Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878267
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
25 KB
Subscribers
None
View Options
diff --git a/MatrixElement/Lepton/MEee2gZ2ll.cc b/MatrixElement/Lepton/MEee2gZ2ll.cc
--- a/MatrixElement/Lepton/MEee2gZ2ll.cc
+++ b/MatrixElement/Lepton/MEee2gZ2ll.cc
@@ -1,718 +1,718 @@
// -*- C++ -*-
//
// MEee2gZ2ll.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2019 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEee2gZ2ll class.
//
#include "MEee2gZ2ll.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/MatrixElement/Tree2toNDiagram.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "Herwig/MatrixElement/HardVertex.h"
#include "ThePEG/PDF/PolarizedBeamParticleData.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include <numeric>
#include "Herwig/Shower/RealEmissionProcess.h"
using namespace Herwig;
void MEee2gZ2ll::getDiagrams() const {
// specific the diagrams
tcPDPtr ep = getParticleData(ParticleID::eplus);
tcPDPtr em = getParticleData(ParticleID::eminus);
// setup the processes
for( int i =11;i<=16;++i) {
if(allowed_==0 || (allowed_==1 && i%2==1) || (allowed_==2&&i==11)
|| (allowed_==3&&i==13) || (allowed_==4&&i==15)) {
tcPDPtr lm = getParticleData(i);
tcPDPtr lp = lm->CC();
add(new_ptr((Tree2toNDiagram(2), em, ep, 1, gamma_, 3, lm, 3, lp, -1)));
add(new_ptr((Tree2toNDiagram(2), em, ep, 1, Z0_, 3, lm, 3, lp, -2)));
}
}
}
Energy2 MEee2gZ2ll::scale() const {
return sHat();
}
unsigned int MEee2gZ2ll::orderInAlphaS() const {
return 0;
}
unsigned int MEee2gZ2ll::orderInAlphaEW() const {
return 2;
}
Selector<MEBase::DiagramIndex>
MEee2gZ2ll::diagrams(const DiagramVector & diags) const {
double lastCont(0.5),lastBW(0.5);
if ( lastXCombPtr() ) {
lastCont = meInfo()[0];
lastBW = meInfo()[1];
}
Selector<DiagramIndex> sel;
for ( DiagramIndex i = 0; i < diags.size(); ++i ) {
if ( diags[i]->id() == -1 ) sel.insert(lastCont, i);
else if ( diags[i]->id() == -2 ) sel.insert(lastBW, i);
}
return sel;
}
Selector<const ColourLines *>
MEee2gZ2ll::colourGeometries(tcDiagPtr) const {
static ColourLines ctST(" ");
Selector<const ColourLines *> sel;
sel.insert(1.0, &ctST);
return sel;
}
void MEee2gZ2ll::persistentOutput(PersistentOStream & os) const {
os << allowed_ << FFZVertex_ << FFPVertex_ << gamma_ << Z0_
<< alphaQED_ << ounit(pTmin_,GeV) << preFactor_;
}
void MEee2gZ2ll::persistentInput(PersistentIStream & is, int) {
is >> allowed_ >> FFZVertex_ >> FFPVertex_ >> gamma_ >> Z0_
>> alphaQED_ >> iunit(pTmin_,GeV) >> preFactor_;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MEee2gZ2ll,HwMEBase>
describeMEee2gZ2ll("Herwig::MEee2gZ2ll", "HwMELepton.so");
void MEee2gZ2ll::Init() {
static ClassDocumentation<MEee2gZ2ll> documentation
("The MEee2gZ2ll class implements the matrix element for"
"e+e- to leptons via Z and photon exchange using helicity amplitude"
"techniques");
static Switch<MEee2gZ2ll,int> interfaceallowed
("Allowed",
"Allowed outgoing leptons",
&MEee2gZ2ll::allowed_, 0, false, false);
static SwitchOption interfaceallowedAll
(interfaceallowed,
"All",
"Allow all leptons as outgoing particles",
0);
static SwitchOption interfaceallowedCharged
(interfaceallowed,
"Charged",
"Only charged leptons as outgoing particles",
1);
static SwitchOption interfaceallowedElectron
(interfaceallowed,
"Electron",
"Only the electron and positron as outgoing leptons",
2);
static SwitchOption interfaceallowedMuon
(interfaceallowed,
"Muon",
"Only muons as outgoing particles",
3);
static SwitchOption interfaceallowedTau
(interfaceallowed,
"Tau",
"Only taus as outgoing particles",
4);
static Parameter<MEee2gZ2ll,Energy> interfacepTMin
("pTMin",
"Minimum pT for hard radiation",
&MEee2gZ2ll::pTmin_, GeV, 1.0*GeV, 0.001*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<MEee2gZ2ll,double> interfacePrefactor
("Prefactor",
"Prefactor for the overestimate of the emission probability",
&MEee2gZ2ll::preFactor_, 6.0, 1.0, 100.0,
false, false, Interface::limited);
static Reference<MEee2gZ2ll,ShowerAlpha> interfaceEMCoupling
("AlphaQED",
"Pointer to the object to calculate the EM coupling for the correction",
&MEee2gZ2ll::alphaQED_, false, false, true, false, false);
}
double MEee2gZ2ll::me2() const {
return loME(mePartonData(),rescaledMomenta(),true);
}
double MEee2gZ2ll::loME(const vector<cPDPtr> & partons,
const vector<Lorentz5Momentum> & momenta,
bool first) const {
vector<SpinorWaveFunction> fin,aout;
vector<SpinorBarWaveFunction> ain,fout;
SpinorWaveFunction ein (momenta[0],partons[0],incoming);
SpinorBarWaveFunction pin (momenta[1],partons[1],incoming);
SpinorBarWaveFunction ilmout(momenta[2],partons[2],outgoing);
SpinorWaveFunction ilpout(momenta[3],partons[3],outgoing);
for(unsigned int ix=0;ix<2;++ix) {
ein.reset(ix) ;fin.push_back( ein );
pin.reset(ix) ;ain.push_back( pin );
ilmout.reset(ix);fout.push_back(ilmout);
ilpout.reset(ix);aout.push_back(ilpout);
}
// compute the matrix element
double me,lastCont,lastBW;
HelicityME(fin,ain,fout,aout,me,lastCont,lastBW);
// save the components
if(first) {
DVector save;
save.push_back(lastCont);
save.push_back(lastBW);
meInfo(save);
}
// return the answer
return me;
}
ProductionMatrixElement MEee2gZ2ll::HelicityME(vector<SpinorWaveFunction> & fin,
vector<SpinorBarWaveFunction> & ain,
vector<SpinorBarWaveFunction> & fout,
vector<SpinorWaveFunction> & aout,
double & me,double & cont,
double & BW ) const {
// the particles should be in the order
// for the incoming
// 0 incoming fermion (u spinor)
// 1 incoming antifermion (vbar spinor)
// for the outgoing
// 0 outgoing fermion (ubar spinor)
// 1 outgoing antifermion (v spinor)
// me to be returned
ProductionMatrixElement output(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1Half,PDT::Spin1Half);
ProductionMatrixElement gamma (PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1Half,PDT::Spin1Half);
ProductionMatrixElement Zboson(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1Half,PDT::Spin1Half);
// // wavefunctions for the intermediate particles
VectorWaveFunction interZ,interG;
// temporary storage of the different diagrams
Complex diag1,diag2;
// sum over helicities to get the matrix element
unsigned int inhel1,inhel2,outhel1,outhel2;
double total[3]={0.,0.,0.};
for(inhel1=0;inhel1<2;++inhel1) {
for(inhel2=0;inhel2<2;++inhel2) {
// intermediate Z
interZ = FFZVertex_->evaluate(sHat(),1,Z0_,fin[inhel1],ain[inhel2]);
// intermediate photon
interG = FFPVertex_->evaluate(sHat(),1,gamma_,fin[inhel1],ain[inhel2]);
for(outhel1=0;outhel1<2;++outhel1) {
for(outhel2=0;outhel2<2;++outhel2) {
// first the Z exchange diagram
diag1 = FFZVertex_->evaluate(sHat(),aout[outhel2],fout[outhel1],
interZ);
// then the photon exchange diagram
diag2 = FFPVertex_->evaluate(sHat(),aout[outhel2],fout[outhel1],
interG);
// add up squares of individual terms
total[1] += norm(diag1);
Zboson(inhel1,inhel2,outhel1,outhel2) = diag1;
total[2] += norm(diag2);
gamma (inhel1,inhel2,outhel1,outhel2) = diag2;
// the full thing including interference
diag1 += diag2;
total[0] += norm(diag1);
output(inhel1,inhel2,outhel1,outhel2) = diag1;
}
}
}
}
// results
for(int ix=0;ix<3;++ix) total[ix] *= 0.25;
tcPolarizedBeamPDPtr beam[2] =
{dynamic_ptr_cast<tcPolarizedBeamPDPtr>(mePartonData()[0]),
dynamic_ptr_cast<tcPolarizedBeamPDPtr>(mePartonData()[1])};
if( beam[0] || beam[1] ) {
RhoDMatrix rho[2] = {beam[0] ? beam[0]->rhoMatrix() : RhoDMatrix(mePartonData()[0]->iSpin()),
beam[1] ? beam[1]->rhoMatrix() : RhoDMatrix(mePartonData()[1]->iSpin())};
total[0] = output.average(rho[0],rho[1]);
total[1] = Zboson.average(rho[0],rho[1]);
total[2] = gamma .average(rho[0],rho[1]);
}
cont = total[2];
BW = total[1];
me = total[0];
return output;
}
void MEee2gZ2ll::constructVertex(tSubProPtr sub) {
// extract the particles in the hard process
ParticleVector hard;
hard.push_back(sub->incoming().first);hard.push_back(sub->incoming().second);
hard.push_back(sub->outgoing()[0]);hard.push_back(sub->outgoing()[1]);
if(hard[0]->id()<hard[1]->id()) swap(hard[0],hard[1]);
if(hard[2]->id()<hard[3]->id()) swap(hard[2],hard[3]);
vector<SpinorWaveFunction> fin,aout;
vector<SpinorBarWaveFunction> ain,fout;
SpinorWaveFunction( fin ,hard[0],incoming,false,true);
SpinorBarWaveFunction(ain ,hard[1],incoming,false,true);
SpinorBarWaveFunction(fout,hard[2],outgoing,true ,true);
SpinorWaveFunction( aout,hard[3],outgoing,true ,true);
// calculate the matrix element
double me,cont,BW;
ProductionMatrixElement prodme=HelicityME(fin,ain,fout,aout,me,cont,BW);
// construct the vertex
HardVertexPtr hardvertex=new_ptr(HardVertex());
// set the matrix element for the vertex
hardvertex->ME(prodme);
// set the pointers and to and from the vertex
for(unsigned int ix=0;ix<4;++ix) {
tSpinPtr spin = hard[ix]->spinInfo();
if(ix<2) {
tcPolarizedBeamPDPtr beam =
dynamic_ptr_cast<tcPolarizedBeamPDPtr>(hard[ix]->dataPtr());
if(beam) spin->rhoMatrix() = beam->rhoMatrix();
}
spin->productionVertex(hardvertex);
}
}
void MEee2gZ2ll::doinit() {
HwMEBase::doinit();
// set the particle data objects
Z0_=getParticleData(ThePEG::ParticleID::Z0);
gamma_=getParticleData(ThePEG::ParticleID::gamma);
// cast the SM pointer to the Herwig SM pointer
tcHwSMPtr hwsm= dynamic_ptr_cast<tcHwSMPtr>(standardModel());
// do the initialisation
if(!hwsm) throw InitException() << "Wrong type of StandardModel object in "
<< "MEee2gZ2ll::doinit() the Herwig"
<< " version must be used"
<< Exception::runerror;
FFZVertex_ = hwsm->vertexFFZ();
FFPVertex_ = hwsm->vertexFFP();
}
void MEee2gZ2ll::rebind(const TranslationMap & trans) {
FFZVertex_ = trans.translate(FFZVertex_);
FFPVertex_ = trans.translate(FFPVertex_);
Z0_ = trans.translate(Z0_);
gamma_ = trans.translate(gamma_);
HwMEBase::rebind(trans);
}
IVector MEee2gZ2ll::getReferences() {
IVector ret = HwMEBase::getReferences();
ret.push_back(FFZVertex_);
ret.push_back(FFPVertex_);
ret.push_back(Z0_ );
ret.push_back(gamma_ );
return ret;
}
RealEmissionProcessPtr MEee2gZ2ll::generateHardest(RealEmissionProcessPtr born,
ShowerInteraction inter) {
// check if generating QCD radiation
if(inter!=ShowerInteraction::QED && inter!=ShowerInteraction::QEDQCD &&
inter!=ShowerInteraction::ALL)
return RealEmissionProcessPtr();
// generate the momenta for the hard emission
vector<Lorentz5Momentum> emission;
unsigned int iemit,ispect;
Energy pTveto = generateHard(born,emission,iemit,ispect,false);
// check if charged
if(!partons_[2]->charged()) return RealEmissionProcessPtr();
// maximum pT of emission
if(pTveto<=ZERO) {
born->pT()[ShowerInteraction::QED] = pTmin_;
return born;
}
else {
born->pT()[ShowerInteraction::QED] = pTveto;
}
born->interaction(ShowerInteraction::QED);
// get the quark and antiquark
ParticleVector qq;
for(unsigned int ix=0;ix<2;++ix) qq.push_back(born->bornOutgoing()[ix]);
bool order = qq[0]->id()>0;
if(!order) swap(qq[0],qq[1]);
// create the new quark, antiquark and gluon
PPtr newq = qq[0]->dataPtr()->produceParticle(emission[2]);
PPtr newa = qq[1]->dataPtr()->produceParticle(emission[3]);
PPtr newg = gamma_->produceParticle(emission[4]);
// create the output real emission process
for(unsigned int ix=0;ix<born->bornIncoming().size();++ix) {
born->incoming().push_back(born->bornIncoming()[ix]->dataPtr()->
produceParticle(born->bornIncoming()[ix]->momentum()));
}
if(order) {
born->outgoing().push_back(newq);
born->outgoing().push_back(newa);
}
else {
born->outgoing().push_back(newa);
born->outgoing().push_back(newq);
swap(iemit,ispect);
}
born->outgoing().push_back(newg);
// set emitter and spectator
born->emitter (iemit);
born->spectator(ispect);
born->emitted(4);
return born;
}
double MEee2gZ2ll::meRatio(vector<cPDPtr> partons,
vector<Lorentz5Momentum> momenta,
unsigned int iemitter, bool subtract) const {
Lorentz5Momentum q = momenta[2]+momenta[3]+momenta[4];
Energy2 Q2=q.m2();
Energy2 lambda = sqrt((Q2-sqr(momenta[2].mass()+momenta[3].mass()))*
(Q2-sqr(momenta[2].mass()-momenta[3].mass())));
InvEnergy2 D[2];
double lome[2];
for(unsigned int iemit=0;iemit<2;++iemit) {
unsigned int ispect = iemit==0 ? 1 : 0;
Energy2 pipj = momenta[4 ] * momenta[2+iemit ];
Energy2 pipk = momenta[4 ] * momenta[2+ispect];
Energy2 pjpk = momenta[2+iemit] * momenta[2+ispect];
double y = pipj/(pipj+pipk+pjpk);
double z = pipk/( pipk+pjpk);
Energy mij = sqrt(2.*pipj+sqr(momenta[2+iemit].mass()));
Energy2 lamB = sqrt((Q2-sqr(mij+momenta[2+ispect].mass()))*
(Q2-sqr(mij-momenta[2+ispect].mass())));
Energy2 Qpk = q*momenta[2+ispect];
Lorentz5Momentum pkt =
lambda/lamB*(momenta[2+ispect]-Qpk/Q2*q)
+0.5/Q2*(Q2+sqr(momenta[2+ispect].mass())-sqr(momenta[2+ispect].mass()))*q;
Lorentz5Momentum pijt =
q-pkt;
double muj = momenta[2+iemit ].mass()/sqrt(Q2);
double muk = momenta[2+ispect].mass()/sqrt(Q2);
double vt = sqrt((1.-sqr(muj+muk))*(1.-sqr(muj-muk)))/(1.-sqr(muj)-sqr(muk));
double v = sqrt(sqr(2.*sqr(muk)+(1.-sqr(muj)-sqr(muk))*(1.-y))-4.*sqr(muk))
/(1.-y)/(1.-sqr(muj)-sqr(muk));
// dipole term
D[iemit] = 0.5/pipj*(2./(1.-(1.-z)*(1.-y))
-vt/v*(2.-z+sqr(momenta[2+iemit].mass())/pipj));
// matrix element
vector<Lorentz5Momentum> lomom(4);
lomom[0] = momenta[0];
lomom[1] = momenta[1];
if(iemit==0) {
lomom[2] = pijt;
lomom[3] = pkt ;
}
else {
lomom[3] = pijt;
lomom[2] = pkt ;
}
lome[iemit] = loME(partons,lomom,false);
}
InvEnergy2 ratio = realME(partons,momenta)
*abs(D[iemitter])/(abs(D[0]*lome[0])+abs(D[1]*lome[1]));
double output = Q2*ratio;
if(subtract) output -= 2.*Q2*D[iemitter];
return output;
}
InvEnergy2 MEee2gZ2ll::realME(const vector<cPDPtr> & partons,
const vector<Lorentz5Momentum> & momenta) const {
// compute the spinors
vector<SpinorWaveFunction> fin,aout;
vector<SpinorBarWaveFunction> ain,fout;
vector<VectorWaveFunction> gout;
SpinorWaveFunction ein (momenta[0],partons[0],incoming);
SpinorBarWaveFunction pin (momenta[1],partons[1],incoming);
SpinorBarWaveFunction qkout(momenta[2],partons[2],outgoing);
SpinorWaveFunction qbout(momenta[3],partons[3],outgoing);
VectorWaveFunction photon(momenta[4],partons[4],outgoing);
for(unsigned int ix=0;ix<2;++ix) {
ein.reset(ix) ;
fin.push_back( ein );
pin.reset(ix) ;
ain.push_back( pin );
qkout.reset(ix);
fout.push_back(qkout);
qbout.reset(ix);
aout.push_back(qbout);
photon.reset(2*ix);
gout.push_back(photon);
}
vector<Complex> diag(4,0.);
ProductionMatrixElement output(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1);
double total(0.);
for(unsigned int inhel1=0;inhel1<2;++inhel1) {
for(unsigned int inhel2=0;inhel2<2;++inhel2) {
// intermediate Z
VectorWaveFunction interZ =
FFZVertex_->evaluate(scale(),1,Z0_,fin[inhel1],ain[inhel2]);
// intermediate photon
VectorWaveFunction interG =
FFPVertex_->evaluate(scale(),1,gamma_,fin[inhel1],ain[inhel2]);
for(unsigned int outhel1=0;outhel1<2;++outhel1) {
for(unsigned int outhel2=0;outhel2<2;++outhel2) {
for(unsigned int outhel3=0;outhel3<2;++outhel3) {
SpinorBarWaveFunction off1 =
- FFPVertex_->evaluate(scale(),3,partons[2],fout[outhel1],gout[outhel3]);
+ FFPVertex_->evaluate(scale(),3,partons[2]->CC(),fout[outhel1],gout[outhel3]);
diag[0] = FFZVertex_->evaluate(scale(),aout[outhel2],off1,interZ);
diag[1] = FFPVertex_->evaluate(scale(),aout[outhel2],off1,interG);
SpinorWaveFunction off2 =
- FFPVertex_->evaluate(scale(),3,partons[3],aout[outhel2],gout[outhel3]);
+ FFPVertex_->evaluate(scale(),3,partons[3]->CC(),aout[outhel2],gout[outhel3]);
diag[2] = FFZVertex_->evaluate(scale(),off2,fout[outhel1],interZ);
diag[3] = FFPVertex_->evaluate(scale(),off2,fout[outhel1],interG);
// sum of diagrams
Complex sum = std::accumulate(diag.begin(),diag.end(),Complex(0.));
// matrix element
output(inhel1,inhel2,outhel1,outhel2,outhel3)=sum;
// me2
total += norm(sum);
}
}
}
}
}
// spin average
total *= 0.25;
tcPolarizedBeamPDPtr beam[2] =
{dynamic_ptr_cast<tcPolarizedBeamPDPtr>(partons[0]),
dynamic_ptr_cast<tcPolarizedBeamPDPtr>(partons[1])};
if( beam[0] || beam[1] ) {
RhoDMatrix rho[2] =
{beam[0] ? beam[0]->rhoMatrix() : RhoDMatrix(mePartonData()[0]->iSpin()),
beam[1] ? beam[1]->rhoMatrix() : RhoDMatrix(mePartonData()[1]->iSpin())};
total = output.average(rho[0],rho[1]);
}
// divide out the coupling and charge
total /= norm(FFPVertex_->norm())*
sqr(double(mePartonData()[2]->iCharge())/3.);
// return the total
return total*UnitRemoval::InvE2;
}
Energy MEee2gZ2ll::generateHard(RealEmissionProcessPtr born,
vector<Lorentz5Momentum> & emmision,
unsigned int & iemit, unsigned int & ispect,
bool applyVeto) {
// get the momenta of the incoming and outgoing particles
// incoming
tPPtr em = born->bornIncoming()[0];
tPPtr ep = born->bornIncoming()[1];
if(em->id()<0) swap(em,ep);
// outgoing
tPPtr qk = born->bornOutgoing()[0];
tPPtr qb = born->bornOutgoing()[1];
if(qk->id()<0) swap(qk,qb);
// extract the momenta
loMomenta_.clear();
loMomenta_.push_back(em->momentum());
loMomenta_.push_back(ep->momentum());
loMomenta_.push_back(qk->momentum());
loMomenta_.push_back(qb->momentum());
// and ParticleData objects
partons_.resize(5);
partons_[0]=em->dataPtr();
partons_[1]=ep->dataPtr();
partons_[2]=qk->dataPtr();
partons_[3]=qb->dataPtr();
partons_[4]=gamma_;
// boost from lab to CMS frame with outgoing particles
// along the z axis
LorentzRotation eventFrame( ( loMomenta_[2] + loMomenta_[3] ).findBoostToCM() );
Lorentz5Momentum spectator = eventFrame*loMomenta_[2];
eventFrame.rotateZ( -spectator.phi() );
eventFrame.rotateY( -spectator.theta() );
eventFrame.invert();
// mass of the final-state system
Energy2 M2 = (loMomenta_[2]+loMomenta_[3]).m2();
Energy M = sqrt(M2);
double mu1 = loMomenta_[2].mass()/M;
double mu2 = loMomenta_[3].mass()/M;
double mu12 = sqr(mu1), mu22 = sqr(mu2);
double lambda = sqrt(1.+sqr(mu12)+sqr(mu22)-2.*mu12-2.*mu22-2.*mu12*mu22);
// max pT
Energy pTmax = 0.5*sqrt(M2)*
(1.-sqr(loMomenta_[2].mass()+loMomenta_[3].mass())/M2);
// max y
double ymax = acosh(pTmax/pTmin_);
double a = alphaQED_->overestimateValue()/Constants::twopi*
2.*ymax*preFactor_*sqr(double(mePartonData()[2]->iCharge())/3.);
// variables for the emission
Energy pT[2];
double y[2],phi[2],x3[2],x1[2][2],x2[2][2];
double contrib[2][2];
// storage of the real emission momenta
vector<Lorentz5Momentum> realMomenta[2][2]=
{{vector<Lorentz5Momentum>(5),vector<Lorentz5Momentum>(5)},
{vector<Lorentz5Momentum>(5),vector<Lorentz5Momentum>(5)}};
for(unsigned int ix=0;ix<2;++ix)
for(unsigned int iy=0;iy<2;++iy)
for(unsigned int iz=0;iz<2;++iz)
realMomenta[ix][iy][iz] = loMomenta_[iz];
// generate the emission
for(unsigned int ix=0;ix<2;++ix) {
if(ix==1) {
swap(mu1 ,mu2 );
swap(mu12,mu22);
}
pT[ix] = pTmax;
y [ix] = 0.;
bool reject = true;
do {
// generate pT
pT[ix] *= pow(UseRandom::rnd(),1./a);
if(pT[ix]<pTmin_) {
pT[ix] = -GeV;
break;
}
// generate y
y[ix] = -ymax+2.*UseRandom::rnd()*ymax;
// generate phi
phi[ix] = UseRandom::rnd()*Constants::twopi;
// calculate x3 and check in allowed region
x3[ix] = 2.*pT[ix]*cosh(y[ix])/M;
if(x3[ix] < 0. || x3[ix] > 1. -sqr( mu1 + mu2 ) ) continue;
// find the possible solutions for x1
double xT2 = sqr(2./M*pT[ix]);
double root = (-sqr(x3[ix])+xT2)*
(xT2*mu22+2.*x3[ix]-sqr(mu12)+2.*mu22+2.*mu12-sqr(x3[ix])-1.
+2.*mu12*mu22-sqr(mu22)-2.*mu22*x3[ix]-2.*mu12*x3[ix]);
double c1=2.*sqr(x3[ix])-4.*mu22-6.*x3[ix]+4.*mu12-xT2*x3[ix]
+2.*xT2-2.*mu12*x3[ix]+2.*mu22*x3[ix]+4.;
if(root<0.) continue;
x1[ix][0] = 1./(4.-4.*x3[ix]+xT2)*(c1-2.*sqrt(root));
x1[ix][1] = 1./(4.-4.*x3[ix]+xT2)*(c1+2.*sqrt(root));
// change sign of y if 2nd particle emits
if(ix==1) y[ix] *=-1.;
// loop over the solutions
for(unsigned int iy=0;iy<2;++iy) {
contrib[ix][iy]=0.;
// check x1 value allowed
if(x1[ix][iy]<2.*mu1||x1[ix][iy]>1.+mu12-mu22) continue;
// calculate x2 value and check allowed
x2[ix][iy] = 2.-x3[ix]-x1[ix][iy];
double root = max(0.,sqr(x1[ix][iy])-4.*mu12);
root = sqrt(root);
double x2min = 1.+mu22-mu12
-0.5*(1.-x1[ix][iy]+mu12-mu22)/(1.-x1[ix][iy]+mu12)*(x1[ix][iy]-2.*mu12+root);
double x2max = 1.+mu22-mu12
-0.5*(1.-x1[ix][iy]+mu12-mu22)/(1.-x1[ix][iy]+mu12)*(x1[ix][iy]-2.*mu12-root);
if(x2[ix][iy]<x2min||x2[ix][iy]>x2max) continue;
// check the z components
double z1 = sqrt(sqr(x1[ix][iy])-4.*mu12-xT2);
double z2 = -sqrt(sqr(x2[ix][iy])-4.*mu22);
double z3 = pT[ix]*sinh(y[ix])*2./M;
if(ix==1) z3 *=-1.;
if(abs(-z1+z2+z3)<1e-9) z1 *= -1.;
if(abs(z1+z2+z3)>1e-5) continue;
// if using as an ME correction the veto
if(applyVeto) {
// double xb = x1[ix][iy], xc = x2[ix][iy];
// double b = mu12, c = mu22;
// double r = 0.5*(1.+b/(1.+c-xc));
// double z1 = r + (xb-(2.-xc)*r)/sqrt(sqr(xc)-4.*c);
// double kt1 = (1.-b+c-xc)/z1/(1.-z1);
// r = 0.5*(1.+c/(1.+b-xb));
// double z2 = r + (xc-(2.-xb)*r)/sqrt(sqr(xb)-4.*b);
// double kt2 = (1.-c+b-xb)/z2/(1.-z2);
// if(ix==1) {
// swap(z1 ,z2);
// swap(kt1,kt2);
// }
// // veto the shower region
// if( kt1 < d_kt1_ || kt2 < d_kt2_ ) continue;
}
// construct the momenta
realMomenta[ix][iy][4] =
Lorentz5Momentum(pT[ix]*cos(phi[ix]),pT[ix]*sin(phi[ix]),
pT[ix]*sinh(y[ix]) ,pT[ix]*cosh(y[ix]),ZERO);
if(ix==0) {
realMomenta[ix][iy][2] =
Lorentz5Momentum(-pT[ix]*cos(phi[ix]),-pT[ix]*sin(phi[ix]),
z1*0.5*M,x1[ix][iy]*0.5*M,M*mu1);
realMomenta[ix][iy][3] =
Lorentz5Momentum(ZERO,ZERO, z2*0.5*M,x2[ix][iy]*0.5*M,M*mu2);
}
else {
realMomenta[ix][iy][2] =
Lorentz5Momentum(ZERO,ZERO,-z2*0.5*M,x2[ix][iy]*0.5*M,M*mu2);
realMomenta[ix][iy][3] =
Lorentz5Momentum(-pT[ix]*cos(phi[ix]),-pT[ix]*sin(phi[ix]),
-z1*0.5*M,x1[ix][iy]*0.5*M,M*mu1);
}
// boost the momenta back to the lab
for(unsigned int iz=2;iz<5;++iz)
realMomenta[ix][iy][iz] *= eventFrame;
// jacobian and prefactors for the weight
Energy J = M/sqrt(xT2)*abs(-x1[ix][iy]*x2[ix][iy]+2.*mu22*x1[ix][iy]
+x2[ix][iy]+x2[ix][iy]*mu12+mu22*x2[ix][iy]
-sqr(x2[ix][iy]))
/pow(sqr(x2[ix][iy])-4.*mu22,1.5);
// prefactors etc
contrib[ix][iy] = 0.5*pT[ix]/J/preFactor_/lambda;
// matrix element piece
contrib[ix][iy] *= meRatio(partons_,realMomenta[ix][iy],ix,false);
// coupling piece
contrib[ix][iy] *= alphaQED_->ratio(sqr(pT[ix]));
}
if(contrib[ix][0]+contrib[ix][1]>1.) {
ostringstream s;
s << "MEee2gZ2qq::generateHardest weight for channel " << ix
<< "is " << contrib[ix][0]+contrib[ix][1]
<< " which is greater than 1";
generator()->logWarning( Exception(s.str(), Exception::warning) );
}
reject = UseRandom::rnd() > contrib[ix][0] + contrib[ix][1];
}
while (reject);
if(pT[ix]<pTmin_)
pT[ix] = -GeV;
}
// now pick the emmision with highest pT
Energy pTemit(ZERO);
// no emission
if(pT[0]<ZERO&&pT[1]<ZERO) return -GeV;
// which one emitted
if(pT[0]>pT[1]) {
iemit = 2;
ispect = 3;
pTemit = pT[0];
if(UseRandom::rnd()<contrib[0][0]/(contrib[0][0]+contrib[0][1]))
emmision = realMomenta[0][0];
else
emmision = realMomenta[0][1];
}
else {
iemit = 3;
ispect = 2;
pTemit = pT[1];
if(UseRandom::rnd()<contrib[1][0]/(contrib[1][0]+contrib[1][1]))
emmision = realMomenta[1][0];
else
emmision = realMomenta[1][1];
}
// return pT of emmision
return pTemit;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 5:34 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805412
Default Alt Text
(25 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment