Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc b/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
--- a/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
+++ b/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
@@ -1,1128 +1,1115 @@
// -*- C++ -*-
//
// SubtractionDipole.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SubtractionDipole class.
//
#include "SubtractionDipole.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/StandardModel/StandardModelBase.h"
#include "ThePEG/Utilities/Rebinder.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDF/PartonBin.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/TildeKinematics.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/InvertedTildeKinematics.h"
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
SubtractionDipole::SubtractionDipole()
: MEBase(), theSplitting(false), theApply(true), theSubtractionTest(false),
theIgnoreCuts(false), theShowerKernel(false),
theRealEmitter(-1), theRealEmission(-1), theRealSpectator(-1),
theBornEmitter(-1), theBornSpectator(-1),
theRealShowerSubtraction(false), theVirtualShowerSubtraction(false),
theRealEmissionScales(false) {}
SubtractionDipole::~SubtractionDipole() {}
void SubtractionDipole::setupBookkeeping() {
theMergingMap.clear();
theSplittingMap.clear();
int xemitter = -1;
int xspectator = -1;
map<int,int> mergeLegs;
map<int,int> remapLegs;
map<int,int> realBornMap;
map<int,int> bornRealMap;
for ( DiagramVector::const_iterator d =
theRealEmissionME->diagrams().begin();
d != theRealEmissionME->diagrams().end(); ++d ) {
Ptr<Tree2toNDiagram>::ptr check =
new_ptr(*dynamic_ptr_cast<Ptr<Tree2toNDiagram>::ptr>(*d));
map<int,int> theMergeLegs;
map<int,int> theRemapLegs;
for ( unsigned int i = 0; i < check->external().size(); ++i )
theMergeLegs[i] = -1;
int theEmitter = check->mergeEmission(realEmitter(),realEmission(),theMergeLegs);
// no underlying Born
if ( theEmitter == -1 )
continue;
DiagramVector::const_iterator bd =
theUnderlyingBornME->diagrams().end();
for ( DiagramVector::const_iterator b =
theUnderlyingBornME->diagrams().begin();
b != theUnderlyingBornME->diagrams().end(); ++b )
if ( check->isSame(*b,theRemapLegs) ) {
bd = b; break;
}
// no underlying Born
if ( bd == theUnderlyingBornME->diagrams().end() )
continue;
if ( xemitter == -1 ) {
xemitter = theEmitter;
mergeLegs = theMergeLegs;
remapLegs = theRemapLegs;
assert(remapLegs.find(xemitter) != remapLegs.end());
xemitter = remapLegs[xemitter];
// work out the leg remapping real -> born
for ( map<int,int>::const_iterator k = mergeLegs.begin();
k != mergeLegs.end(); ++k ) {
assert(remapLegs.find(k->second) != remapLegs.end());
realBornMap[k->first] = remapLegs[k->second];
}
// work out the leg remapping born -> real
for ( map<int,int>::const_iterator k = realBornMap.begin();
k != realBornMap.end(); ++k ) {
bornRealMap[k->second] = k->first;
}
// work out the spectator
assert(mergeLegs.find(realSpectator()) != mergeLegs.end());
assert(remapLegs.find(mergeLegs[realSpectator()]) != remapLegs.end());
xspectator = realBornMap[realSpectator()];
}
RealEmissionKey realKey = realEmissionKey((**d).partons(),realEmitter(),realEmission(),realSpectator());
UnderlyingBornKey bornKey = underlyingBornKey((**bd).partons(),xemitter,xspectator);
if ( theMergingMap.find(realKey) == theMergingMap.end() )
theMergingMap.insert(make_pair(realKey,make_pair(bornKey,realBornMap)));
RealEmissionInfo realInfo = make_pair(realKey,bornRealMap);
bool gotit = false;
typedef multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator spIterator;
pair<spIterator,spIterator> range = theSplittingMap.equal_range(bornKey);
for ( ; range.first != range.second; ++range.first )
if ( range.first->second == realInfo ) {
gotit = true;
break;
}
if ( !gotit )
theSplittingMap.insert(make_pair(bornKey,realInfo));
}
if ( theSplittingMap.empty() )
return;
theIndexMap.clear();
for ( multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator s =
theSplittingMap.begin(); s != theSplittingMap.end(); ++s ) {
theIndexMap[process(s->first)] = make_pair(emitter(s->first),spectator(s->first));
}
theUnderlyingBornDiagrams.clear();
for ( map<RealEmissionKey,UnderlyingBornInfo>::const_iterator r =
theMergingMap.begin(); r != theMergingMap.end(); ++r ) {
DiagramVector borns;
for ( DiagramVector::const_iterator d = theUnderlyingBornME->diagrams().begin();
d != theUnderlyingBornME->diagrams().end(); ++d ) {
if ( (**d).partons() == process(r->second.first) )
borns.push_back(*d);
}
theUnderlyingBornDiagrams[process(r->first)] = borns;
}
theRealEmissionDiagrams.clear();
for ( multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator r =
theSplittingMap.begin(); r != theSplittingMap.end(); ++r ) {
DiagramVector reals;
for ( DiagramVector::const_iterator d = theRealEmissionME->diagrams().begin();
d != theRealEmissionME->diagrams().end(); ++d ) {
if ( (**d).partons() == process(r->second.first) )
reals.push_back(*d);
}
theRealEmissionDiagrams[process(r->first)] = reals;
}
}
void SubtractionDipole::subtractionBookkeeping() {
if ( theMergingMap.empty() )
setupBookkeeping();
lastRealEmissionKey =
realEmissionKey(lastHeadXComb().mePartonData(),realEmitter(),realEmission(),realSpectator());
map<RealEmissionKey,UnderlyingBornInfo>::const_iterator k =
theMergingMap.find(lastRealEmissionKey);
if ( k == theMergingMap.end() ) {
theApply = false;
return;
}
theApply = true;
lastUnderlyingBornKey = k->second.first;
bornEmitter(emitter(lastUnderlyingBornKey));
bornSpectator(spectator(lastUnderlyingBornKey));
}
void SubtractionDipole::splittingBookkeeping() {
if ( theMergingMap.empty() )
setupBookkeeping();
map<cPDVector,pair<int,int> >::const_iterator esit =
theIndexMap.find(lastHeadXComb().mePartonData());
if ( esit == theIndexMap.end() ) {
theApply = false;
return;
}
theApply = true;
pair<int,int> es = esit->second;
bornEmitter(es.first);
bornSpectator(es.second);
lastUnderlyingBornKey = underlyingBornKey(lastHeadXComb().mePartonData(),bornEmitter(),bornSpectator());
typedef multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator spit;
pair<spit,spit> kr = theSplittingMap.equal_range(lastUnderlyingBornKey);
assert(kr.first != kr.second);
lastRealEmissionInfo = kr.first;
for ( ; lastRealEmissionInfo != kr.second; ++lastRealEmissionInfo )
if ( process(lastRealEmissionInfo->second.first) == lastXComb().mePartonData() )
break;
assert(lastRealEmissionInfo != kr.second);
lastRealEmissionKey = lastRealEmissionInfo->second.first;
realEmitter(emitter(lastRealEmissionKey));
realEmission(emission(lastRealEmissionKey));
realSpectator(spectator(lastRealEmissionKey));
}
StdXCombPtr SubtractionDipole::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
- const PartonPairVec& allPBins,
+ const PartonPairVec&,
tStdXCombPtr newHead,
- tMEPtr) {
- if ( splitting() ) {
- return
- underlyingBornME()->makeXComb(newMaxEnergy, inc,
- newEventHandler, newSubProcessHandler,
- newExtractor, newCKKW,
- newPartonBins, newCuts,
- newDiagrams, mir,
- allPBins,
- newHead);
- }
- return
- realEmissionME()->makeXComb(newMaxEnergy, inc,
- newEventHandler, newSubProcessHandler,
- newExtractor, newCKKW,
- newPartonBins, newCuts,
- newDiagrams, mir,
- allPBins,
- newHead);
+ tMEPtr newME) {
+ if ( !newME )
+ newME = this;
+ return new_ptr(StandardXComb(newMaxEnergy, inc,
+ newEventHandler, newSubProcessHandler,
+ newExtractor, newCKKW,
+ newPartonBins, newCuts, newME,
+ newDiagrams, mir,
+ newHead));
}
StdXCombPtr SubtractionDipole::makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
- tMEPtr) {
- if ( splitting() ) {
- return
- underlyingBornME()->makeXComb(newHead, newPartonBins, newDiagrams);
- }
- return
- realEmissionME()->makeXComb(newHead, newPartonBins, newDiagrams);
+ tMEPtr newME) {
+ if ( !newME )
+ newME = this;
+ return new_ptr(StandardXComb(newHead, newPartonBins, newME, newDiagrams));
}
StdXCombPtr SubtractionDipole::makeBornXComb(tStdXCombPtr realXC) {
const cPDVector& proc = const_cast<const StandardXComb&>(*realXC).mePartonData();
lastRealEmissionKey =
realEmissionKey(proc,realEmitter(),realEmission(),realSpectator());
map<RealEmissionKey,UnderlyingBornInfo>::const_iterator k =
theMergingMap.find(lastRealEmissionKey);
if ( k == theMergingMap.end() )
return StdXCombPtr();
PartonPairVec pbs = realXC->pExtractor()->getPartons(realXC->maxEnergy(),
realXC->particles(),
*(realXC->cuts()));
DiagramVector bornDiags = underlyingBornDiagrams(proc);
assert(!bornDiags.empty());
PartonPairVec::iterator ppit = pbs.begin();
for ( ; ppit != pbs.end(); ++ppit ) {
if ( ppit->first->parton() == bornDiags.front()->partons()[0] &&
ppit->second->parton() == bornDiags.front()->partons()[1] )
break;
}
assert(ppit != pbs.end());
return
underlyingBornME()->makeXComb(realXC,*ppit,bornDiags,this);
}
vector<StdXCombPtr> SubtractionDipole::makeRealXCombs(tStdXCombPtr bornXC) {
const cPDVector& proc = const_cast<const StandardXComb&>(*bornXC).mePartonData();
map<cPDVector,pair<int,int> >::const_iterator esit = theIndexMap.find(proc);
if ( esit == theIndexMap.end() )
return vector<StdXCombPtr>();
pair<int,int> es = esit->second;
bornEmitter(es.first);
bornSpectator(es.second);
lastUnderlyingBornKey = underlyingBornKey(proc,bornEmitter(),bornSpectator());
if ( theSplittingMap.find(lastUnderlyingBornKey) == theSplittingMap.end() )
return vector<StdXCombPtr>();
PartonPairVec pbs = bornXC->pExtractor()->getPartons(bornXC->maxEnergy(),
bornXC->particles(),
*(bornXC->cuts()));
DiagramVector realDiags = realEmissionDiagrams(proc);
assert(!realDiags.empty());
vector<StdXCombPtr> res;
map<cPDVector,DiagramVector> realProcs;
for ( MEBase::DiagramVector::const_iterator d = realDiags.begin();
d != realDiags.end(); ++d ) {
realProcs[(**d).partons()].push_back(*d);
}
for ( map<cPDVector,DiagramVector>::const_iterator pr =
realProcs.begin(); pr != realProcs.end(); ++pr ) {
PartonPairVec::iterator ppit = pbs.begin();
for ( ; ppit != pbs.end(); ++ppit ) {
if ( ppit->first->parton() == pr->second.front()->partons()[0] &&
ppit->second->parton() == pr->second.front()->partons()[1] )
break;
}
assert(ppit != pbs.end());
StdXCombPtr rxc =
realEmissionME()->makeXComb(bornXC,*ppit,pr->second,this);
res.push_back(rxc);
}
return res;
}
const MEBase::DiagramVector& SubtractionDipole::underlyingBornDiagrams(const cPDVector& real) const {
static DiagramVector empty;
map<cPDVector,DiagramVector>::const_iterator k = theUnderlyingBornDiagrams.find(real);
if (k == theUnderlyingBornDiagrams.end() )
return empty;
return k->second;
}
const MEBase::DiagramVector& SubtractionDipole::realEmissionDiagrams(const cPDVector& born) const {
static DiagramVector empty;
map<cPDVector,DiagramVector>::const_iterator k = theRealEmissionDiagrams.find(born);
if ( k == theRealEmissionDiagrams.end() )
return empty;
return k->second;
}
void SubtractionDipole::getDiagrams() const {
if ( splitting() ) {
realEmissionME()->diagrams();
useDiagrams(realEmissionME());
} else {
underlyingBornME()->diagrams();
useDiagrams(underlyingBornME());
}
}
Selector<MEBase::DiagramIndex> SubtractionDipole::diagrams(const DiagramVector & dv) const {
Ptr<MatchboxMEBase>::tcptr me =
splitting() ?
realEmissionME() :
underlyingBornME();
if ( me->phasespace() ) {
me->phasespace()->prepare(lastXCombPtr());
me->phasespace()->fillDiagramWeights();
}
return
me->diagrams(dv);
}
MEBase::DiagramIndex SubtractionDipole::diagram(const DiagramVector & dv) const {
Ptr<MatchboxMEBase>::tcptr me =
splitting() ?
realEmissionME() :
underlyingBornME();
if ( me->phasespace() ) {
me->phasespace()->prepare(lastXCombPtr());
me->phasespace()->fillDiagramWeights();
}
return
me->diagram(dv);
}
Selector<const ColourLines *>
SubtractionDipole::colourGeometries(tcDiagPtr diag) const {
return
splitting() ?
realEmissionME()->colourGeometries(diag) :
underlyingBornME()->colourGeometries(diag);
}
const ColourLines &
SubtractionDipole::selectColourGeometry(tcDiagPtr diag) const {
return
splitting() ?
realEmissionME()->selectColourGeometry(diag) :
underlyingBornME()->selectColourGeometry(diag);
}
void SubtractionDipole::flushCaches() {
theUnderlyingBornME->flushCaches();
theRealEmissionME->flushCaches();
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator r =
reweights().begin(); r != reweights().end(); ++r ) {
(**r).flushCaches();
}
}
void SubtractionDipole::setXComb(tStdXCombPtr xc) {
if ( !xc ) {
theApply = false;
return;
} else {
theApply = true;
}
MEBase::setXComb(xc);
if ( splitting() ) {
realEmissionME()->setXComb(xc);
underlyingBornME()->setXComb(xc->head());
splittingBookkeeping();
} else {
realEmissionME()->setXComb(xc->head());
underlyingBornME()->setXComb(xc);
subtractionBookkeeping();
}
if ( !apply() )
return;
}
void SubtractionDipole::setKinematics() {
MEBase::setKinematics();
if ( splitting() )
realEmissionME()->setKinematics();
else
underlyingBornME()->setKinematics();
}
bool SubtractionDipole::generateKinematics(const double * r) {
if ( lastXCombPtr()->kinematicsGenerated() )
return true;
if ( splitting() ) {
if ( !generateRadiationKinematics(r) )
return false;
realEmissionME()->lastXCombPtr()->setIncomingPartons();
realEmissionME()->setScale();
double jac = jacobian();
jac *= pow(underlyingBornME()->lastXComb().lastSHat() / realEmissionME()->lastXComb().lastSHat(),
realEmissionME()->lastXComb().mePartonData().size()-4.);
jacobian(jac);
assert(lastXCombPtr() == realEmissionME()->lastXCombPtr());
lastXCombPtr()->didGenerateKinematics();
return true;
}
if ( !generateTildeKinematics() )
return false;
underlyingBornME()->setScale();
assert(lastXCombPtr() == underlyingBornME()->lastXCombPtr());
underlyingBornME()->lastXCombPtr()->setIncomingPartons();
lastXCombPtr()->didGenerateKinematics();
return true;
}
int SubtractionDipole::nDim() const {
if ( !splitting() )
return underlyingBornME()->nDim();
return underlyingBornME()->nDim() + nDimRadiation();
}
void SubtractionDipole::clearKinematics() {
MEBase::clearKinematics();
if ( splitting() )
realEmissionME()->clearKinematics();
else
underlyingBornME()->clearKinematics();
}
void SubtractionDipole::tildeKinematics(Ptr<TildeKinematics>::tptr tk) {
theTildeKinematics = tk;
}
bool SubtractionDipole::generateTildeKinematics() {
assert(!splitting());
if ( !tildeKinematics() ) {
jacobian(0.0);
return false;
}
theTildeKinematics->prepare(lastHeadXCombPtr(),lastXCombPtr());
if ( !theTildeKinematics->doMap() ) {
jacobian(0.0);
return false;
}
theLastSubtractionScale = theTildeKinematics->lastScale();
theLastSubtractionPt = theTildeKinematics->lastPt();
meMomenta().resize(lastHeadXComb().meMomenta().size() - 1);
assert(mergingMap().find(lastRealEmissionKey) != mergingMap().end());
map<int,int>& trans = theMergingMap[lastRealEmissionKey].second;
int n = lastHeadXComb().meMomenta().size();
for ( int k = 0; k < n; ++k ) {
if ( k == realEmitter() || k == realEmission() || k == realSpectator() )
continue;
meMomenta()[trans[k]] = lastHeadXComb().meMomenta()[k];
if ( theTildeKinematics->doesTransform() && k > 1 )
meMomenta()[trans[k]] = theTildeKinematics->transform(meMomenta()[trans[k]]);
}
meMomenta()[bornEmitter()] = tildeKinematics()->bornEmitterMomentum();
meMomenta()[bornSpectator()] = tildeKinematics()->bornSpectatorMomentum();
cPDVector::const_iterator pd = mePartonData().begin();
vector<Lorentz5Momentum>::iterator p = meMomenta().begin();
for ( ; pd != mePartonData().end(); ++pd, ++p ) {
p->setMass((**pd).mass());
p->rescaleRho();
}
jacobian(realEmissionME()->lastXComb().jacobian());
logGenerateTildeKinematics();
return true;
}
void SubtractionDipole::invertedTildeKinematics(Ptr<InvertedTildeKinematics>::tptr itk) {
theInvertedTildeKinematics = itk;
}
int SubtractionDipole::nDimRadiation() const {
return invertedTildeKinematics() ?
invertedTildeKinematics()->nDimRadiation() :
0;
}
bool SubtractionDipole::generateRadiationKinematics(const double * r) {
assert(splitting());
if ( !invertedTildeKinematics() ) {
jacobian(0.0);
return false;
}
theInvertedTildeKinematics->prepare(lastXCombPtr(),lastHeadXCombPtr());
if ( !theInvertedTildeKinematics->doMap(r) ) {
jacobian(0.0);
return false;
}
theLastSplittingScale = theInvertedTildeKinematics->lastScale();
theLastSplittingPt = theInvertedTildeKinematics->lastPt();
meMomenta().resize(lastHeadXComb().meMomenta().size() + 1);
assert(splittingMap().find(lastUnderlyingBornKey) != splittingMap().end());
map<int,int>& trans = const_cast<map<int,int>&>(lastRealEmissionInfo->second.second);
int n = lastHeadXComb().meMomenta().size();
for ( int k = 0; k < n; ++k ) {
if ( k == bornEmitter() || k == bornSpectator() )
continue;
meMomenta()[trans[k]] = lastHeadXComb().meMomenta()[k];
if ( invertedTildeKinematics()->doesTransform() && k > 1 )
meMomenta()[trans[k]] = invertedTildeKinematics()->transform(meMomenta()[trans[k]]);
}
meMomenta()[realEmitter()] = invertedTildeKinematics()->realEmitterMomentum();
meMomenta()[realEmission()] = invertedTildeKinematics()->realEmissionMomentum();
meMomenta()[realSpectator()] = invertedTildeKinematics()->realSpectatorMomentum();
cPDVector::const_iterator pd = mePartonData().begin();
vector<Lorentz5Momentum>::iterator p = meMomenta().begin();
for ( ; pd != mePartonData().end(); ++pd, ++p ) {
p->setMass((**pd).mass());
p->rescaleRho();
}
jacobian(underlyingBornME()->lastXComb().jacobian() *
invertedTildeKinematics()->jacobian());
logGenerateRadiationKinematics(r);
return true;
}
void SubtractionDipole::ptCut(Energy cut) {
theInvertedTildeKinematics->ptCut(cut);
}
CrossSection SubtractionDipole::dSigHatDR(Energy2 factorizationScale) const {
double pdfweight = 1.;
double jac = jacobian();
if ( splitting() && jac == 0.0 ) {
lastMECrossSection(ZERO);
lastME2(0.0);
return ZERO;
}
if ( factorizationScale == ZERO ) {
if ( realEmissionScales() )
factorizationScale = realEmissionME()->lastScale();
else
factorizationScale = underlyingBornME()->lastScale();
}
if ( havePDFWeight1() ) {
pdfweight *= realEmissionME()->pdf1(factorizationScale);
}
if ( havePDFWeight2() ) {
pdfweight *= realEmissionME()->pdf2(factorizationScale);
}
lastMEPDFWeight(pdfweight);
if ( showerApproximation() && realShowerSubtraction() ) {
assert(!splitting());
showerApproximation()->setBornXComb(lastXCombPtr());
showerApproximation()->setRealXComb(realEmissionME()->lastXCombPtr());
showerApproximation()->setDipole(this);
if ( !showerApproximation()->isAboveCutoff() )
showerApproximation()->wasBelowCutoff();
if ( !showerApproximation()->isInShowerPhasespace() ) {
lastMECrossSection(ZERO);
lastME2(0.0);
return ZERO;
}
lastMECrossSection(-showerApproximation()->dSigHatDR());
return lastMECrossSection();
}
double xme2 = 0.0;
if ( lastME2() == 0.0 ) {
if ( !showerKernel() )
xme2 = me2();
else
xme2 = me2Avg(-underlyingBornME()->me2());
} else {
xme2 = lastME2();
}
if ( xme2 == 0.0 ) {
lastMECrossSection(ZERO);
lastME2(0.0);
return ZERO;
}
if ( realEmissionScales() ) {
xme2 *=
pow(realEmissionME()->lastXComb().lastAlphaS()/
underlyingBornME()->lastXComb().lastAlphaS(),
realEmissionME()->orderInAlphaS());
xme2 *=
pow(realEmissionME()->lastXComb().lastAlphaEM()/
underlyingBornME()->lastXComb().lastAlphaEM(),
underlyingBornME()->orderInAlphaEW());
}
lastME2(xme2);
CrossSection res =
sqr(hbarc) * jac * pdfweight * xme2 /
(2. * realEmissionME()->lastXComb().lastSHat());
if ( !showerApproximation() ) {
double weight = 0.0;
bool applied = false;
for ( vector<Ptr<MatchboxReweightBase>::ptr>::const_iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).setXComb(theRealEmissionME->lastXCombPtr());
if ( !(**rw).apply() )
continue;
weight += (**rw).evaluate();
applied = true;
}
if ( applied )
res *= weight;
}
if ( showerApproximation() && virtualShowerSubtraction() ) {
assert(!splitting());
showerApproximation()->setBornXComb(lastXCombPtr());
showerApproximation()->setRealXComb(realEmissionME()->lastXCombPtr());
showerApproximation()->setDipole(this);
if ( !showerApproximation()->isAboveCutoff() )
showerApproximation()->wasBelowCutoff();
else
lastME2(0.0);
CrossSection shower = ZERO;
if ( showerApproximation()->isInShowerPhasespace() )
shower = showerApproximation()->dSigHatDR();
res -= shower;
}
lastMECrossSection(-res);
logDSigHatDR(jac);
return lastMECrossSection();
}
void SubtractionDipole::print(ostream& os) const {
os << "--- SubtractionDipole setup ----------------------------------------------------\n";
os << " subtraction '" << name() << "'\n for real emission '"
<< theRealEmissionME->name() << "'\n using underlying Born '"
<< theUnderlyingBornME->name() << "'\n";
os << " tilde kinematics are '"
<< (theTildeKinematics ? theTildeKinematics->name() : "")
<< " '\n inverted tilde kinematics are '"
<< (theInvertedTildeKinematics ? theInvertedTildeKinematics->name() : "") << "'\n";
os << " the following subtraction mappings have been found:\n";
for ( map<RealEmissionKey,UnderlyingBornInfo>::const_iterator m =
theMergingMap.begin(); m != theMergingMap.end(); ++m ) {
os << " " << process(m->second.first)[0]->PDGName() << " "
<< process(m->second.first)[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = process(m->second.first).begin() + 2;
p != process(m->second.first).end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "[" << emitter(m->second.first) << "," << spectator(m->second.first) << "] <=> ";
os << process(m->first)[0]->PDGName() << " "
<< process(m->first)[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = process(m->first).begin() + 2;
p != process(m->first).end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "[(" << emitter(m->first) << "," << emission(m->first) << ")," << spectator(m->first) << "]\n"
<< " non-dipole momenta ( ";
for ( map<int,int>::const_iterator k = m->second.second.begin();
k != m->second.second.end(); ++k ) {
if ( k->first == spectator(m->first) )
continue;
os << k->second << " ";
}
os << ") <=> ( ";
for ( map<int,int>::const_iterator k = m->second.second.begin();
k != m->second.second.end(); ++k ) {
if ( k->first == spectator(m->first) )
continue;
os << k->first << " ";
}
os << ")\n";
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void SubtractionDipole::printLastEvent(ostream& os) const {
os << "--- SubtractionDipole last event information -----------------------------------\n";
os << " for dipole '" << name() << "' applying ["
<< bornEmitter() << "," << bornSpectator() << "] <=> [("
<< realEmitter() << "," << realEmission() << ")," << realSpectator() << "]\n"
<< " evaluated the cross section/nb " << (lastMECrossSection()/nanobarn) << "\n"
<< " with subtraction parameters x[0] = " << subtractionParameters()[0]
<< " x[1] = " << subtractionParameters()[1] << "\n";
os << " the last real emission event was:\n";
realEmissionME()->printLastEvent(os);
os << " the last underlying Born event was:\n";
underlyingBornME()->printLastEvent(os);
os << "--- end SubtractionDipole last event information -------------------------------\n";
os << flush;
}
void SubtractionDipole::logME2() const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
tcStdXCombPtr bornxc = splitting() ? lastHeadXCombPtr() : lastXCombPtr();
tcStdXCombPtr realxc = splitting() ? lastXCombPtr() : lastHeadXCombPtr();
generator()->log() << "'" << name() << "' evaluated me2 using\n"
<< "Born XComb " << bornxc << " real XComb " << realxc << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "Born phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = bornxc->meMomenta().begin();
cPDVector::const_iterator dit = bornxc->mePartonData().begin();
for ( ; pit != bornxc->meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << bornxc->lastX1() << " x2 = " << bornxc->lastX2() << "\n"
<< "sHat/GeV2 = " << (bornxc->lastSHat()/GeV2) << "\n";
generator()->log() << "Real emission phase space point (in GeV):\n";
pit = realxc->meMomenta().begin();
dit = realxc->mePartonData().begin();
for ( ; pit != realxc->meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << realxc->lastX1() << " x2 = " << realxc->lastX2() << "\n"
<< "sHat/GeV2 = " << (realxc->lastSHat()/GeV2) << "\n";
generator()->log() << "me2 = " << lastME2() << "\n" << flush;
}
void SubtractionDipole::logDSigHatDR(double effectiveJac) const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
tcStdXCombPtr bornxc = splitting() ? lastHeadXCombPtr() : lastXCombPtr();
tcStdXCombPtr realxc = splitting() ? lastXCombPtr() : lastHeadXCombPtr();
generator()->log() << "'" << name() << "' evaluated cross section using\n"
<< "Born XComb " << bornxc << " real XComb " << realxc << "\n"
<< "Jacobian = " << jacobian()
<< " effective Jacobian = " << effectiveJac << "\n"
<< "Born sHat/GeV2 = " << (bornxc->lastSHat()/GeV2)
<< " real sHat/GeV2 = " << (realxc->lastSHat()/GeV2)
<< " dsig/nb = "
<< (lastMECrossSection()/nanobarn) << "\n" << flush;
}
void SubtractionDipole::logGenerateTildeKinematics() const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
generator()->log() << "'" << name() << "' generating tilde kinematics.\n"
<< "configuration: [" << bornEmitter() << ","
<< bornSpectator() << "] => "
<< "[(" << realEmitter() << "," << realEmission() << "),"
<< realSpectator() << "]\n"
<< "with real xcomb " << lastHeadXCombPtr() << " born xcomb "
<< lastXCombPtr() << "\n"
<< "from real emission phase space point:\n";
Lorentz5Momentum rSum;
vector<Lorentz5Momentum>::const_iterator pr = lastHeadXComb().meMomenta().begin();
cPDVector::const_iterator dr = lastHeadXComb().mePartonData().begin();
size_t count = 0;
for ( ; pr != lastHeadXComb().meMomenta().end(); ++pr,++dr ) {
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
if ( count < 2 ) {
rSum -= *pr;
} else {
rSum += *pr;
}
++count;
}
generator()->log() << "sum : " << (rSum/GeV) << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n"
<< "with scale/GeV = " << (theLastSubtractionScale/GeV)
<< "and pt/GeV = " << (theLastSubtractionPt/GeV) << "\n";
generator()->log() << "generated tilde kinematics:\n";
pr = lastXComb().meMomenta().begin();
dr = lastXComb().mePartonData().begin();
count = 0;
Lorentz5Momentum bSum;
for ( ; pr != lastXComb().meMomenta().end(); ++pr,++dr ) {
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
if ( count < 2 ) {
bSum -= *pr;
} else {
bSum += *pr;
}
++count;
}
generator()->log() << "sum : " << (bSum/GeV) << "\n";
generator()->log() << "Jacobian = " << jacobian() << "\n" << flush;
}
void SubtractionDipole::logGenerateRadiationKinematics(const double * r) const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
generator()->log() << "'" << name() << "' generating radiation kinematics.\n"
<< "configuration: [" << bornEmitter() << ","
<< bornSpectator() << "] => "
<< "[(" << realEmitter() << "," << realEmission() << "),"
<< realSpectator() << "]\n"
<< "with born xcomb " << lastHeadXCombPtr() << " real xcomb "
<< lastXCombPtr() << "\n"
<< "from random numbers:\n";
copy(r,r+nDimRadiation(),ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "and born phase space point:\n";
vector<Lorentz5Momentum>::const_iterator pr = lastHeadXComb().meMomenta().begin();
cPDVector::const_iterator dr = lastHeadXComb().mePartonData().begin();
for ( ; pr != lastHeadXComb().meMomenta().end(); ++pr,++dr )
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n" << flush;
generator()->log() << "scales: scale/GeV = " << (theLastSplittingScale/GeV)
<< " pt/GeV = " << (theLastSplittingPt/GeV) << "\n" << flush;
generator()->log() << "generated real emission kinematics:\n";
pr = lastXComb().meMomenta().begin();
dr = lastXComb().mePartonData().begin();
for ( ; pr != lastXComb().meMomenta().end(); ++pr,++dr )
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
generator()->log() << "Jacobian = "
<< jacobian() << " = "
<< underlyingBornME()->lastXComb().jacobian()
<< "|Born * "
<< invertedTildeKinematics()->jacobian()
<< "|Radiation\n" << flush;
}
void SubtractionDipole::cloneDependencies(const std::string& prefix) {
if ( underlyingBornME() ) {
Ptr<MatchboxMEBase>::ptr myUnderlyingBornME = underlyingBornME()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myUnderlyingBornME->name();
if ( ! (generator()->preinitRegister(myUnderlyingBornME,pname.str()) ) )
throw InitException() << "Matrix element " << pname.str() << " already existing.";
myUnderlyingBornME->cloneDependencies(pname.str());
underlyingBornME(myUnderlyingBornME);
}
if ( realEmissionME() ) {
Ptr<MatchboxMEBase>::ptr myRealEmissionME = realEmissionME()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myRealEmissionME->name();
if ( ! (generator()->preinitRegister(myRealEmissionME,pname.str()) ) )
throw InitException() << "Matrix element " << pname.str() << " already existing.";
myRealEmissionME->cloneDependencies(pname.str());
realEmissionME(myRealEmissionME);
}
if ( tildeKinematics() ) {
Ptr<TildeKinematics>::ptr myTildeKinematics = tildeKinematics()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myTildeKinematics->name();
if ( ! (generator()->preinitRegister(myTildeKinematics,pname.str()) ) )
throw InitException() << "Tilde kinematics " << pname.str() << " already existing.";
myTildeKinematics->dipole(this);
tildeKinematics(myTildeKinematics);
}
if ( invertedTildeKinematics() ) {
Ptr<InvertedTildeKinematics>::ptr myInvertedTildeKinematics = invertedTildeKinematics()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myInvertedTildeKinematics->name();
if ( ! (generator()->preinitRegister(myInvertedTildeKinematics,pname.str()) ) )
throw InitException() << "Inverted tilde kinematics " << pname.str() << " already existing.";
myInvertedTildeKinematics->dipole(this);
invertedTildeKinematics(myInvertedTildeKinematics);
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
Ptr<MatchboxReweightBase>::ptr myReweight = (**rw).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**rw).name();
if ( ! (generator()->preinitRegister(myReweight,pname.str()) ) )
throw InitException() << "Reweight " << pname.str() << " already existing.";
myReweight->cloneDependencies(pname.str());
*rw = myReweight;
}
}
void SubtractionDipole::constructVertex(tSubProPtr sub) {
if ( splitting() )
realEmissionME()->constructVertex(sub);
else
underlyingBornME()->constructVertex(sub);
}
void SubtractionDipole::generateSubCollision(SubProcess & sub) {
if ( splitting() )
realEmissionME()->generateSubCollision(sub);
else
underlyingBornME()->generateSubCollision(sub);
}
void SubtractionDipole::persistentOutput(PersistentOStream & os) const {
os << theSplitting << theApply << theSubtractionTest << theIgnoreCuts
<< theShowerKernel << theRealEmissionME << theUnderlyingBornME
<< theTildeKinematics << theInvertedTildeKinematics << theReweights
<< theRealEmitter << theRealEmission << theRealSpectator
<< theSubtractionParameters
<< theMergingMap << theSplittingMap << theIndexMap
<< theUnderlyingBornDiagrams << theRealEmissionDiagrams
<< lastRealEmissionKey << lastUnderlyingBornKey
<< theBornEmitter << theBornSpectator
<< theShowerApproximation
<< theRealShowerSubtraction << theVirtualShowerSubtraction
<< thePartners << theRealEmissionScales;
}
void SubtractionDipole::persistentInput(PersistentIStream & is, int) {
is >> theSplitting >> theApply >> theSubtractionTest >> theIgnoreCuts
>> theShowerKernel >> theRealEmissionME >> theUnderlyingBornME
>> theTildeKinematics >> theInvertedTildeKinematics >> theReweights
>> theRealEmitter >> theRealEmission >> theRealSpectator
>> theSubtractionParameters
>> theMergingMap >> theSplittingMap >> theIndexMap
>> theUnderlyingBornDiagrams >> theRealEmissionDiagrams
>> lastRealEmissionKey >> lastUnderlyingBornKey
>> theBornEmitter >> theBornSpectator
>> theShowerApproximation
>> theRealShowerSubtraction >> theVirtualShowerSubtraction
>> thePartners >> theRealEmissionScales;
}
void SubtractionDipole::Init() {
static ClassDocumentation<SubtractionDipole> documentation
("SubtractionDipole represents a dipole subtraction "
"term in the formalism of Catani and Seymour.");
static Reference<SubtractionDipole,MatchboxMEBase> interfaceUnderlyingBornME
("UnderlyingBornME",
"The underlying Born matrix element.",
&SubtractionDipole::theUnderlyingBornME, false, false, true, true, false);
static Reference<SubtractionDipole,MatchboxMEBase> interfaceRealEmissionME
("RealEmissionME",
"The real emission matrix element.",
&SubtractionDipole::theRealEmissionME, false, false, true, true, false);
static RefVector<SubtractionDipole,SubtractionDipole> interfacePartners
("Partners",
"The partner dipoles found along with this dipole.",
&SubtractionDipole::thePartners, -1, false, false, true, false, false);
static Reference<SubtractionDipole,TildeKinematics> interfaceTildeKinematics
("TildeKinematics",
"Set the TildeKinematics object to be used.",
&SubtractionDipole::theTildeKinematics, false, false, true, false, false);
static Reference<SubtractionDipole,InvertedTildeKinematics> interfaceInvertedTildeKinematics
("InvertedTildeKinematics",
"Set the InvertedTildeKinematics object to be used.",
&SubtractionDipole::theInvertedTildeKinematics, false, false, true, true, false);
static RefVector<SubtractionDipole,MatchboxReweightBase> interfaceReweights
("Reweights",
"Reweight objects to be applied to this matrix element.",
&SubtractionDipole::theReweights, -1, false, false, true, true, false);
static Reference<SubtractionDipole,ShowerApproximation> interfaceShowerApproximation
("ShowerApproximation",
"Set the shower approximation to be considered.",
&SubtractionDipole::theShowerApproximation, false, false, true, true, false);
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeAbstractClass<SubtractionDipole,MEBase>
describeSubtractionDipole("Herwig::SubtractionDipole", "HwMatchbox.so");

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:38 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242947
Default Alt Text
(39 KB)

Event Timeline