Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877644
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
29 KB
Subscribers
None
View Options
diff --git a/Shower/Dipole/Kernels/DipoleSplittingKernel.cc b/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
--- a/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
+++ b/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
@@ -1,408 +1,411 @@
// -*- C++ -*-
//
// DipoleSplittingKernel.cc is a part of Herwig -
// A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the DipoleSplittingKernel class.
//
#include "DipoleSplittingKernel.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
DipoleSplittingKernel::DipoleSplittingKernel()
: HandlerBase(), theScreeningScale(0.0*GeV),
thePresamplingPoints(2000), theMaxtry(100000),
theFreezeGrid(500000),
theDetuning(1.0),
theStrictLargeN(false),
theFactorizationScaleFactor(1.0),
theRenormalizationScaleFactor(1.0),
theRenormalizationScaleFreeze(1.*GeV),
theFactorizationScaleFreeze(1.*GeV),
theVirtualitySplittingScale(false),
theCMWScheme(0),
presampling(false) {}
DipoleSplittingKernel::~DipoleSplittingKernel() {}
+// initialize static variable out of line
+double DipoleSplittingKernel::theMaxPDFRatio = 1000000.;
+
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void DipoleSplittingKernel::persistentOutput(PersistentOStream & os) const {
os << theAlphaS << ounit(theScreeningScale,GeV)
<< theSplittingKinematics << thePDFRatio
<< thePresamplingPoints << theMaxtry << theFreezeGrid << theDetuning
<< theFlavour << theMCCheck << theStrictLargeN
<< theFactorizationScaleFactor
<< theRenormalizationScaleFactor
<< ounit(theRenormalizationScaleFreeze,GeV)
<< ounit(theFactorizationScaleFreeze,GeV)
<< theVirtualitySplittingScale<<theCMWScheme<<theUseThisKernel;
}
void DipoleSplittingKernel::persistentInput(PersistentIStream & is, int) {
is >> theAlphaS >> iunit(theScreeningScale,GeV)
>> theSplittingKinematics >> thePDFRatio
>> thePresamplingPoints >> theMaxtry >> theFreezeGrid >> theDetuning
>> theFlavour >> theMCCheck >> theStrictLargeN
>> theFactorizationScaleFactor
>> theRenormalizationScaleFactor
>> iunit(theRenormalizationScaleFreeze,GeV)
>> iunit(theFactorizationScaleFreeze,GeV)
>> theVirtualitySplittingScale>>theCMWScheme>>theUseThisKernel;
}
double DipoleSplittingKernel::alphaPDF(const DipoleSplittingInfo& split,
Energy optScale,
double rScaleFactor,
double fScaleFactor) const {
Energy pt = optScale == ZERO ? split.lastPt() : optScale;
Energy2 scale = ZERO;
if ( !virtualitySplittingScale() ) {
scale = sqr(pt) + sqr(theScreeningScale);
} else {
scale = sqr(splittingKinematics()->QFromPt(pt,split)) + sqr(theScreeningScale);
}
Energy2 fScale = sqr(theFactorizationScaleFactor*fScaleFactor)*scale;
fScale = max( fScale , sqr(factorizationScaleFreeze()) );
Energy2 rScale = sqr(theRenormalizationScaleFactor*rScaleFactor)*scale;
rScale = max( rScale , sqr(renormalizationScaleFreeze()) );
if(split.calcFixedExpansion()){
fScale = max( sqr(split.fixedScale()) , sqr(factorizationScaleFreeze()) );
rScale = max( sqr(split.fixedScale()) , sqr(renormalizationScaleFreeze()) );
}
double alphas = 1.0;
double pdf = 1.0;
// check if we are potentially reweighting and cache evaluations
bool evaluatePDF = true;
bool evaluateAlphaS = true;
bool variations =
!ShowerHandler::currentHandler()->showerVariations().empty() &&
!presampling;
if ( variations ) {
map<double,double>::const_iterator pit = thePDFCache.find(fScaleFactor);
evaluatePDF = (pit == thePDFCache.end());
if ( !evaluatePDF ) {
pdf = pit->second;
}
map<double,double>::const_iterator ait = theAlphaSCache.find(rScaleFactor);
evaluateAlphaS = (ait == theAlphaSCache.end());
if ( !evaluateAlphaS ) {
alphas = ait->second;
}
}
if ( evaluateAlphaS ){
if (theCMWScheme==0||split.calcFixedExpansion()) {
alphas = alphaS()->value(rScale);
}else if(theCMWScheme==1){
alphas = alphaS()->value(rScale);
alphas *=1.+(3.*(67./18.-1./6.*sqr(Constants::pi))
-5./9.*alphaS()->Nf(rScale))*
alphas/2./Constants::pi;
}else if(theCMWScheme==2){
double kg=exp(-(67.-3.*sqr(Constants::pi)-10/3*alphaS()->Nf(rScale))
/(33.-2.*alphaS()->Nf(rScale)));
Energy2 cmwscale2=max(kg*rScale, sqr(renormalizationScaleFreeze()) );
alphas = alphaS()->value(cmwscale2);
}else{
throw Exception()
<< "This CMW-Scheme is not implemented."
<< Exception::abortnow;
}
}
if ( evaluatePDF ) {
if ( split.index().initialStateEmitter() ) {
assert(pdfRatio());
pdf *=
split.lastEmitterZ() *
(*pdfRatio())(split.index().emitterPDF(), fScale,
split.index().emitterData(),split.emitterData(),
split.emitterX(),split.lastEmitterZ());
}
if ( split.index().initialStateSpectator() ) {
assert(pdfRatio());
pdf *=
split.lastSpectatorZ() *
(*pdfRatio())(split.index().spectatorPDF(), fScale,
split.index().spectatorData(),split.spectatorData(),
split.spectatorX(),split.lastSpectatorZ());
}
}
if ( evaluatePDF && variations ) {
- thePDFCache[fScaleFactor] = pdf;
+ thePDFCache[fScaleFactor] = min(pdf,theMaxPDFRatio);
}
if ( evaluateAlphaS && variations ) {
theAlphaSCache[rScaleFactor] = alphas;
}
- double ret = pdf*
+ double ret = min(pdf,theMaxPDFRatio)*
(split.calcFixedExpansion()?
1.:(alphas / (2.*Constants::pi)));
if ( ret < 0. )
ret = 0.;
return ret;
}
void DipoleSplittingKernel::accept(const DipoleSplittingInfo& split,
double, double,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
assert(reference > 0.);
for ( map<string,ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction()
&& var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction()
&& var->second.secondaryInteractions ) ) {
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= varied/reference;
else
weights[var->first] = varied/reference;
}
}
}
}
void DipoleSplittingKernel::veto(const DipoleSplittingInfo& split,
double p, double r,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
// this is dangerous, but we have no other choice currently -- need to
// carefully check for the effects; the assumption is that if the central
// one ius zero, then so will be the variations.
if ( reference == 0.0 )
return;
for ( map<string,ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction()
&& var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction()
&& var->second.secondaryInteractions ) ) {
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= (r - varied*p/reference) / (r-p);
else
weights[var->first] = (r - varied*p/reference) / (r-p);
}
}
}
}
AbstractClassDescription<DipoleSplittingKernel>
DipoleSplittingKernel::initDipoleSplittingKernel;
// Definition of the static class description member.
void DipoleSplittingKernel::Init() {
static ClassDocumentation<DipoleSplittingKernel> documentation
("DipoleSplittingKernel is the base class for all kernels "
"used within the dipole shower.");
static Reference<DipoleSplittingKernel,AlphaSBase> interfaceAlphaS
("AlphaS",
"The strong coupling to be used by this splitting kernel.",
&DipoleSplittingKernel::theAlphaS, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,Energy> interfaceScreeningScale
("ScreeningScale",
"A colour screening scale",
&DipoleSplittingKernel::theScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,DipoleSplittingKinematics>
interfaceSplittingKinematics
("SplittingKinematics",
"The splitting kinematics to be used by this splitting kernel.",
&DipoleSplittingKernel::theSplittingKinematics, false, false, true, false, false);
static Reference<DipoleSplittingKernel,PDFRatio> interfacePDFRatio
("PDFRatio",
"Set the optional PDF ratio object to evaluate this kernel",
&DipoleSplittingKernel::thePDFRatio, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,unsigned long> interfacePresamplingPoints
("PresamplingPoints",
"The number of points used to presample this kernel.",
&DipoleSplittingKernel::thePresamplingPoints, 2000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceMaxtry
("Maxtry",
"The maximum number of attempts to generate a splitting.",
&DipoleSplittingKernel::theMaxtry, 10000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceFreezeGrid
("FreezeGrid",
"",
&DipoleSplittingKernel::theFreezeGrid, 500000, 1, 0,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,ParticleData> interfaceFlavour
("Flavour",
"Set the flavour to be produced if ambiguous.",
&DipoleSplittingKernel::theFlavour, false, false, true, true, false);
static Reference<DipoleSplittingKernel,DipoleMCCheck> interfaceMCCheck
("MCCheck",
"[debug option] MCCheck",
&DipoleSplittingKernel::theMCCheck, false, false, true, true, false);
interfaceMCCheck.rank(-1);
static Switch<DipoleSplittingKernel,bool> interfaceStrictLargeN
("StrictLargeN",
"Work in a strict large-N limit.",
&DipoleSplittingKernel::theStrictLargeN, false, false, false);
static SwitchOption interfaceStrictLargeNYes
(interfaceStrictLargeN,
"Yes",
"Replace C_F -> C_A/2 where present",
true);
static SwitchOption interfaceStrictLargeNNo
(interfaceStrictLargeN,
"No",
"Keep C_F=4/3",
false);
interfaceStrictLargeN.rank(-2);
static Switch<DipoleSplittingKernel,unsigned int> interfaceCMWScheme
("CMWScheme",
"Use the CMW Scheme related Kg expression to the splitting",
&DipoleSplittingKernel::theCMWScheme, 0, false, false);
static SwitchOption interfaceCMWSchemeNo
(interfaceCMWScheme,"No","No CMW-Scheme", 0);
static SwitchOption interfaceCMWSchemeLinear
(interfaceCMWScheme,"Linear",
"Linear CMW multiplication: alpha_s(q) -> alpha_s(q)(1+K_g*alpha_s(q)/2pi )",1);
static SwitchOption interfaceCMWSchemeFactor
(interfaceCMWScheme,"Factor",
"Use factor in alpha_s argument: alpha_s(q) -> alpha_s(k_g*q) with kfac=exp(-(67-3pi^2-10/3*Nf)/(33-2Nf)) ",2);
static Parameter<DipoleSplittingKernel,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&DipoleSplittingKernel::theFactorizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceFactorizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&DipoleSplittingKernel::theRenormalizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceRenormalizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,Energy> interfaceRenormalizationScaleFreeze
("RenormalizationScaleFreeze",
"The freezing scale for the renormalization scale.",
&DipoleSplittingKernel::theRenormalizationScaleFreeze,
GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,Energy> interfaceFactorizationScaleFreeze
("FactorizationScaleFreeze",
"The freezing scale for the factorization scale.",
&DipoleSplittingKernel::theFactorizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Switch<DipoleSplittingKernel,bool> interfaceVirtualitySplittingScale
("VirtualitySplittingScale",
"Use the virtuality as the splitting scale.",
&DipoleSplittingKernel::theVirtualitySplittingScale, false, false, false);
static SwitchOption interfaceVirtualitySplittingScaleYes
(interfaceVirtualitySplittingScale,
"Yes",
"Use vrituality.",
true);
static SwitchOption interfaceVirtualitySplittingScaleNo
(interfaceVirtualitySplittingScale,
"No",
"Use transverse momentum.",
false);
static Parameter<DipoleSplittingKernel,double> interfaceDetuning
("Detuning",
"A value to detune the overestimate kernel.",
&DipoleSplittingKernel::theDetuning, 1.0, 1.0, 0,
false, false, Interface::lowerlim);
static Switch<DipoleSplittingKernel,bool> interfaceUseThisKernel
("UseKernel",
"Turn On and of the Kernel.",
&DipoleSplittingKernel::theUseThisKernel, true, false, false);
static SwitchOption interfaceUseThisKernelYes
(interfaceUseThisKernel,
"Yes",
"Use this Kernel.",
true);
static SwitchOption interfaceUseThisKernelNo
(interfaceUseThisKernel,
"No",
"Dont use this Kernel.",
false);
}
diff --git a/Shower/Dipole/Kernels/DipoleSplittingKernel.h b/Shower/Dipole/Kernels/DipoleSplittingKernel.h
--- a/Shower/Dipole/Kernels/DipoleSplittingKernel.h
+++ b/Shower/Dipole/Kernels/DipoleSplittingKernel.h
@@ -1,535 +1,541 @@
// -*- C++ -*-
//
// DipoleSplittingKernel.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_DipoleSplittingKernel_H
#define HERWIG_DipoleSplittingKernel_H
//
// This is the declaration of the DipoleSplittingKernel class.
//
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/StandardModel/AlphaSBase.h"
#include "ThePEG/PDF/PDF.h"
#include "Herwig/Shower/Dipole/Utility/PDFRatio.h"
#include "Herwig/Shower/Dipole/Base/DipoleSplittingInfo.h"
#include "Herwig/Shower/Dipole/Kinematics/DipoleSplittingKinematics.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "Herwig/Decay/DecayMatrixElement.h"
#include "Herwig/Decay/TwoBodyDecayMatrixElement.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief DipoleSplittingKernel is the base class for all kernels
* used within the dipole shower.
*
* @see \ref DipoleSplittingKernelInterfaces "The interfaces"
* defined for DipoleSplittingKernel.
*/
class DipoleSplittingKernel: public HandlerBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
DipoleSplittingKernel();
/**
* The destructor.
*/
virtual ~DipoleSplittingKernel();
//@}
public:
/**
* Return the alpha_s to be used
*/
Ptr<AlphaSBase>::tptr alphaS() const { return theAlphaS; }
/**
* Set the alpha_s to be used
*/
void alphaS(Ptr<AlphaSBase>::tptr ap) { theAlphaS = ap; }
/**
* Return the splitting kinematics object
*/
Ptr<DipoleSplittingKinematics>::tptr splittingKinematics() const {
return theSplittingKinematics;
}
/**
* Return the mc check object
*/
Ptr<DipoleMCCheck>::ptr mcCheck() const { return theMCCheck; }
/**
* Set the splitting kinematics object
*/
void splittingKinematics(Ptr<DipoleSplittingKinematics>::tptr sp) {
theSplittingKinematics = sp;
}
/**
* Return the PDFRatio object
*/
Ptr<PDFRatio>::tptr pdfRatio() const { return thePDFRatio; }
/**
* Set the PDFRatio object
*/
void pdfRatio(Ptr<PDFRatio>::tptr sp) { thePDFRatio = sp; }
/**
* Return the number of additional parameter
* random variables needed to evaluate this kernel
* except the momentum fractions of incoming partons.
* These will be accessible through the
* lastSplittingParameters() container of the splitting
* info object.
*/
virtual int nDimAdditional() const { return 0; }
/**
* Set the freezing value for the renormalization scale
*/
void renormalizationScaleFreeze(Energy s) { theRenormalizationScaleFreeze = s; }
/**
* Set the freezing value for the factorization scale
*/
void factorizationScaleFreeze(Energy s) { theFactorizationScaleFreeze = s; }
/**
* Get the freezing value for the renormalization scale
*/
Energy renormalizationScaleFreeze() const { return theRenormalizationScaleFreeze; }
/**
* Get the freezing value for the factorization scale
*/
Energy factorizationScaleFreeze() const { return theFactorizationScaleFreeze; }
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const = 0;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const = 0;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const = 0;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const = 0;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const = 0;
/**
* Return the flavour produced, if this cannot
* be determined from the dipole.
*/
PDPtr flavour() const { return theFlavour; }
/**
* Return true, if this splitting kernel is supposed to work in a
* strict large-N limit, i.e. replacing C_F by C_A/2
*/
bool strictLargeN() const { return theStrictLargeN; }
public:
/**
* Inform this splitting kernel, that it is being
* presampled until a call to stopPresampling
*/
virtual void startPresampling(const DipoleIndex&) {
presampling = true;
}
/**
* Inform this splitting kernel, that it is not being
* presampled until a call to startPresampling
*/
virtual void stopPresampling(const DipoleIndex&) {
presampling = false;
}
/**
* Return the number of points to presample this
* splitting generator.
*/
unsigned long presamplingPoints() const { return thePresamplingPoints; }
/**
* Return the maximum number of trials
* to generate a splitting.
*/
unsigned long maxtry() const { return theMaxtry; }
/**
* Return the number of accepted points after which the grid should
* be frozen
*/
unsigned long freezeGrid() const { return theFreezeGrid; }
/**
* Set the number of accepted points after which the grid should
* be frozen
*/
void freezeGrid(unsigned long n) { theFreezeGrid = n; }
/**
* Set a detuning factor to be applied to the sampling overestimate kernel
*/
void detuning(double d) { theDetuning = d; }
/**
* Return the detuning factor applied to the sampling overestimate kernel
*/
double detuning() const { return theDetuning; }
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const = 0;
/**
* Evaluate rho_ii' V_ijk V*_i'jk / equivalent for initial-state splitting,
* required for generating spin-correlated azimuthal angles.
**/
virtual vector< pair<int, Complex> > generatePhi( const DipoleSplittingInfo& dInfo, const RhoDMatrix& rho) const = 0;
/**
* Return the completely spin-unaveraged (i.e. spin-indexed) splitting kernel.
**/
virtual DecayMEPtr matrixElement(const DipoleSplittingInfo& dInfo) const = 0;
/**
* Clear the alphaPDF cache
*/
void clearAlphaPDFCache() const {
theAlphaSCache.clear();
thePDFCache.clear();
}
/**
* Update the variations vector at the given splitting using the indicated
* kernel and overestimate values.
*/
virtual void accept(const DipoleSplittingInfo&, double, double, map<string,double>&) const;
/**
* Update the variations vector at the given splitting using the indicated
* kernel and overestimate values.
*/
virtual void veto(const DipoleSplittingInfo&, double, double, map<string,double>&) const;
/**
* Return true, if this kernel is capable of
* delivering an overestimate to the kernel, and
* of inverting the integral over the overestimate
* w.r.t. the phasepsace provided by the given
* DipoleSplittingInfo object.
*/
virtual bool haveOverestimate(const DipoleSplittingInfo&) const { return false; }
/**
* Return the overestimate to this splitting kernel
* for the given dipole splitting.
*/
virtual double overestimate(const DipoleSplittingInfo&) const { return -1.; }
/**
* Invert the integral over the overestimate
* w.r.t. the phasepsace provided by the given
* DipoleSplittingInfo object to equal
* the given value.
*/
virtual double invertOverestimateIntegral(const DipoleSplittingInfo&, double) const {
return -1.;
}
/**
* .
*/
bool useThisKernel() const {
return theUseThisKernel;
}
public:
/**
* Get the factorization scale factor
*/
double factorizationScaleFactor() const { return theFactorizationScaleFactor; }
/**
* Set the factorization scale factor
*/
void factorizationScaleFactor(double f) { theFactorizationScaleFactor = f; }
/**
* Get the renormalization scale factor
*/
double renormalizationScaleFactor() const { return theRenormalizationScaleFactor; }
/**
* Set the renormalization scale factor
*/
void renormalizationScaleFactor(double f) { theRenormalizationScaleFactor = f; }
protected:
/**
* Return the common factor of (alphas/2pi)*(pdf ratio)
*/
double alphaPDF(const DipoleSplittingInfo&,
Energy optScale = ZERO,
double rScaleFactor = 1.0,
double fScaleFactor = 1.0) const;
/**
* Return true, if the virtuality of the splitting should be used as the
* argument of alphas rather than the pt
*/
bool virtualitySplittingScale() const { return theVirtualitySplittingScale; }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The alpha_s to be used.
*/
Ptr<AlphaSBase>::ptr theAlphaS;
/**
* An optional 'colour screening' scale
* for alternative intrinsic pt generation.
*/
Energy theScreeningScale;
/**
* The splitting kinematics to be used.
*/
Ptr<DipoleSplittingKinematics>::ptr theSplittingKinematics;
/**
* An optional PDF ratio object to be used
* when evaluating this kernel.
*/
Ptr<PDFRatio>::ptr thePDFRatio;
/**
* The number of points to presample this
* splitting generator.
*/
unsigned long thePresamplingPoints;
/**
* The maximum number of trials
* to generate a splitting.
*/
unsigned long theMaxtry;
-
+
+ /**
+ * The maximum value for any pdf ratio.
+ * TODO: JB:Should this be an interfaced value? Is there a reasobable case where it should be allowed to be bigger than 1000000.?
+ */
+ static double theMaxPDFRatio;
+
/**
* Return the number of accepted points after which the grid should
* be frozen
*/
unsigned long theFreezeGrid;
/**
* The detuning factor applied to the sampling overestimate kernel
*/
double theDetuning;
/**
* The flavour produced, if this cannot
* be determined from the dipole.
*/
PDPtr theFlavour;
/**
* Pointer to a check histogram object
*/
Ptr<DipoleMCCheck>::ptr theMCCheck;
/**
* True, if this splitting kernel is supposed to work in a
* strict large-N limit, i.e. replacing C_F by C_A/2
*/
bool theStrictLargeN;
/**
* The factorization scale factor.
*/
double theFactorizationScaleFactor;
/**
* The renormalization scale factor.
*/
double theRenormalizationScaleFactor;
/**
* A freezing value for the renormalization scale
*/
Energy theRenormalizationScaleFreeze;
/**
* A freezing value for the factorization scale
*/
Energy theFactorizationScaleFreeze;
/**
* True, if the virtuality of the splitting should be used as the
* argument of alphas rather than the pt
*/
bool theVirtualitySplittingScale;
/**
* Implementing CMW in the kernels.
**/
unsigned int theCMWScheme=0;
/**
* Cache for alphas evaluations
*/
mutable map<double,double> theAlphaSCache;
/**
* Cache for PDF evaluations
*/
mutable map<double,double> thePDFCache;
/**
* True, if we are presampling
*/
bool presampling;
/**
* True, if the kernel should be used
*/
bool theUseThisKernel = true;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static AbstractClassDescription<DipoleSplittingKernel> initDipoleSplittingKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
DipoleSplittingKernel & operator=(const DipoleSplittingKernel &) = delete;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of DipoleSplittingKernel. */
template <>
struct BaseClassTrait<Herwig::DipoleSplittingKernel,1> {
/** Typedef of the first base class of DipoleSplittingKernel. */
typedef HandlerBase NthBase;
};
/** This template specialization informs ThePEG about the name of
* the DipoleSplittingKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::DipoleSplittingKernel>
: public ClassTraitsBase<Herwig::DipoleSplittingKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::DipoleSplittingKernel"; }
/**
* The name of a file containing the dynamic library where the class
* DipoleSplittingKernel is implemented. It may also include several, space-separated,
* libraries if the class DipoleSplittingKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_DipoleSplittingKernel_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:59 PM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3799443
Default Alt Text
(29 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment