Page MenuHomeHEPForge

No OneTemporary

diff --git a/Shower/Dipole/Kernels/DipoleSplittingKernel.cc b/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
--- a/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
+++ b/Shower/Dipole/Kernels/DipoleSplittingKernel.cc
@@ -1,408 +1,411 @@
// -*- C++ -*-
//
// DipoleSplittingKernel.cc is a part of Herwig -
// A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the DipoleSplittingKernel class.
//
#include "DipoleSplittingKernel.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
DipoleSplittingKernel::DipoleSplittingKernel()
: HandlerBase(), theScreeningScale(0.0*GeV),
thePresamplingPoints(2000), theMaxtry(100000),
theFreezeGrid(500000),
theDetuning(1.0),
theStrictLargeN(false),
theFactorizationScaleFactor(1.0),
theRenormalizationScaleFactor(1.0),
theRenormalizationScaleFreeze(1.*GeV),
theFactorizationScaleFreeze(1.*GeV),
theVirtualitySplittingScale(false),
theCMWScheme(0),
presampling(false) {}
DipoleSplittingKernel::~DipoleSplittingKernel() {}
+// initialize static variable out of line
+double DipoleSplittingKernel::theMaxPDFRatio = 1000000.;
+
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void DipoleSplittingKernel::persistentOutput(PersistentOStream & os) const {
os << theAlphaS << ounit(theScreeningScale,GeV)
<< theSplittingKinematics << thePDFRatio
<< thePresamplingPoints << theMaxtry << theFreezeGrid << theDetuning
<< theFlavour << theMCCheck << theStrictLargeN
<< theFactorizationScaleFactor
<< theRenormalizationScaleFactor
<< ounit(theRenormalizationScaleFreeze,GeV)
<< ounit(theFactorizationScaleFreeze,GeV)
<< theVirtualitySplittingScale<<theCMWScheme<<theUseThisKernel;
}
void DipoleSplittingKernel::persistentInput(PersistentIStream & is, int) {
is >> theAlphaS >> iunit(theScreeningScale,GeV)
>> theSplittingKinematics >> thePDFRatio
>> thePresamplingPoints >> theMaxtry >> theFreezeGrid >> theDetuning
>> theFlavour >> theMCCheck >> theStrictLargeN
>> theFactorizationScaleFactor
>> theRenormalizationScaleFactor
>> iunit(theRenormalizationScaleFreeze,GeV)
>> iunit(theFactorizationScaleFreeze,GeV)
>> theVirtualitySplittingScale>>theCMWScheme>>theUseThisKernel;
}
double DipoleSplittingKernel::alphaPDF(const DipoleSplittingInfo& split,
Energy optScale,
double rScaleFactor,
double fScaleFactor) const {
Energy pt = optScale == ZERO ? split.lastPt() : optScale;
Energy2 scale = ZERO;
if ( !virtualitySplittingScale() ) {
scale = sqr(pt) + sqr(theScreeningScale);
} else {
scale = sqr(splittingKinematics()->QFromPt(pt,split)) + sqr(theScreeningScale);
}
Energy2 fScale = sqr(theFactorizationScaleFactor*fScaleFactor)*scale;
fScale = max( fScale , sqr(factorizationScaleFreeze()) );
Energy2 rScale = sqr(theRenormalizationScaleFactor*rScaleFactor)*scale;
rScale = max( rScale , sqr(renormalizationScaleFreeze()) );
if(split.calcFixedExpansion()){
fScale = max( sqr(split.fixedScale()) , sqr(factorizationScaleFreeze()) );
rScale = max( sqr(split.fixedScale()) , sqr(renormalizationScaleFreeze()) );
}
double alphas = 1.0;
double pdf = 1.0;
// check if we are potentially reweighting and cache evaluations
bool evaluatePDF = true;
bool evaluateAlphaS = true;
bool variations =
!ShowerHandler::currentHandler()->showerVariations().empty() &&
!presampling;
if ( variations ) {
map<double,double>::const_iterator pit = thePDFCache.find(fScaleFactor);
evaluatePDF = (pit == thePDFCache.end());
if ( !evaluatePDF ) {
pdf = pit->second;
}
map<double,double>::const_iterator ait = theAlphaSCache.find(rScaleFactor);
evaluateAlphaS = (ait == theAlphaSCache.end());
if ( !evaluateAlphaS ) {
alphas = ait->second;
}
}
if ( evaluateAlphaS ){
if (theCMWScheme==0||split.calcFixedExpansion()) {
alphas = alphaS()->value(rScale);
}else if(theCMWScheme==1){
alphas = alphaS()->value(rScale);
alphas *=1.+(3.*(67./18.-1./6.*sqr(Constants::pi))
-5./9.*alphaS()->Nf(rScale))*
alphas/2./Constants::pi;
}else if(theCMWScheme==2){
double kg=exp(-(67.-3.*sqr(Constants::pi)-10/3*alphaS()->Nf(rScale))
/(33.-2.*alphaS()->Nf(rScale)));
Energy2 cmwscale2=max(kg*rScale, sqr(renormalizationScaleFreeze()) );
alphas = alphaS()->value(cmwscale2);
}else{
throw Exception()
<< "This CMW-Scheme is not implemented."
<< Exception::abortnow;
}
}
if ( evaluatePDF ) {
if ( split.index().initialStateEmitter() ) {
assert(pdfRatio());
pdf *=
split.lastEmitterZ() *
(*pdfRatio())(split.index().emitterPDF(), fScale,
split.index().emitterData(),split.emitterData(),
split.emitterX(),split.lastEmitterZ());
}
if ( split.index().initialStateSpectator() ) {
assert(pdfRatio());
pdf *=
split.lastSpectatorZ() *
(*pdfRatio())(split.index().spectatorPDF(), fScale,
split.index().spectatorData(),split.spectatorData(),
split.spectatorX(),split.lastSpectatorZ());
}
}
if ( evaluatePDF && variations ) {
- thePDFCache[fScaleFactor] = pdf;
+ thePDFCache[fScaleFactor] = min(pdf,theMaxPDFRatio);
}
if ( evaluateAlphaS && variations ) {
theAlphaSCache[rScaleFactor] = alphas;
}
- double ret = pdf*
+ double ret = min(pdf,theMaxPDFRatio)*
(split.calcFixedExpansion()?
1.:(alphas / (2.*Constants::pi)));
if ( ret < 0. )
ret = 0.;
return ret;
}
void DipoleSplittingKernel::accept(const DipoleSplittingInfo& split,
double, double,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
assert(reference > 0.);
for ( map<string,ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction()
&& var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction()
&& var->second.secondaryInteractions ) ) {
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= varied/reference;
else
weights[var->first] = varied/reference;
}
}
}
}
void DipoleSplittingKernel::veto(const DipoleSplittingInfo& split,
double p, double r,
map<string,double>& weights) const {
if ( ShowerHandler::currentHandler()->showerVariations().empty() )
return;
double reference = alphaPDF(split);
// this is dangerous, but we have no other choice currently -- need to
// carefully check for the effects; the assumption is that if the central
// one ius zero, then so will be the variations.
if ( reference == 0.0 )
return;
for ( map<string,ShowerVariation>::const_iterator var =
ShowerHandler::currentHandler()->showerVariations().begin();
var != ShowerHandler::currentHandler()->showerVariations().end(); ++var ) {
if ( ( ShowerHandler::currentHandler()->firstInteraction()
&& var->second.firstInteraction ) ||
( !ShowerHandler::currentHandler()->firstInteraction()
&& var->second.secondaryInteractions ) ) {
double varied = alphaPDF(split,ZERO,
var->second.renormalizationScaleFactor,
var->second.factorizationScaleFactor);
if ( varied != reference ) {
map<string,double>::iterator wi = weights.find(var->first);
if ( wi != weights.end() )
wi->second *= (r - varied*p/reference) / (r-p);
else
weights[var->first] = (r - varied*p/reference) / (r-p);
}
}
}
}
AbstractClassDescription<DipoleSplittingKernel>
DipoleSplittingKernel::initDipoleSplittingKernel;
// Definition of the static class description member.
void DipoleSplittingKernel::Init() {
static ClassDocumentation<DipoleSplittingKernel> documentation
("DipoleSplittingKernel is the base class for all kernels "
"used within the dipole shower.");
static Reference<DipoleSplittingKernel,AlphaSBase> interfaceAlphaS
("AlphaS",
"The strong coupling to be used by this splitting kernel.",
&DipoleSplittingKernel::theAlphaS, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,Energy> interfaceScreeningScale
("ScreeningScale",
"A colour screening scale",
&DipoleSplittingKernel::theScreeningScale, GeV, 0.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,DipoleSplittingKinematics>
interfaceSplittingKinematics
("SplittingKinematics",
"The splitting kinematics to be used by this splitting kernel.",
&DipoleSplittingKernel::theSplittingKinematics, false, false, true, false, false);
static Reference<DipoleSplittingKernel,PDFRatio> interfacePDFRatio
("PDFRatio",
"Set the optional PDF ratio object to evaluate this kernel",
&DipoleSplittingKernel::thePDFRatio, false, false, true, true, false);
static Parameter<DipoleSplittingKernel,unsigned long> interfacePresamplingPoints
("PresamplingPoints",
"The number of points used to presample this kernel.",
&DipoleSplittingKernel::thePresamplingPoints, 2000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceMaxtry
("Maxtry",
"The maximum number of attempts to generate a splitting.",
&DipoleSplittingKernel::theMaxtry, 10000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,unsigned long> interfaceFreezeGrid
("FreezeGrid",
"",
&DipoleSplittingKernel::theFreezeGrid, 500000, 1, 0,
false, false, Interface::lowerlim);
static Reference<DipoleSplittingKernel,ParticleData> interfaceFlavour
("Flavour",
"Set the flavour to be produced if ambiguous.",
&DipoleSplittingKernel::theFlavour, false, false, true, true, false);
static Reference<DipoleSplittingKernel,DipoleMCCheck> interfaceMCCheck
("MCCheck",
"[debug option] MCCheck",
&DipoleSplittingKernel::theMCCheck, false, false, true, true, false);
interfaceMCCheck.rank(-1);
static Switch<DipoleSplittingKernel,bool> interfaceStrictLargeN
("StrictLargeN",
"Work in a strict large-N limit.",
&DipoleSplittingKernel::theStrictLargeN, false, false, false);
static SwitchOption interfaceStrictLargeNYes
(interfaceStrictLargeN,
"Yes",
"Replace C_F -> C_A/2 where present",
true);
static SwitchOption interfaceStrictLargeNNo
(interfaceStrictLargeN,
"No",
"Keep C_F=4/3",
false);
interfaceStrictLargeN.rank(-2);
static Switch<DipoleSplittingKernel,unsigned int> interfaceCMWScheme
("CMWScheme",
"Use the CMW Scheme related Kg expression to the splitting",
&DipoleSplittingKernel::theCMWScheme, 0, false, false);
static SwitchOption interfaceCMWSchemeNo
(interfaceCMWScheme,"No","No CMW-Scheme", 0);
static SwitchOption interfaceCMWSchemeLinear
(interfaceCMWScheme,"Linear",
"Linear CMW multiplication: alpha_s(q) -> alpha_s(q)(1+K_g*alpha_s(q)/2pi )",1);
static SwitchOption interfaceCMWSchemeFactor
(interfaceCMWScheme,"Factor",
"Use factor in alpha_s argument: alpha_s(q) -> alpha_s(k_g*q) with kfac=exp(-(67-3pi^2-10/3*Nf)/(33-2Nf)) ",2);
static Parameter<DipoleSplittingKernel,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&DipoleSplittingKernel::theFactorizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceFactorizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&DipoleSplittingKernel::theRenormalizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
interfaceRenormalizationScaleFactor.rank(-2);
static Parameter<DipoleSplittingKernel,Energy> interfaceRenormalizationScaleFreeze
("RenormalizationScaleFreeze",
"The freezing scale for the renormalization scale.",
&DipoleSplittingKernel::theRenormalizationScaleFreeze,
GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Parameter<DipoleSplittingKernel,Energy> interfaceFactorizationScaleFreeze
("FactorizationScaleFreeze",
"The freezing scale for the factorization scale.",
&DipoleSplittingKernel::theFactorizationScaleFreeze, GeV, 1.0*GeV, 0.0*GeV, 0*GeV,
false, false, Interface::lowerlim);
static Switch<DipoleSplittingKernel,bool> interfaceVirtualitySplittingScale
("VirtualitySplittingScale",
"Use the virtuality as the splitting scale.",
&DipoleSplittingKernel::theVirtualitySplittingScale, false, false, false);
static SwitchOption interfaceVirtualitySplittingScaleYes
(interfaceVirtualitySplittingScale,
"Yes",
"Use vrituality.",
true);
static SwitchOption interfaceVirtualitySplittingScaleNo
(interfaceVirtualitySplittingScale,
"No",
"Use transverse momentum.",
false);
static Parameter<DipoleSplittingKernel,double> interfaceDetuning
("Detuning",
"A value to detune the overestimate kernel.",
&DipoleSplittingKernel::theDetuning, 1.0, 1.0, 0,
false, false, Interface::lowerlim);
static Switch<DipoleSplittingKernel,bool> interfaceUseThisKernel
("UseKernel",
"Turn On and of the Kernel.",
&DipoleSplittingKernel::theUseThisKernel, true, false, false);
static SwitchOption interfaceUseThisKernelYes
(interfaceUseThisKernel,
"Yes",
"Use this Kernel.",
true);
static SwitchOption interfaceUseThisKernelNo
(interfaceUseThisKernel,
"No",
"Dont use this Kernel.",
false);
}
diff --git a/Shower/Dipole/Kernels/DipoleSplittingKernel.h b/Shower/Dipole/Kernels/DipoleSplittingKernel.h
--- a/Shower/Dipole/Kernels/DipoleSplittingKernel.h
+++ b/Shower/Dipole/Kernels/DipoleSplittingKernel.h
@@ -1,535 +1,541 @@
// -*- C++ -*-
//
// DipoleSplittingKernel.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_DipoleSplittingKernel_H
#define HERWIG_DipoleSplittingKernel_H
//
// This is the declaration of the DipoleSplittingKernel class.
//
#include "ThePEG/Handlers/HandlerBase.h"
#include "ThePEG/StandardModel/AlphaSBase.h"
#include "ThePEG/PDF/PDF.h"
#include "Herwig/Shower/Dipole/Utility/PDFRatio.h"
#include "Herwig/Shower/Dipole/Base/DipoleSplittingInfo.h"
#include "Herwig/Shower/Dipole/Kinematics/DipoleSplittingKinematics.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "Herwig/Decay/DecayMatrixElement.h"
#include "Herwig/Decay/TwoBodyDecayMatrixElement.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief DipoleSplittingKernel is the base class for all kernels
* used within the dipole shower.
*
* @see \ref DipoleSplittingKernelInterfaces "The interfaces"
* defined for DipoleSplittingKernel.
*/
class DipoleSplittingKernel: public HandlerBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
DipoleSplittingKernel();
/**
* The destructor.
*/
virtual ~DipoleSplittingKernel();
//@}
public:
/**
* Return the alpha_s to be used
*/
Ptr<AlphaSBase>::tptr alphaS() const { return theAlphaS; }
/**
* Set the alpha_s to be used
*/
void alphaS(Ptr<AlphaSBase>::tptr ap) { theAlphaS = ap; }
/**
* Return the splitting kinematics object
*/
Ptr<DipoleSplittingKinematics>::tptr splittingKinematics() const {
return theSplittingKinematics;
}
/**
* Return the mc check object
*/
Ptr<DipoleMCCheck>::ptr mcCheck() const { return theMCCheck; }
/**
* Set the splitting kinematics object
*/
void splittingKinematics(Ptr<DipoleSplittingKinematics>::tptr sp) {
theSplittingKinematics = sp;
}
/**
* Return the PDFRatio object
*/
Ptr<PDFRatio>::tptr pdfRatio() const { return thePDFRatio; }
/**
* Set the PDFRatio object
*/
void pdfRatio(Ptr<PDFRatio>::tptr sp) { thePDFRatio = sp; }
/**
* Return the number of additional parameter
* random variables needed to evaluate this kernel
* except the momentum fractions of incoming partons.
* These will be accessible through the
* lastSplittingParameters() container of the splitting
* info object.
*/
virtual int nDimAdditional() const { return 0; }
/**
* Set the freezing value for the renormalization scale
*/
void renormalizationScaleFreeze(Energy s) { theRenormalizationScaleFreeze = s; }
/**
* Set the freezing value for the factorization scale
*/
void factorizationScaleFreeze(Energy s) { theFactorizationScaleFreeze = s; }
/**
* Get the freezing value for the renormalization scale
*/
Energy renormalizationScaleFreeze() const { return theRenormalizationScaleFreeze; }
/**
* Get the freezing value for the factorization scale
*/
Energy factorizationScaleFreeze() const { return theFactorizationScaleFreeze; }
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const = 0;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const = 0;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const = 0;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const = 0;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const = 0;
/**
* Return the flavour produced, if this cannot
* be determined from the dipole.
*/
PDPtr flavour() const { return theFlavour; }
/**
* Return true, if this splitting kernel is supposed to work in a
* strict large-N limit, i.e. replacing C_F by C_A/2
*/
bool strictLargeN() const { return theStrictLargeN; }
public:
/**
* Inform this splitting kernel, that it is being
* presampled until a call to stopPresampling
*/
virtual void startPresampling(const DipoleIndex&) {
presampling = true;
}
/**
* Inform this splitting kernel, that it is not being
* presampled until a call to startPresampling
*/
virtual void stopPresampling(const DipoleIndex&) {
presampling = false;
}
/**
* Return the number of points to presample this
* splitting generator.
*/
unsigned long presamplingPoints() const { return thePresamplingPoints; }
/**
* Return the maximum number of trials
* to generate a splitting.
*/
unsigned long maxtry() const { return theMaxtry; }
/**
* Return the number of accepted points after which the grid should
* be frozen
*/
unsigned long freezeGrid() const { return theFreezeGrid; }
/**
* Set the number of accepted points after which the grid should
* be frozen
*/
void freezeGrid(unsigned long n) { theFreezeGrid = n; }
/**
* Set a detuning factor to be applied to the sampling overestimate kernel
*/
void detuning(double d) { theDetuning = d; }
/**
* Return the detuning factor applied to the sampling overestimate kernel
*/
double detuning() const { return theDetuning; }
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const = 0;
/**
* Evaluate rho_ii' V_ijk V*_i'jk / equivalent for initial-state splitting,
* required for generating spin-correlated azimuthal angles.
**/
virtual vector< pair<int, Complex> > generatePhi( const DipoleSplittingInfo& dInfo, const RhoDMatrix& rho) const = 0;
/**
* Return the completely spin-unaveraged (i.e. spin-indexed) splitting kernel.
**/
virtual DecayMEPtr matrixElement(const DipoleSplittingInfo& dInfo) const = 0;
/**
* Clear the alphaPDF cache
*/
void clearAlphaPDFCache() const {
theAlphaSCache.clear();
thePDFCache.clear();
}
/**
* Update the variations vector at the given splitting using the indicated
* kernel and overestimate values.
*/
virtual void accept(const DipoleSplittingInfo&, double, double, map<string,double>&) const;
/**
* Update the variations vector at the given splitting using the indicated
* kernel and overestimate values.
*/
virtual void veto(const DipoleSplittingInfo&, double, double, map<string,double>&) const;
/**
* Return true, if this kernel is capable of
* delivering an overestimate to the kernel, and
* of inverting the integral over the overestimate
* w.r.t. the phasepsace provided by the given
* DipoleSplittingInfo object.
*/
virtual bool haveOverestimate(const DipoleSplittingInfo&) const { return false; }
/**
* Return the overestimate to this splitting kernel
* for the given dipole splitting.
*/
virtual double overestimate(const DipoleSplittingInfo&) const { return -1.; }
/**
* Invert the integral over the overestimate
* w.r.t. the phasepsace provided by the given
* DipoleSplittingInfo object to equal
* the given value.
*/
virtual double invertOverestimateIntegral(const DipoleSplittingInfo&, double) const {
return -1.;
}
/**
* .
*/
bool useThisKernel() const {
return theUseThisKernel;
}
public:
/**
* Get the factorization scale factor
*/
double factorizationScaleFactor() const { return theFactorizationScaleFactor; }
/**
* Set the factorization scale factor
*/
void factorizationScaleFactor(double f) { theFactorizationScaleFactor = f; }
/**
* Get the renormalization scale factor
*/
double renormalizationScaleFactor() const { return theRenormalizationScaleFactor; }
/**
* Set the renormalization scale factor
*/
void renormalizationScaleFactor(double f) { theRenormalizationScaleFactor = f; }
protected:
/**
* Return the common factor of (alphas/2pi)*(pdf ratio)
*/
double alphaPDF(const DipoleSplittingInfo&,
Energy optScale = ZERO,
double rScaleFactor = 1.0,
double fScaleFactor = 1.0) const;
/**
* Return true, if the virtuality of the splitting should be used as the
* argument of alphas rather than the pt
*/
bool virtualitySplittingScale() const { return theVirtualitySplittingScale; }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The alpha_s to be used.
*/
Ptr<AlphaSBase>::ptr theAlphaS;
/**
* An optional 'colour screening' scale
* for alternative intrinsic pt generation.
*/
Energy theScreeningScale;
/**
* The splitting kinematics to be used.
*/
Ptr<DipoleSplittingKinematics>::ptr theSplittingKinematics;
/**
* An optional PDF ratio object to be used
* when evaluating this kernel.
*/
Ptr<PDFRatio>::ptr thePDFRatio;
/**
* The number of points to presample this
* splitting generator.
*/
unsigned long thePresamplingPoints;
/**
* The maximum number of trials
* to generate a splitting.
*/
unsigned long theMaxtry;
-
+
+ /**
+ * The maximum value for any pdf ratio.
+ * TODO: JB:Should this be an interfaced value? Is there a reasobable case where it should be allowed to be bigger than 1000000.?
+ */
+ static double theMaxPDFRatio;
+
/**
* Return the number of accepted points after which the grid should
* be frozen
*/
unsigned long theFreezeGrid;
/**
* The detuning factor applied to the sampling overestimate kernel
*/
double theDetuning;
/**
* The flavour produced, if this cannot
* be determined from the dipole.
*/
PDPtr theFlavour;
/**
* Pointer to a check histogram object
*/
Ptr<DipoleMCCheck>::ptr theMCCheck;
/**
* True, if this splitting kernel is supposed to work in a
* strict large-N limit, i.e. replacing C_F by C_A/2
*/
bool theStrictLargeN;
/**
* The factorization scale factor.
*/
double theFactorizationScaleFactor;
/**
* The renormalization scale factor.
*/
double theRenormalizationScaleFactor;
/**
* A freezing value for the renormalization scale
*/
Energy theRenormalizationScaleFreeze;
/**
* A freezing value for the factorization scale
*/
Energy theFactorizationScaleFreeze;
/**
* True, if the virtuality of the splitting should be used as the
* argument of alphas rather than the pt
*/
bool theVirtualitySplittingScale;
/**
* Implementing CMW in the kernels.
**/
unsigned int theCMWScheme=0;
/**
* Cache for alphas evaluations
*/
mutable map<double,double> theAlphaSCache;
/**
* Cache for PDF evaluations
*/
mutable map<double,double> thePDFCache;
/**
* True, if we are presampling
*/
bool presampling;
/**
* True, if the kernel should be used
*/
bool theUseThisKernel = true;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static AbstractClassDescription<DipoleSplittingKernel> initDipoleSplittingKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
DipoleSplittingKernel & operator=(const DipoleSplittingKernel &) = delete;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of DipoleSplittingKernel. */
template <>
struct BaseClassTrait<Herwig::DipoleSplittingKernel,1> {
/** Typedef of the first base class of DipoleSplittingKernel. */
typedef HandlerBase NthBase;
};
/** This template specialization informs ThePEG about the name of
* the DipoleSplittingKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::DipoleSplittingKernel>
: public ClassTraitsBase<Herwig::DipoleSplittingKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::DipoleSplittingKernel"; }
/**
* The name of a file containing the dynamic library where the class
* DipoleSplittingKernel is implemented. It may also include several, space-separated,
* libraries if the class DipoleSplittingKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_DipoleSplittingKernel_H */

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:59 PM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3799443
Default Alt Text
(29 KB)

Event Timeline