint(count,s13,s23,chPdf);
count++;
}
}
}
}
gStyle->SetPalette(1);
dt->GetXaxis()->SetTitle("m_{K#pi}(low)");
dt->GetYaxis()->SetTitle("m_{K#pi}(high)");
dt->Draw("SURF1");
dt->GetXaxis()->SetTitle("m_{K#pi}(low)");
dt->GetYaxis()->SetTitle("m_{K#pi}(high)");
c->SaveAs("plot_2D_"+resName + "_"+label+".C");
}
}
void LauSimpleFitModel::savePDFPlotsWave(const TString& label, const Int_t& spin)
{
std::cout << "label = "<< label << ", spin = "<< spin << std::endl;
TString tStrResID = "S_Wave";
if (spin == 1) tStrResID = "P_Wave";
if (spin == 2) tStrResID = "D_Wave";
std::cout << "LauSimpleFitModel::savePDFPlotsWave: "<< tStrResID << std::endl;
TCanvas *c = new TCanvas("c"+tStrResID+label,tStrResID+" ("+label+")",0,0,600,400);
Double_t minm13 = 0.0;
Double_t maxm13 = sigDPModel_->getKinematics()->getm13Max();
Double_t minm23 = 0.0;
Double_t maxm23 = sigDPModel_->getKinematics()->getm23Max();
Double_t mins13 = minm13*minm13;
Double_t maxs13 = maxm13*maxm13;
Double_t mins23 = minm23*minm23;
Double_t maxs23 = maxm23*maxm23;
Double_t s13, s23, chPdf;
TGraph2D *dt = new TGraph2D();
dt->SetName(tStrResID+label);
dt->SetTitle(tStrResID+" ("+label+")");
Int_t n13=200.00, n23=200.00;
Double_t delta13, delta23;
delta13 = (maxs13 - mins13)/n13;
delta23 = (maxs23 - mins23)/n23;
UInt_t nAmp = sigDPModel_->getnCohAmp();
Int_t count=0;
for (Int_t i=0; i<n13; i++) {
s13 = mins13 + i*delta13;
for (Int_t j=0; j<n23; j++) {
s23 = mins23 + j*delta23;
if (sigDPModel_->getKinematics()->withinDPLimits2(s23, s13))
{
//if (s13 > 4) continue;
LauComplex chAmp(0,0);
Bool_t noWaveRes = kTRUE;
sigDPModel_->calcLikelihoodInfo(s13, s23);
for (UInt_t resID = 0; resID < nAmp; ++resID)
{
const LauIsobarDynamics* model = sigDPModel_;
const LauAbsResonance* resonance = model->getResonance(resID);
Int_t spin_res = resonance->getSpin();
if (spin != spin_res) continue;
noWaveRes = kFALSE;
chAmp += sigDPModel_->getFullAmplitude(resID);
}
if (noWaveRes) return;
chPdf = chAmp.abs2();
if (sigDPModel_->getDaughters()->gotSymmetricalDP()){
Double_t sLow = s13;
Double_t sHigh = s23;
if (sLow>sHigh) {
continue;
//sLow = s23;
//sHigh = s13;
}
dt->SetPoint(count,sHigh,sLow,chPdf);
count++;
}
else {
dt->SetPoint(count,s13,s23,chPdf);
count++;
}
}
}
}
gStyle->SetPalette(1);
dt->GetXaxis()->SetTitle("pipi");
dt->GetYaxis()->SetTitle("pipi");
dt->Draw("SURF1");
dt->GetXaxis()->SetTitle("pipi");
dt->GetYaxis()->SetTitle("pipi");
c->SaveAs("plot_2D_"+tStrResID+"_"+label+".C");
}

File Metadata

Mime Type
text/x-diff
Expires
Thu, Apr 24, 6:37 AM (1 d, 21 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4882864
Default Alt Text
(200 KB)

Event Timeline