Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877367
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
36 KB
Subscribers
None
View Options
diff --git a/Contrib/HiggsPair/MEHiggsPair.cc b/Contrib/HiggsPair/MEHiggsPair.cc
--- a/Contrib/HiggsPair/MEHiggsPair.cc
+++ b/Contrib/HiggsPair/MEHiggsPair.cc
@@ -1,718 +1,747 @@
// -*- C++ -*-
//
// MEHiggsPair.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2009-2011 The Herwig Collaboration
//
// Herwig is licenaaaced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEHiggsPair class.
//
#include "MEHiggsPair.h"
#include "ThePEG/Utilities/SimplePhaseSpace.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/MatrixElement/Tree2toNDiagram.h"
#include "Herwig/Models/StandardModel/StandardModel.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/Cuts/Cuts.h"
#include "Herwig/Utilities/Maths.h"
#include <fstream>
#include <cmath>
namespace Herwig {
}
using namespace Herwig;
MEHiggsPair::MEHiggsPair()
- : _selfcoupling(1.0),_hhHcoupling(1.0), _process(0), _mh(), _wh(), _cH(0.0), _c6(0.0), _ct1(0.0), _cb1(0.0), _ct2(0.0), _cb2(0.0), _cg1(0.0), _cg2(0.0), _EFTScale(1000*GeV), _fixedalphaS(0), _alphasfixedvalue(0.1), _alphascale(90.0*GeV), _basescale(125.0*GeV), _fixedscale(0), _scalemultiplier(1.0) {
+ : _selfcoupling(1.0),_hhHcoupling(1.0), _process(0), _mh(), _wh(), _cH(0.0), _c6(0.0), _ct1(0.0), _cb1(0.0), _ct2(0.0), _cb2(0.0), _cg1(0.0), _cg2(0.0), _EFTScale(1000*GeV), _fixedalphaS(0), _alphasfixedvalue(0.1), _alphascale(90.0*GeV), _basescale(125.0*GeV), _fixedscale(0), _scalemultiplier(1.0), _yH(1.0), _yh(1.0), _ybH(1.0), _ybh(1.0) {
massOption(vector<unsigned int>(2,0));
}
int MEHiggsPair::nDim() const {
return 5;
}
void MEHiggsPair::doinit() {
if(_process == 5 || _process == 6) { cerr << "HH and hH production not implemented yet, please choose an hh production subprocess" << endl; exit(1); }
if(_process == 4) { cerr << "WARNING: In the EFT, the option SelfCoupling is not used." << endl; }
higgs(getParticleData(ParticleID::h0));
PDPtr wboson = getParticleData(ParticleID::Wplus);
_Wmass = wboson->mass();
PDPtr top = getParticleData(ParticleID::t);
_topmass = top->mass();
PDPtr zboson = getParticleData(ParticleID::Z0);
_zmass = zboson->mass();
PDPtr bottom = getParticleData(ParticleID::b);
_bottommass = bottom->mass();
PDPtr heavyH = getParticleData(35);
_heavyHmass = heavyH->mass();
_heavyHwidth = heavyH->width();
// higgs stuff
_mh = _higgs->mass();
_m1 = _higgs->mass();
_m2 = _higgs->mass();
_wh = _higgs->width();
if(_higgs->massGenerator()) {
_hmass=dynamic_ptr_cast<GenericMassGeneratorPtr>(_higgs->massGenerator());
}
HwMEBase::doinit();
}
void MEHiggsPair::rebind(const TranslationMap & trans) {
HwMEBase::rebind(trans);
}
IVector MEHiggsPair::getReferences() {
IVector ret = HwMEBase::getReferences();
return ret;
}
IBPtr MEHiggsPair::clone() const {
return new_ptr(*this);
}
IBPtr MEHiggsPair::fullclone() const {
return new_ptr(*this);
}
void MEHiggsPair::persistentOutput(PersistentOStream & os) const {
- os << _selfcoupling << _hhHcoupling << _process << _higgs << ounit(_topmass,GeV) << ounit(_bottommass,GeV) << ounit(_zmass,GeV) << ounit(_m1,GeV) << ounit(_m2,GeV) << ounit(_mh,GeV) << ounit(_wh,GeV) << _hmass << _cH << _c6 << _ct1 << _cb1 << _ct2 << _cb2 << _cg1 << _cg2 << ounit(_EFTScale,GeV) << _fixedalphaS << _alphasfixedvalue << ounit(_heavyHmass,GeV) << ounit(_heavyHwidth,GeV) << ounit(_basescale,GeV) << ounit(_alphascale,GeV) << _fixedscale << _scalemultiplier;
+ os << _selfcoupling << _hhHcoupling << _process << _higgs << ounit(_topmass,GeV) << ounit(_bottommass,GeV) << ounit(_zmass,GeV) << ounit(_m1,GeV) << ounit(_m2,GeV) << ounit(_mh,GeV) << ounit(_wh,GeV) << _hmass << _cH << _c6 << _ct1 << _cb1 << _ct2 << _cb2 << _cg1 << _cg2 << ounit(_EFTScale,GeV) << _fixedalphaS << _alphasfixedvalue << ounit(_heavyHmass,GeV) << ounit(_heavyHwidth,GeV) << ounit(_basescale,GeV) << ounit(_alphascale,GeV) << _fixedscale << _scalemultiplier << _yH << _yh << _ybH << _ybh;
}
void MEHiggsPair::persistentInput(PersistentIStream & is, int) {
- is >> _selfcoupling >> _hhHcoupling >> _process >> _higgs >> iunit(_topmass,GeV) >> iunit(_bottommass,GeV) >> iunit(_zmass,GeV) >> iunit(_m1,GeV) >> iunit(_m2,GeV) >> iunit(_mh,GeV) >> iunit(_wh,GeV) >> _hmass >> _cH >> _c6 >> _ct1 >> _cb1 >> _ct2 >> _cb2 >> _cg1 >> _cg2 >> iunit(_EFTScale,GeV) >> _fixedalphaS >> _alphasfixedvalue >> iunit(_heavyHmass,GeV) >> iunit(_heavyHwidth,GeV) >> iunit(_basescale,GeV) >> iunit(_alphascale,GeV) >> _fixedscale >> _scalemultiplier;
+ is >> _selfcoupling >> _hhHcoupling >> _process >> _higgs >> iunit(_topmass,GeV) >> iunit(_bottommass,GeV) >> iunit(_zmass,GeV) >> iunit(_m1,GeV) >> iunit(_m2,GeV) >> iunit(_mh,GeV) >> iunit(_wh,GeV) >> _hmass >> _cH >> _c6 >> _ct1 >> _cb1 >> _ct2 >> _cb2 >> _cg1 >> _cg2 >> iunit(_EFTScale,GeV) >> _fixedalphaS >> _alphasfixedvalue >> iunit(_heavyHmass,GeV) >> iunit(_heavyHwidth,GeV) >> iunit(_basescale,GeV) >> iunit(_alphascale,GeV) >> _fixedscale >> _scalemultiplier >> _yH >> _yh >> _ybH >> _ybh;
}
Energy2 MEHiggsPair::scale() const {
if(_fixedscale==0 || _fixedscale==5 ) { return sqr(_scalemultiplier)*sHat(); }
else if (_fixedscale==1 || _fixedscale==2 || _fixedscale==3) { return (sqr(_scalemultiplier)*sqr(_basescale)); }
}
// Definition of the static class description member.
ClassDescription<MEHiggsPair> MEHiggsPair::initMEHiggsPair;
void MEHiggsPair::Init() {
static ClassDocumentation<MEHiggsPair> documentation
("The MEHiggsPair class implements the gg -> hh processes in hadron-hadron"
" collisions");
static Parameter<MEHiggsPair, double> interfaceSelfCoupling
("SelfCoupling",
"Multiplier for the SM Higgs triple coupling",
&MEHiggsPair::_selfcoupling, 1.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacecH
("cH",
"Effective theory coefficient cH",
&MEHiggsPair::_cH, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacec6
("c6",
"Effective theory coefficient c6",
&MEHiggsPair::_c6, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacect1
("ct1",
"Effective theory coefficient ct1",
&MEHiggsPair::_ct1, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacecb1
("cb1",
"Effective theory coefficient fb1",
&MEHiggsPair::_cb1, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacect2
("ct2",
"Effective theory coefficient ft2",
&MEHiggsPair::_ct2, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacecb2
("cb2",
"Effective theory coefficient cb2",
&MEHiggsPair::_cb2, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacecg1
("cg1",
"Effective theory coefficient cg1",
&MEHiggsPair::_cg1, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacecg2
("cg2",
"Effective theory coefficient cg2",
&MEHiggsPair::_cg2, 0.0, -1000000.0, 1000000.0,
false, false, Interface::limited);
+ static Parameter<MEHiggsPair, double> interfacecyytHeavy
+ ("ytH",
+ "Multiplier for Heavy Higgs-top Yukawa",
+ &MEHiggsPair::_yH, 1.0, -1000000.0, 1000000.0,
+ false, false, Interface::limited);
+
+ static Parameter<MEHiggsPair, double> interfacecyytLight
+ ("yth",
+ "Multiplier for Light Higgs-top Yukawa",
+ &MEHiggsPair::_yh, 1.0, -1000000.0, 1000000.0,
+ false, false, Interface::limited);
+
+ static Parameter<MEHiggsPair, double> interfacecyybHeavy
+ ("ybH",
+ "Multiplier for Heavy Higgs-top Yukawa",
+ &MEHiggsPair::_ybH, 1.0, -1000000.0, 1000000.0,
+ false, false, Interface::limited);
+
+ static Parameter<MEHiggsPair, double> interfacecyybLight
+ ("ybh",
+ "Multiplier for Light Higgs-top Yukawa",
+ &MEHiggsPair::_ybh, 1.0, -1000000.0, 1000000.0,
+ false, false, Interface::limited);
+
+
static Parameter<MEHiggsPair, Energy> interfaceEFTScale
("EFTScale",
"Effective theory coefficient f1",
&MEHiggsPair::_EFTScale, GeV, 1000.0*GeV, 1.0*GeV, 10000000*GeV,
false, false, Interface::limited);
static Switch<MEHiggsPair,unsigned int> interfaceFixedAlphaS
("FixedAlphaS",
"Which implementation to use",
&MEHiggsPair::_fixedalphaS, 0, false, false);
static SwitchOption interfaceFixedAlphaSNo
(interfaceFixedAlphaS,
"No",
"Don't fix the scale of alphaS.",
0);
static SwitchOption interfaceFixedAlphaSScale
(interfaceFixedAlphaS,
"Scale",
"Fix the scale of alphaS.",
1);
static SwitchOption interfaceFixedAlphaSAlphaS
(interfaceFixedAlphaS,
"AlphaS",
"Fix alphaS directly via the AlphaS interface.",
2);
static Parameter<MEHiggsPair, Energy> interfaceBaseScale
("BaseScale",
"Base scale if fixed",
&MEHiggsPair::_basescale, GeV, 125.0*GeV, 0.0*GeV, 10000000.0*GeV,
false, false, Interface::limited);
static Switch<MEHiggsPair,unsigned int> interfaceFixedScale
("FixedScale",
"Whether to use fixed base scale or not",
&MEHiggsPair::_fixedscale, 0, false, false);
static SwitchOption interfaceFixedScaleNo
(interfaceFixedScale,
"sHat",
"Don't fix the base scale, use sHat().",
0);
static SwitchOption interfaceFixedScaleFixed
(interfaceFixedScale,
"Fixed",
"Fix the scale of the process to chosen (base scale)^2.",
2);
static SwitchOption interfaceFixedScaleBaseQuad
(interfaceFixedScale,
"FixedQuadPt",
"Fix the scale of the process to (base scale)^2 + pt^2.",
1);
static SwitchOption interfaceFixedScaleBaseLin
(interfaceFixedScale,
"FixedLinPt",
"Fix the scale of the process to (base scale + pt)^2.",
3);
static SwitchOption interfaceFixedScaleMHH
(interfaceFixedScale,
"MHH",
"Don't fix the base scale, use MHH.",
5);
static Parameter<MEHiggsPair, double> interfaceScaleMultiplier
("ScaleMultiplier",
"Multiplier scale",
&MEHiggsPair::_scalemultiplier, 1.0, 0.0, 100000.0,
false, false, Interface::limited);
static Parameter<MEHiggsPair, Energy> interfaceAlphaSScale
("AlphaSScale",
"Scale for alphaS if fixed",
&MEHiggsPair::_alphascale, GeV, 100.0*GeV, 0.0*GeV, 10000000.0*GeV,
false, false, Interface::limited);
static Parameter<MEHiggsPair, double> interfacehHHCoupling
("hhHCoupling",
"Multiplier for the hh-H triple coupling",
&MEHiggsPair::_hhHcoupling, 1.0, -10.0, 10.0,
false, false, Interface::limited);
//choose whether to include the triangle, box or both
static Switch<MEHiggsPair,unsigned int> interfaceProcess
("Process",
"Which subprocesses to include",
&MEHiggsPair::_process, 0, false, false);
static SwitchOption interfaceProcessAll
(interfaceProcess,
"All",
"Include all SM gg->hh subprocesses",
0);
static SwitchOption interfaceProcessTriangle
(interfaceProcess,
"ggToTriangleTohh",
"Include only SM gg->hh triangle subprocess",
1);
static SwitchOption interfaceProcessBox
(interfaceProcess,
"ggToBoxTohh",
"Include only SM gg->hh box subprocess",
2);
static SwitchOption interfaceProcessHhh
(interfaceProcess,
"ggToHTohh",
"Include all gg->hh subprocess, with heavy Higgs",
3);
static SwitchOption interfaceProcessEFT
(interfaceProcess,
"EFT",
"Include all SM gg->hh subprocesses in the EFT",
4);
static SwitchOption interfaceProcessHH
(interfaceProcess,
"ggToHH",
"Include all gg->HH subprocesses",
5);
static SwitchOption interfaceProcessHh
(interfaceProcess,
"ggToHh",
"Include only gg->hH subprocesses",
6);
static Parameter<MEHiggsPair, double> interfaceAlphaS
("AlphaS",
"The value of AlphaS if FixedAlphaS is AlphaS, option 1",
&MEHiggsPair::_alphasfixedvalue, 0.1, 0., 100000.0,
false, false, Interface::limited);
}
CrossSection MEHiggsPair::dSigHatDR() const {
using Constants::pi;
return me2()/(16.0*pi*sqr(sHat())/GeV/GeV)*sqr(hbarc);
}
Selector<MEBase::DiagramIndex>
MEHiggsPair::diagrams(const DiagramVector & diags) const {
// select the diagram, this is easy for us as we have already done it
Selector<DiagramIndex> sel;
for ( DiagramIndex i = 0; i < diags.size(); ++i ) {
sel.insert(1.0, i);
}
return sel;
}
//diagrams with box or triangle
void MEHiggsPair::getDiagrams() const {
// get the particle data objects
PDPtr gluon = getParticleData(ParticleID::g);
PDPtr boxon = getParticleData(99926);
PDPtr triangon = getParticleData(99927);
//cout<< _higgs->mass() << endl;
if(_process==0||_process==1||_process==3||_process==4) {
add(new_ptr((Tree2toNDiagram(2),gluon,gluon,
1,triangon,3,higgs(),higgs(),-1)));
}
if(_process==0||_process==2||_process==3||_process==4) {
add(new_ptr((Tree2toNDiagram(2),gluon,gluon,
1,boxon,3,higgs(),higgs(),-2)));
}
}
//both diagrams possess the same colour structure
Selector<const ColourLines *>
MEHiggsPair::colourGeometries(tcDiagPtr diag) const {
// colour lines for gg to hh
static const ColourLines cgghh("1 -2, -1 2");
Selector<const ColourLines *> sel;
switch(abs(diag->id())) {
case 1:
sel.insert(1.0, &cgghh);
break;
case 2:
sel.insert(1.0, &cgghh);
break;
}
return sel;
}
//the matrix element squared with the appropriate factors
double MEHiggsPair::me2() const {
using Constants::pi;
double mesq(0.);
//get the masses and Mandestam variables
Energy mh(_mh);
double Mc = _mh/GeV;
double Md = _mh/GeV;
double s = sHat()/GeV/GeV;
double t = tHat()/GeV/GeV;
double u = uHat()/GeV/GeV;
//calculate the matrix element from the form factors
mesq = MATRIX(s, t, u, Mc, Md);
//QCD factors
double ALPS=SM().alphaS(scale());
if(_fixedalphaS==1) { ALPS = _alphasfixedvalue; }
double QCD=sqr(ALPS);
//XLAM = beta*S
double XLAM=sqrt(sqr(s+sqr(Mc)-sqr(Md))-4.*s*sqr(Mc));
//the jacobian is jacobian()*XLAM
mesq *= jacobian()*XLAM;
mesq *= QCD / (2048.*sqr(pi));
return mesq;
}
bool MEHiggsPair::generateKinematics(const double * r) {
//C--FUNCTION FOR PARTONIC CROSS SECTION
using Constants::pi;
//the form factors
Complex A1,A2,H1,H2,Z1,Z2,AA1,AA2,HH1,HH2,AH1,AH2;
//phase space cut, masses, and Mandelstam variables
double EPS=1E-8;
double S = sHat()/GeV/GeV;
double T = tHat()/GeV/GeV;
double U = uHat()/GeV/GeV;
double M1 = _m1/GeV;
double M2 = _m2/GeV;
double mh = M1;
double WHAT = sqrt(S);
//generate the random variables
vector<double> Y;
int N=2;
Y.resize(N);
for(int I=0; I < N; I++) {
Y[I]=EPS+(1.-2.*EPS)*r[I];
}
jacobian(1.);
double DJAC = 1-2*EPS;
double V=Y[0]/2.;
double XLAM=sqrt(sqr(S+sqr(M1)-sqr(M2))-4.*S*sqr(M1));
double BET=XLAM/(S+sqr(M1)-sqr(M2));
//sample T1 and U1
double T1=-(S+sqr(M1)-sqr(M2))*((1.+BET)/2.-BET*V);
double U1=-(S+sqr(M1)-sqr(M2))*((1.-BET)/2.+BET*V);
T=T1+sqr(M1);
U=U1+sqr(M1);
//calculate the pT squared
double PT2=(T1*U1-S*sqr(M1))/S;
//if identical particles, divide by two
DJAC=DJAC/2.;
jacobian(DJAC*jacobian());
meMomenta()[2].setMass(mh*GeV);
meMomenta()[3].setMass(mh*GeV);
if(WHAT<2*mh) {
jacobian(0.);
return false;
}
Energy q = ZERO;
Energy pt = sqrt(PT2)*GeV;
//calculate the energy/theta/phi given the sqrt(S) = WHAT and pT
q = sqrt(sqr(WHAT)/4 - sqr(mh)) * GeV;
double cth = sqrt( 1 - sqr(pt)/sqr(q) );
double phi = UseRandom::rnd()*2.0*pi;
//set up the momenta in the COM
meMomenta()[2].setX(pt*sin(phi));
meMomenta()[2].setY(pt*cos(phi));
meMomenta()[2].setZ(q*cth);
meMomenta()[3].setX(-pt*sin(phi));
meMomenta()[3].setY(-pt*cos(phi));
meMomenta()[3].setZ(-q*cth);
meMomenta()[2].rescaleEnergy();
meMomenta()[3].rescaleEnergy();
return true;
}
void MEHiggsPair::setKinematics() {
HwMEBase::setKinematics();
}
vector<Complex> MEHiggsPair::iniscal(double AMQ, double S, double T,double U, double M1, double M2) const {
//INITIALIZATION OF SCALAR INTEGRALS
//taken from hpair
Complex C0AB,C0AC,C0AD,C0BC,C0BD,C0CD,D0ABC,D0BAC,D0ACB;
double EPM = 1.E-6;
double c12[1] = {EPM};
double c3[1] = {S};
double c456[1] = {AMQ};
double zerod[1] = {0.};
double sqrm1[1] = {sqr(M1)};
double sqrm2[1] = {sqr(M2)};
double ss[1] = {S};
double tt[1] = {T};
double uu[1] = {U};
Complex DQ2=Complex(sqr(AMQ),0.);
//get the scalar integrals using the associated hpair fortran functions
C0AB = c03_(c12, c12, c3, c456, c456, c456)*DQ2;
C0AC = c03_(c12,sqrm1,tt, c456,c456,c456)*DQ2;
C0AD = c03_(c12,sqrm2,uu,c456,c456,c456)*DQ2;
C0BC = c03_(c12,sqrm1,uu,c456,c456,c456)*DQ2;
C0BD = c03_(c12,sqrm2,tt,c456,c456,c456)*DQ2;
C0CD = c03_(sqrm1,sqrm2,ss,c456,c456,c456)*DQ2;
D0ABC = sqr(DQ2)*d04_(zerod,zerod,sqrm1,sqrm2,ss,uu,c456,c456,c456,c456);
D0BAC = sqr(DQ2)*d04_(zerod,zerod,sqrm1,sqrm2,ss,tt,c456,c456,c456,c456);
D0ACB = sqr(DQ2)*d04_(zerod,sqrm1,zerod,sqrm2,tt,uu,c456,c456,c456,c456);
//push them back into a vector
vector<Complex> FormRes;
FormRes.push_back(C0AB);
FormRes.push_back(C0AC);
FormRes.push_back(C0AD);
FormRes.push_back(C0BC);
FormRes.push_back(C0BD);
FormRes.push_back(C0CD);
FormRes.push_back(D0ABC);
FormRes.push_back(D0BAC);
FormRes.push_back(D0ACB);
return FormRes;
}
//calculate the LO matrix element squared as given by hpair, constants are taken care of by me2()
//both top and bottom loops are considered.
double MEHiggsPair::MATRIX(double S, double T,double U, double M1, double M2) const {
//C--LO MATRIX ELEMENT FOR GG -> HH
using Constants::pi;
Complex A1,A2,H1,H2,Z1,Z2,AA1,AA2,HH1,HH2,AH1,AH2;
Complex F1,F2,PROH, PROHEAVY;
//bottom and top masses
double AMT = _topmass/GeV;
double AMB = _bottommass/GeV;
//W mass
double MW = _Wmass/GeV;
//higgs width and mass
double FACH=1;
double GAMH= _wh/GeV;
double AMH = _mh/GeV;
//vacuum expectation value, self-coupling, top and bottom Yukawas
double V = 1./sqrt(sqrt(2) * SM().fermiConstant()*GeV*GeV);
double GHHH = _selfcoupling * 3.*sqr(AMH) / V;
- double GHT=AMT/V;
- double GHB=AMB/V;
+ double GHT=_yh*AMT/V;
+ double GHB=_ybh*AMB/V;
double ALPS=SM().alphaS(scale());
if(_fixedalphaS==1) { ALPS = _alphasfixedvalue; }
double eftscale = _EFTScale/GeV;
//Higgs propagator
PROH = Complex(S-sqr(AMH),AMH*GAMH*FACH);
//EFT-modified self-coupling
double GHHH_EFT = 0;
if(_process == 4) {
GHHH_EFT = (3.*sqr(AMH) / V) * ( - (3./2.) * _cH + _c6 ) ;
}
//EFT-modified top/bottom Yukawas
double GHT_EFT = 0, GHB_EFT = 0;
if(_process == 4) {
GHT_EFT = AMT/V * ( _ct1 - 0.5 * _cH );
GHB_EFT = AMB/V * ( _cb1 - 0.5 * _cH );
}
//Heavy Higgs
double AMHEAVY = _heavyHmass/GeV;
- double GAMHEAVY = _heavyHwidth/GeV;
+ double GAMHEAVY = _heavyHwidth/GeV;
+ double GHTHEAVY=_yH*AMT/V;
+ double GHBHEAVY=_ybH*AMB/V;
+
+
double FACHEAVY = 1.;
PROHEAVY = Complex(S-sqr(AMHEAVY),AMHEAVY*GAMHEAVY*FACHEAVY);
double GHhh = _hhHcoupling * 3.*sqr(AMHEAVY) / V; // Hhh coupling (for _process == 3)
//calculation of scalar integrals C_ij and D_ijk
vector<Complex> ScalFacs;
ScalFacs = iniscal(AMT, S, T, U, M1, M2);
double amq[1] = {AMT};
double m1[1] = {M1};
double m2[1] = {M2};
double ss[1] = {S};
double tt[1] = {T};
double uu[1] = {U};
Complex C0AB[1] = {ScalFacs[0]};
Complex C0AC[1] = {ScalFacs[1]};
Complex C0AD[1] = {ScalFacs[2]};
Complex C0BC[1] = {ScalFacs[3]};
Complex C0BD[1] = {ScalFacs[4]};
Complex C0CD[1] = {ScalFacs[5]};
Complex D0ABC[1] = {ScalFacs[6]};
Complex D0BAC[1] = {ScalFacs[7]};
Complex D0ACB[1] = {ScalFacs[8]};
//form factors for top quark contributions
formfac_(amq, ss, tt, uu, m1, m2, C0AB, C0AC, C0AD, C0BC, C0BD, C0CD, D0ABC, D0BAC, D0ACB);
// this factor needs to be divided out to go from SM EFT to DIM-6 EFT
double CH = ALPS / (8. * pi);
F1 = Complex(0.,0.);
F2 = Complex(0.,0.);
//triangle
if(_process==0||_process==1||_process==3||_process==4) {
F1 = F1 + (form_.H1*(GHT*GHHH/PROH)); //(1)
}
//triangle: EFT
if(_process==4) {
F1 = F1 + (form_.H1*(GHT*GHHH_EFT+GHT_EFT*GHHH)/PROH);
}
//box
if(_process==0||_process==2||_process==3||_process==4) {
F1 = F1 + (form_.HH1*GHT*GHT); //(2)
F2 = F2 + (form_.HH2*GHT*GHT);
}
//box: EFT
if(_process==4) {
F1 = F1 + 2. * (form_.HH1*GHT_EFT*GHT);
F2 = F2 + 2. * (form_.HH2*GHT_EFT*GHT);
}
//additional EFT from gg -> h -> hh diagram:
if(_process==4) {
F1 = F1 + _cg1 * (2.*S/V)*2*(GHHH/PROH);
/* divide (1) by form_.H1*AMT/(2*S) to remove F_triangle
* multiply by 2
* and multiply by cg1
*/
}
//additional EFT from gg -> hh diagram:
if(_process==4) {
F1 = F1 + _cg2 * (2.*S/sqr(V))*2.;
/* divide (2) by form_.HH1*sqr(AMT)/(2*S) to remove F_box
* multiply by 2
* and multiply by cg2
*/
}
//EFT: new t-tbar-h-h diagram
if(_process==4) {
double GttHH = (3.*_ct2 - _cH) *AMT/(2.*sqr(V)); // we have already replaced yf/sqrt(2) = mf/V
F1 = F1 + (form_.H1*2.*GttHH); //factor of 2 from tthh feynman rule
}
//TESTING BELOW
/* cout << "form_.H1 = " << form_.H1 << " form_.HH1 = " << form_.HH1 << endl;
cout << "Ftri = " << real(form_.H1)*AMT/(2*S) << endl;
cout << "Fbox = " << real(form_.HH1)*sqr(AMT)/(2*S) << endl; */
//form factors for bottom quark contributions
ScalFacs = iniscal(AMB, S, T, U, M1, M2);
amq[0] = AMB;
C0AB[0] = ScalFacs[0];
C0AC[0] = ScalFacs[1];
C0AD[0] = ScalFacs[2];
C0BC[0] = ScalFacs[3];
C0BD[0] = ScalFacs[4];
C0CD[0] = ScalFacs[5];
D0ABC[0] = ScalFacs[6];
D0BAC[0] = ScalFacs[7];
D0ACB[0] = ScalFacs[8];
formfac_(amq, ss, tt, uu, m1, m2, C0AB, C0AC, C0AD, C0BC, C0BD, C0CD, D0ABC, D0BAC, D0ACB);
//triangle
if(_process==0||_process==1||_process==3||_process==4) {
F1 = F1 + (form_.H1*(GHB*GHHH/PROH));
}
//triangle: EFT
if(_process==4) {
F1 = F1 + (form_.H1*(GHB*GHHH_EFT+GHB_EFT*GHHH)/PROH);
}
//box
if(_process==0||_process==2||_process==3||_process==4) {
F1 = F1 + (form_.HH1*GHB*GHB);
F2 = F2 + (form_.HH2*GHB*GHB);
}
//box: EFT
if(_process==4) {
F1 = F1 + 2. * (form_.HH1*GHB_EFT*GHB);
F2 = F2 + 2. * (form_.HH2*GHB_EFT*GHB);
}
//EFT: new b-bbar-h-h diagram
if(_process==4) {
double GbbHH = (3.*_cb2 - _cH) *AMB/(2.*sqr(V));// we have already replaced yf/sqrt(2) = mf/V
F1 = F1 + (form_.H1*2.*GbbHH);
}
if(_process==3) {
m1[0] = AMH;
m2[0] = AMHEAVY;
ScalFacs = iniscal(AMT, S, T, U, M1, M2);
amq[0] = AMT;
C0AB[0] = ScalFacs[0];
C0AC[0] = ScalFacs[1];
C0AD[0] = ScalFacs[2];
C0BC[0] = ScalFacs[3];
C0BD[0] = ScalFacs[4];
C0CD[0] = ScalFacs[5];
D0ABC[0] = ScalFacs[6];
D0BAC[0] = ScalFacs[7];
D0ACB[0] = ScalFacs[8];
formfac_(amq, ss, tt, uu, m1, m2, C0AB, C0AC, C0AD, C0BC, C0BD, C0CD, D0ABC, D0BAC, D0ACB);
- F1 = F1 + (form_.H1*(GHT*GHhh/PROHEAVY));
+ F1 = F1 + (form_.H1*(GHTHEAVY*GHhh/PROHEAVY));
ScalFacs = iniscal(AMB, S, T, U, M1, M2);
amq[0] = AMB;
C0AB[0] = ScalFacs[0];
C0AC[0] = ScalFacs[1];
C0AD[0] = ScalFacs[2];
C0BC[0] = ScalFacs[3];
C0BD[0] = ScalFacs[4];
C0CD[0] = ScalFacs[5];
D0ABC[0] = ScalFacs[6];
D0BAC[0] = ScalFacs[7];
D0ACB[0] = ScalFacs[8];
formfac_(amq, ss, tt, uu, m1, m2, C0AB, C0AC, C0AD, C0BC, C0BD, C0CD, D0ABC, D0BAC, D0ACB);
- F1 = F1 + (form_.H1*(GHB*GHhh/PROHEAVY));
+ F1 = F1 + (form_.H1*(GHBHEAVY*GHhh/PROHEAVY));
}
//square
double DMAT = 2. * (norm(F1) + norm(F2));
return DMAT;
}
diff --git a/Contrib/HiggsPair/MEHiggsPair.h b/Contrib/HiggsPair/MEHiggsPair.h
--- a/Contrib/HiggsPair/MEHiggsPair.h
+++ b/Contrib/HiggsPair/MEHiggsPair.h
@@ -1,489 +1,507 @@
// -*- C++ -*-
//
// MEHiggsPair.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2009-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MEHiggsPair_H
#define HERWIG_MEHiggsPair_H
//
// This is the declaration of the MEHiggsPair class.
//
#include "Herwig/MatrixElement/HwMEBase.h"
#include "ThePEG/Repository/UseRandom.h"
#include "Herwig/PDT/GenericMassGenerator.h"
#include "Herwig/Utilities/Kinematics.h"
#include "Herwig/MatrixElement/ProductionMatrixElement.h"
namespace Herwig {
using namespace ThePEG;
/*
* Interface to external FORTRAN hpair functions (T.Plehn, M.Spira & P.Zerwas, arXiv:hep-ph/9603205)
* original Program found at http://people.web.psi.ch/spira/hpair/
*/
extern "C" {
complex<double> eta_(complex<double>* C1, complex<double>* C2);
complex<double> d04_(double* P1, double* P2, double* P3, double* P4, double* P12,double* P23, double* M1, double* M2, double* M3, double* M4);
complex<double> c03_(double* P1,double* P2,double* P3,double* M1,double* M2,double* M3);
complex<double> cspen_(double* Z);
complex<double> sqe_(double* A, double* B, double* C);
complex<double> etas_(complex<double>*Y,complex<double>* R,complex<double>*RS);
void formfac_(double* AMQ, double* S, double* T, double* U, double* M1, double* M2, complex<double>* C0AB,complex<double>* C0AC,complex<double>* C0AD,complex<double>* C0BC,complex<double>* C0BD,complex<double>* C0CD,complex<double>* D0ABC,complex<double>* D0BAC,complex<double>* D0ACB);
}
extern "C" {
extern struct{
complex<double> A1;
complex<double> A2;
complex<double> H1;
complex<double> H2;
complex<double> Z1;
complex<double> Z2;
complex<double> AA1;
complex<double> AA2;
complex<double> HH1;
complex<double> HH2;
complex<double> AH1;
complex<double> AH2;
} form_;
}
/**
* The MEHiggsPair class implements the matrix elements for
* HiggsPairian \f$2\to2\f$ scattering process
*/
class MEHiggsPair: public HwMEBase {
public:
/**
* The default constructor.
*/
MEHiggsPair();
/** @name Virtual functions required by the MEBase class. */
//@{
/**
* Return the order in \f$\alpha_S\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInAlphaS() const { return 0; }
/**
* Return the order in \f$\alpha_{EW}\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInAlphaEW() const { return 0; }
/**
* Return the scale associated with the last set phase space point.
*/
virtual Energy2 scale() const;
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const;
/**
* Generate internal degrees of freedom
*/
virtual bool generateKinematics(const double * r);
/**
* Return the matrix element squared differential in the variables
* given by the last call to generateKinematics().
*/
virtual CrossSection dSigHatDR() const;
/*
* Fix alphaS
*/
unsigned int fixedalphaS() const { return _fixedalphaS; }
/*
* Fixed alphaS value if AlphaS is chosen (option 2 above)
*/
double alphasfixedvalue() const { return _alphasfixedvalue; }
/**
* Return multiplier for scale
*/
double scalemultiplier() const {return _scalemultiplier;}
/**
* Get diagram selector. With the information previously supplied with the
* setKinematics method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
* @param dv the diagrams to be weighted.
* @return a Selector relating the given diagrams to their weights.
*/
virtual Selector<DiagramIndex> diagrams(const DiagramVector & dv) const;
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
* @param diag the diagram chosen.
* @return the possible colour geometries weighted by their
* relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const;
/**
* The matrix element for the kinematical configuration
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
* @return the matrix element scaled with sHat() to give a
* dimensionless number.
*/
virtual double me2() const;
//@}
virtual void setKinematics();
/**
* The number of internal degrees of freedom used in the matrix
* element.
*/
virtual int nDim() const;
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Rebind pointer to other Interfaced objects. Called in the setup phase
* after all objects used in an EventGenerator has been cloned so that
* the pointers will refer to the cloned objects afterwards.
* @param trans a TranslationMap relating the original objects to
* their respective clones.
* @throws RebindException if no cloned object was found for a given
* pointer.
*/
virtual void rebind(const TranslationMap & trans);
/**
* Return a vector of all pointers to Interfaced objects used in this
* object.
* @return a vector of pointers.
*/
virtual IVector getReferences();
//@}
/**
* Access to the higgs data
*/
PDPtr higgs() const { return _higgs; }
/**
* Set the higgs data
*/
void higgs(PDPtr in) {_higgs =in;}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Helper functions for me2. */
//@{
/**
*/
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<MEHiggsPair> initMEHiggsPair;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MEHiggsPair & operator=(const MEHiggsPair &);
/**
* The higgs boson
*/
PDPtr _higgs;
/*
* The W mass
*/
Energy _Wmass;
/*
* The top mass
*/
Energy _topmass;
/*
* The bottom mass
*/
Energy _bottommass;
/*
* The Z boson mass
*/
Energy _zmass;
/*
* Higgs boson mass(es)
*/
Energy _m1, _m2;
/*
* Heavy H mass
*/
Energy _heavyHmass;
/*
* Heavy H width
*/
Energy _heavyHwidth;
+ /*
+ * top yukawa multiplier, Heavy
+ */
+ double _yH;
+ /*
+ * top yukawa multiplier, light
+ */
+ double _yh;
+
+ /*
+ * bottom yukawa multiplier, Heavy
+ */
+ double _ybH;
+
+ /*
+ * bottom yukawa multiplier, light
+ */
+ double _ybh;
private:
/**
* The mass generator for the Higgs
*/
GenericMassGeneratorPtr _hmass;
/**
* multiplier for the SM triple-coupling
*/
double _selfcoupling;
/**
* multiplier for the hhH triple-coupling
*/
double _hhHcoupling;
/**
* Processes to include
*/
unsigned int _process;
/*
* Fix alphaS
*/
unsigned int _fixedalphaS;
/*
* Scale to use for alpha_S if fixed
*/
Energy _alphascale;
/*
* Value of AlphaS if fixed using option 2 above
*/
double _alphasfixedvalue;
/*
* Base scale to use if chosen to be fixed
*/
Energy _basescale;
/*
* scale multiplier
*/
double _scalemultiplier;
/*
* Fix scale of whole process
*/
unsigned int _fixedscale;
/**
* On-shell mass for the higgs
*/
Energy _mh;
/**
* On-shell width for the higgs
*/
Energy _wh;
/**
* On-shell mass for the W
*/
Energy _mW;
/*
* _cH, effective theory coefficient
*/
double _cH;
/* _c6, effective theory coefficient
*
*/
double _c6;
/*
* _cg1, effective theory coefficient
*/
double _cg1;
/* _cg2, effective theory coefficient
*
*/
double _cg2;
/*
* _ct1, effective theory coefficient
*/
double _ct1;
/*
* _ct2, effective theory coefficient
*/
double _ct2;
/* _ct2, effective theory coefficient
*
*/
double _cb1;
/* f_b2, effective theory coefficient
*
*/
double _cb2;
/* effective theory scale
*
*/
Energy _EFTScale;
/* Scalar integral initialization from hpair.f (T.Plehn, M.Spira & P.Zerwas, arXiv:hep-ph/9603205)
Program found at http://people.web.psi.ch/spira/hpair/ */
virtual vector<Complex> iniscal(double AMQ, double S, double T,double U, double M1, double M2) const;
/* Matrix element calculation from hpair */
virtual double MATRIX(double S, double T,double U, double M1, double M2) const;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of MEHiggsPair. */
template <>
struct BaseClassTrait<Herwig::MEHiggsPair,1> {
/** Typedef of the first base class of MEHiggsPair. */
typedef Herwig::HwMEBase NthBase;
};
/** This template specialization informs ThePEG about the name of
* the MEHiggsPair class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::MEHiggsPair>
: public ClassTraitsBase<Herwig::MEHiggsPair> {
/** Return a platform-independent class name */
static string className() { return "Herwig::MEHiggsPair"; }
/**
* The name of a file containing the dynamic library where the class
* MEHiggsPair is implemented. It may also include several, space-separated,
* libraries if the class MEQCD2to2Fast depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "MEHiggsPair.so"; }
};
/** @endcond */
}
#endif /* HERWIG_MEHiggsPair_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:28 PM (1 d, 18 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3800127
Default Alt Text
(36 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment