Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878949
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
182 KB
Subscribers
None
View Options
diff --git a/Shower/QTilde/QTildeShowerHandler.cc b/Shower/QTilde/QTildeShowerHandler.cc
--- a/Shower/QTilde/QTildeShowerHandler.cc
+++ b/Shower/QTilde/QTildeShowerHandler.cc
@@ -1,3216 +1,3216 @@
// -*- C++ -*-
//
// QTildeShowerHandler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeShowerHandler class.
//
#include "QTildeShowerHandler.h"
#include "ThePEG/Interface/Deleted.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "Herwig/Shower/QTilde/Base/ShowerParticle.h"
#include "Herwig/PDF/MPIPDF.h"
#include "Herwig/PDF/MinBiasPDF.h"
#include "Herwig/Shower/QTilde/Base/ShowerTree.h"
#include "Herwig/Shower/QTilde/Base/HardTree.h"
#include "Herwig/Shower/QTilde/Kinematics/KinematicsReconstructor.h"
#include "Herwig/Shower/QTilde/Base/PartnerFinder.h"
#include "Herwig/PDF/HwRemDecayer.h"
#include "Herwig/Shower/QTilde/Base/ShowerVertex.h"
#include "ThePEG/Repository/CurrentGenerator.h"
#include "Herwig/MatrixElement/Matchbox/Base/SubtractedME.h"
#include "Herwig/MatrixElement/Matchbox/MatchboxFactory.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "Herwig/Shower/RealEmissionProcess.h"
#include "Herwig/Shower/QTilde/Kinematics/FS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/QTilde/Kinematics/IS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/QTilde/Kinematics/Decay_QTildeShowerKinematics1to2.h"
using namespace Herwig;
bool QTildeShowerHandler::_hardEmissionWarn = true;
bool QTildeShowerHandler::_missingTruncWarn = true;
QTildeShowerHandler::QTildeShowerHandler() :
- _maxtry(100), _meCorrMode(1), _evolutionScheme(2),
+ _maxtry(100), _meCorrMode(1), _evolutionScheme(1),
_hardVetoReadOption(false),
_iptrms(ZERO), _beta(0.), _gamma(ZERO), _iptmax(),
_limitEmissions(0), _initialenhance(1.), _finalenhance(1.),
_nReWeight(100), _reWeight(false),
interaction_(ShowerInteraction::Both),
_trunc_Mode(true), _hardEmission(1),
_softOpt(2), _hardPOWHEG(false), muPt(ZERO)
{}
QTildeShowerHandler::~QTildeShowerHandler() {}
IBPtr QTildeShowerHandler::clone() const {
return new_ptr(*this);
}
IBPtr QTildeShowerHandler::fullclone() const {
return new_ptr(*this);
}
void QTildeShowerHandler::persistentOutput(PersistentOStream & os) const {
os << _splittingGenerator << _maxtry
<< _meCorrMode << _hardVetoReadOption
<< _limitEmissions << _softOpt << _hardPOWHEG
<< ounit(_iptrms,GeV) << _beta << ounit(_gamma,GeV) << ounit(_iptmax,GeV)
<< _vetoes << _fullShowerVetoes << _nReWeight << _reWeight
<< _trunc_Mode << _hardEmission << _evolutionScheme
<< ounit(muPt,GeV) << oenum(interaction_)
<< _reconstructor << _partnerfinder;
}
void QTildeShowerHandler::persistentInput(PersistentIStream & is, int) {
is >> _splittingGenerator >> _maxtry
>> _meCorrMode >> _hardVetoReadOption
>> _limitEmissions >> _softOpt >> _hardPOWHEG
>> iunit(_iptrms,GeV) >> _beta >> iunit(_gamma,GeV) >> iunit(_iptmax,GeV)
>> _vetoes >> _fullShowerVetoes >> _nReWeight >> _reWeight
>> _trunc_Mode >> _hardEmission >> _evolutionScheme
>> iunit(muPt,GeV) >> ienum(interaction_)
>> _reconstructor >> _partnerfinder;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<QTildeShowerHandler,ShowerHandler>
describeHerwigQTildeShowerHandler("Herwig::QTildeShowerHandler", "HwShower.so");
void QTildeShowerHandler::Init() {
static ClassDocumentation<QTildeShowerHandler> documentation
("TheQTildeShowerHandler class is the main class"
" for the angular-ordered parton shower",
"The Shower evolution was performed using an algorithm described in "
"\\cite{Marchesini:1983bm,Marchesini:1987cf,Gieseke:2003rz,Bahr:2008pv}.",
"%\\cite{Marchesini:1983bm}\n"
"\\bibitem{Marchesini:1983bm}\n"
" G.~Marchesini and B.~R.~Webber,\n"
" ``Simulation Of QCD Jets Including Soft Gluon Interference,''\n"
" Nucl.\\ Phys.\\ B {\\bf 238}, 1 (1984).\n"
" %%CITATION = NUPHA,B238,1;%%\n"
"%\\cite{Marchesini:1987cf}\n"
"\\bibitem{Marchesini:1987cf}\n"
" G.~Marchesini and B.~R.~Webber,\n"
" ``Monte Carlo Simulation of General Hard Processes with Coherent QCD\n"
" Radiation,''\n"
" Nucl.\\ Phys.\\ B {\\bf 310}, 461 (1988).\n"
" %%CITATION = NUPHA,B310,461;%%\n"
"%\\cite{Gieseke:2003rz}\n"
"\\bibitem{Gieseke:2003rz}\n"
" S.~Gieseke, P.~Stephens and B.~Webber,\n"
" ``New formalism for QCD parton showers,''\n"
" JHEP {\\bf 0312}, 045 (2003)\n"
" [arXiv:hep-ph/0310083].\n"
" %%CITATION = JHEPA,0312,045;%%\n"
);
static Reference<QTildeShowerHandler,SplittingGenerator>
interfaceSplitGen("SplittingGenerator",
"A reference to the SplittingGenerator object",
&Herwig::QTildeShowerHandler::_splittingGenerator,
false, false, true, false);
static Parameter<QTildeShowerHandler,unsigned int> interfaceMaxTry
("MaxTry",
"The maximum number of attempts to generate the shower from a"
" particular ShowerTree",
&QTildeShowerHandler::_maxtry, 100, 1, 100000,
false, false, Interface::limited);
static Parameter<QTildeShowerHandler,unsigned int> interfaceNReWeight
("NReWeight",
"The number of attempts for the shower when reweighting",
&QTildeShowerHandler::_nReWeight, 100, 10, 10000,
false, false, Interface::limited);
static Switch<QTildeShowerHandler, unsigned int> ifaceMECorrMode
("MECorrMode",
"Choice of the ME Correction Mode",
&QTildeShowerHandler::_meCorrMode, 1, false, false);
static SwitchOption on
(ifaceMECorrMode,"HardPlusSoft","hard+soft on", 1);
static SwitchOption hard
(ifaceMECorrMode,"Hard","only hard on", 2);
static SwitchOption soft
(ifaceMECorrMode,"Soft","only soft on", 3);
static Switch<QTildeShowerHandler, bool> ifaceHardVetoReadOption
("HardVetoReadOption",
"Apply read-in scale veto to all collisions or just the primary one?",
&QTildeShowerHandler::_hardVetoReadOption, false, false, false);
static SwitchOption AllCollisions
(ifaceHardVetoReadOption,
"AllCollisions",
"Read-in pT veto applied to primary and secondary collisions.",
false);
static SwitchOption PrimaryCollision
(ifaceHardVetoReadOption,
"PrimaryCollision",
"Read-in pT veto applied to primary but not secondary collisions.",
true);
static Parameter<QTildeShowerHandler, Energy> ifaceiptrms
("IntrinsicPtGaussian",
"RMS of intrinsic pT of Gaussian distribution:\n"
"2*(1-Beta)*exp(-sqr(intrinsicpT/RMS))/sqr(RMS)",
&QTildeShowerHandler::_iptrms, GeV, ZERO, ZERO, 1000000.0*GeV,
false, false, Interface::limited);
static Parameter<QTildeShowerHandler, double> ifacebeta
("IntrinsicPtBeta",
"Proportion of inverse quadratic distribution in generating intrinsic pT.\n"
"(1-Beta) is the proportion of Gaussian distribution",
&QTildeShowerHandler::_beta, 0, 0, 1,
false, false, Interface::limited);
static Parameter<QTildeShowerHandler, Energy> ifacegamma
("IntrinsicPtGamma",
"Parameter for inverse quadratic:\n"
"2*Beta*Gamma/(sqr(Gamma)+sqr(intrinsicpT))",
&QTildeShowerHandler::_gamma,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static Parameter<QTildeShowerHandler, Energy> ifaceiptmax
("IntrinsicPtIptmax",
"Upper bound on intrinsic pT for inverse quadratic",
&QTildeShowerHandler::_iptmax,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static RefVector<QTildeShowerHandler,ShowerVeto> ifaceVetoes
("Vetoes",
"The vetoes to be checked during showering",
&QTildeShowerHandler::_vetoes, -1,
false,false,true,true,false);
static RefVector<QTildeShowerHandler,FullShowerVeto> interfaceFullShowerVetoes
("FullShowerVetoes",
"The vetos to be appliede on the full final state of the shower",
&QTildeShowerHandler::_fullShowerVetoes, -1, false, false, true, false, false);
static Switch<QTildeShowerHandler,unsigned int> interfaceLimitEmissions
("LimitEmissions",
"Limit the number and type of emissions for testing",
&QTildeShowerHandler::_limitEmissions, 0, false, false);
static SwitchOption interfaceLimitEmissionsNoLimit
(interfaceLimitEmissions,
"NoLimit",
"Allow an arbitrary number of emissions",
0);
static SwitchOption interfaceLimitEmissionsOneInitialStateEmission
(interfaceLimitEmissions,
"OneInitialStateEmission",
"Allow one emission in the initial state and none in the final state",
1);
static SwitchOption interfaceLimitEmissionsOneFinalStateEmission
(interfaceLimitEmissions,
"OneFinalStateEmission",
"Allow one emission in the final state and none in the initial state",
2);
static SwitchOption interfaceLimitEmissionsHardOnly
(interfaceLimitEmissions,
"HardOnly",
"Only allow radiation from the hard ME correction",
3);
static SwitchOption interfaceLimitEmissionsOneEmission
(interfaceLimitEmissions,
"OneEmission",
"Allow one emission in either the final state or initial state, but not both",
4);
static Switch<QTildeShowerHandler,bool> interfaceTruncMode
("TruncatedShower", "Include the truncated shower?",
&QTildeShowerHandler::_trunc_Mode, 1, false, false);
static SwitchOption interfaceTruncMode0
(interfaceTruncMode,"No","Truncated Shower is OFF", 0);
static SwitchOption interfaceTruncMode1
(interfaceTruncMode,"Yes","Truncated Shower is ON", 1);
static Switch<QTildeShowerHandler,int> interfaceHardEmission
("HardEmission",
"Whether to use ME corrections or POWHEG for the hardest emission",
&QTildeShowerHandler::_hardEmission, 0, false, false);
static SwitchOption interfaceHardEmissionNone
(interfaceHardEmission,
"None",
"No Corrections",
0);
static SwitchOption interfaceHardEmissionMECorrection
(interfaceHardEmission,
"MECorrection",
"Old fashioned ME correction",
1);
static SwitchOption interfaceHardEmissionPOWHEG
(interfaceHardEmission,
"POWHEG",
"Powheg style hard emission",
2);
static Switch<QTildeShowerHandler,ShowerInteraction> interfaceInteractions
("Interactions",
"The interactions to be used in the shower",
&QTildeShowerHandler::interaction_, ShowerInteraction::Both, false, false);
static SwitchOption interfaceInteractionsQCD
(interfaceInteractions,
"QCD",
"Only QCD radiation",
ShowerInteraction::QCD);
static SwitchOption interfaceInteractionsQED
(interfaceInteractions,
"QED",
"Only QEd radiation",
ShowerInteraction::QED);
static SwitchOption interfaceInteractionsQCDandQED
(interfaceInteractions,
"QCDandQED",
"Both QED and QCD radiation",
ShowerInteraction::Both);
static Deleted<QTildeShowerHandler> delReconstructionOption
("ReconstructionOption", "The old reconstruction option switch has been replaced with"
" the new EvolutionScheme switch, see arXiv:1904.11866 for details");
static Switch<QTildeShowerHandler,unsigned int> interfaceEvolutionScheme
("EvolutionScheme",
"The scheme to interpret the evolution variable in the case of multple emission.",
&QTildeShowerHandler::_evolutionScheme, 1, false, false);
static SwitchOption interfaceEvolutionSchemepT
(interfaceEvolutionScheme,
"pT",
"pT scheme",
0);
static SwitchOption interfaceEvolutionSchemeDotProduct
(interfaceEvolutionScheme,
"DotProduct",
"Dot-product scheme",
1);
static SwitchOption interfaceEvolutionSchemeQ2
(interfaceEvolutionScheme,
"Q2",
"Q2 scheme",
2);
static Switch<QTildeShowerHandler,unsigned int> interfaceSoftCorrelations
("SoftCorrelations",
"Option for the treatment of soft correlations in the parton shower",
&QTildeShowerHandler::_softOpt, 2, false, false);
static SwitchOption interfaceSoftCorrelationsNone
(interfaceSoftCorrelations,
"No",
"No soft correlations",
0);
static SwitchOption interfaceSoftCorrelationsFull
(interfaceSoftCorrelations,
"Full",
"Use the full eikonal",
1);
static SwitchOption interfaceSoftCorrelationsSingular
(interfaceSoftCorrelations,
"Singular",
"Use original Webber-Marchisini form",
2);
static Switch<QTildeShowerHandler,bool> interfaceHardPOWHEG
("HardPOWHEG",
"Treatment of powheg emissions which are too hard to have a shower interpretation",
&QTildeShowerHandler::_hardPOWHEG, false, false, false);
static SwitchOption interfaceHardPOWHEGAsShower
(interfaceHardPOWHEG,
"AsShower",
"Still interpret as shower emissions",
false);
static SwitchOption interfaceHardPOWHEGRealEmission
(interfaceHardPOWHEG,
"RealEmission",
"Generate shower from the real emmission configuration",
true);
static Reference<QTildeShowerHandler,KinematicsReconstructor> interfaceKinematicsReconstructor
("KinematicsReconstructor",
"Reference to the KinematicsReconstructor object",
&QTildeShowerHandler::_reconstructor, false, false, true, false, false);
static Reference<QTildeShowerHandler,PartnerFinder> interfacePartnerFinder
("PartnerFinder",
"Reference to the PartnerFinder object",
&QTildeShowerHandler::_partnerfinder, false, false, true, false, false);
}
tPPair QTildeShowerHandler::cascade(tSubProPtr sub,
XCPtr xcomb) {
// use me for reference in tex file etc
useMe();
prepareCascade(sub);
// set things up in the base class
resetWeights();
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
// start of the try block for the whole showering process
unsigned int countFailures=0;
while (countFailures<maxtry()) {
try {
decay_.clear();
done_.clear();
PerturbativeProcessPtr hard;
DecayProcessMap decay;
splitHardProcess(firstInteraction() ? tagged() :
tPVector(currentSubProcess()->outgoing().begin(),
currentSubProcess()->outgoing().end()),
hard,decay);
ShowerTree::constructTrees(hard_,decay_,hard,decay);
// if no hard process
if(!hard_) throw Exception() << "Shower starting with a decay"
<< "is not implemented"
<< Exception::runerror;
// perform the shower for the hard process
showerHardProcess(hard_,xcomb);
done_.push_back(hard_);
hard_->updateAfterShower(decay_);
// if no decaying particles to shower break out of the loop
if(decay_.empty()) break;
// shower the decay products
while(!decay_.empty()) {
// find particle whose production process has been showered
ShowerDecayMap::iterator dit = decay_.begin();
while(!dit->second->parent()->hasShowered() && dit!=decay_.end()) ++dit;
assert(dit!=decay_.end());
// get the particle
ShowerTreePtr decayingTree = dit->second;
// remove it from the multimap
decay_.erase(dit);
// make sure the particle has been decayed
QTildeShowerHandler::decay(decayingTree,decay_);
// now shower the decay
showerDecay(decayingTree);
done_.push_back(decayingTree);
decayingTree->updateAfterShower(decay_);
}
// suceeded break out of the loop
break;
}
catch (KinematicsReconstructionVeto) {
resetWeights();
++countFailures;
}
catch ( ... ) {
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
throw;
}
}
// if loop exited because of too many tries, throw event away
if (countFailures >= maxtry()) {
resetWeights();
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
throw Exception() << "Too many tries for main while loop "
<< "in QTildeShowerHandler::cascade()."
<< Exception::eventerror;
}
//enter the particles in the event record
fillEventRecord();
// clear storage
hard_=ShowerTreePtr();
decay_.clear();
done_.clear();
// non hadronic case return
if (!isResolvedHadron(incomingBeams().first ) &&
!isResolvedHadron(incomingBeams().second) )
return incomingBeams();
// remake the remnants (needs to be after the colours are sorted
// out in the insertion into the event record)
if ( firstInteraction() ) return remakeRemnant(sub->incoming());
//Return the new pair of incoming partons. remakeRemnant is not
//necessary here, because the secondary interactions are not yet
//connected to the remnants.
return make_pair(findFirstParton(sub->incoming().first ),
findFirstParton(sub->incoming().second));
}
void QTildeShowerHandler::fillEventRecord() {
// create a new step
StepPtr pstep = newStep();
assert(!done_.empty());
assert(done_[0]->isHard());
// insert the steps
for(unsigned int ix=0;ix<done_.size();++ix) {
done_[ix]->fillEventRecord(pstep,doISR(),doFSR());
}
}
HardTreePtr QTildeShowerHandler::generateCKKW(ShowerTreePtr ) const {
return HardTreePtr();
}
void QTildeShowerHandler::doinit() {
ShowerHandler::doinit();
// check on the reweighting
for(unsigned int ix=0;ix<_fullShowerVetoes.size();++ix) {
if(_fullShowerVetoes[ix]->behaviour()==1) {
_reWeight = true;
break;
}
}
if(_reWeight && maximumTries()<_nReWeight) {
throw Exception() << "Reweight being performed in the shower but the number of attempts for the"
<< "shower is less than that for the reweighting.\n"
<< "Maximum number of attempt for the shower "
<< fullName() << ":MaxTry is " << maximumTries() << "\nand for reweighting is "
<< fullName() << ":NReWeight is " << _nReWeight << "\n"
<< "we recommend the number of attempts is 10 times the number for reweighting\n"
<< Exception::runerror;
}
ShowerTree::_vmin2 = vMin();
ShowerTree::_spaceTime = includeSpaceTime();
}
void QTildeShowerHandler::doinitrun() {
ShowerHandler::doinitrun();
ShowerTree::_vmin2 = vMin();
ShowerTree::_spaceTime = includeSpaceTime();
}
void QTildeShowerHandler::generateIntrinsicpT(vector<ShowerProgenitorPtr> particlesToShower) {
_intrinsic.clear();
if ( !ipTon() || !doISR() ) return;
// don't do anything for the moment for secondary scatters
if( !firstInteraction() ) return;
// generate intrinsic pT
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// only consider initial-state particles
if(particlesToShower[ix]->progenitor()->isFinalState()) continue;
if(!particlesToShower[ix]->progenitor()->dataPtr()->coloured()) continue;
Energy ipt;
if(UseRandom::rnd() > _beta) {
ipt=_iptrms*sqrt(-log(UseRandom::rnd()));
}
else {
ipt=_gamma*sqrt(pow(1.+sqr(_iptmax/_gamma), UseRandom::rnd())-1.);
}
pair<Energy,double> pt = make_pair(ipt,UseRandom::rnd(Constants::twopi));
_intrinsic[particlesToShower[ix]] = pt;
}
}
void QTildeShowerHandler::setupMaximumScales(const vector<ShowerProgenitorPtr> & p,
XCPtr xcomb) {
// let POWHEG events radiate freely
if(_hardEmission==2&&hardTree()) {
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(Constants::MaxEnergy);
return;
}
// return if no vetos
if (!restrictPhasespace()) return;
// find out if hard partonic subprocess.
bool isPartonic(false);
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = _currenttree->incomingLines().begin();
Lorentz5Momentum pcm;
for(; cit!=currentTree()->incomingLines().end(); ++cit) {
pcm += cit->first->progenitor()->momentum();
isPartonic |= cit->first->progenitor()->coloured();
}
// find minimum pt from hard process, the maximum pt from all outgoing
// coloured lines (this is simpler and more general than
// 2stu/(s^2+t^2+u^2)). Maximum scale for scattering processes will
// be transverse mass.
Energy ptmax = generator()->maximumCMEnergy();
// general case calculate the scale
if ( !hardScaleIsMuF() || (hardVetoReadOption()&&!firstInteraction()) ) {
// scattering process
if(currentTree()->isHard()) {
assert(xcomb);
// coloured incoming particles
if (isPartonic) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt = currentTree()->outgoingLines().begin();
for(; cjt!=currentTree()->outgoingLines().end(); ++cjt) {
if (cjt->first->progenitor()->coloured())
ptmax = min(ptmax,cjt->first->progenitor()->momentum().mt());
}
}
if (ptmax == generator()->maximumCMEnergy() ) ptmax = pcm.m();
if(hardScaleIsMuF()&&hardVetoReadOption()&&
!firstInteraction()) {
ptmax=min(ptmax,sqrt(xcomb->lastShowerScale()));
}
}
// decay, incoming() is the decaying particle.
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
// hepeup.SCALUP is written into the lastXComb by the
// LesHouchesReader itself - use this by user's choice.
// Can be more general than this.
else {
if(currentTree()->isHard()) {
assert(xcomb);
ptmax = sqrt( xcomb->lastShowerScale() );
}
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
ptmax *= hardScaleFactor();
// set maxHardPt for all progenitors. For partonic processes this
// is now the max pt in the FS, for non-partonic processes or
// processes with no coloured FS the invariant mass of the IS
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(ptmax);
}
void QTildeShowerHandler::setupHardScales(const vector<ShowerProgenitorPtr> & p,
XCPtr xcomb) {
if ( hardScaleIsMuF() &&
(!hardVetoReadOption() || firstInteraction()) ) {
Energy hardScale = ZERO;
if(currentTree()->isHard()) {
assert(xcomb);
hardScale = sqrt( xcomb->lastShowerScale() );
}
else {
hardScale = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
hardScale *= hardScaleFactor();
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->hardScale(hardScale);
muPt = hardScale;
}
}
void QTildeShowerHandler::showerHardProcess(ShowerTreePtr hard, XCPtr xcomb) {
_hardme = HwMEBasePtr();
// extract the matrix element
tStdXCombPtr lastXC = dynamic_ptr_cast<tStdXCombPtr>(xcomb);
if(lastXC) {
_hardme = dynamic_ptr_cast<HwMEBasePtr>(lastXC->matrixElement());
}
_decayme = HwDecayerBasePtr();
// set the current tree
currentTree(hard);
hardTree(HardTreePtr());
// work out the type of event
currentTree()->xcombPtr(dynamic_ptr_cast<StdXCombPtr>(xcomb));
currentTree()->identifyEventType();
checkFlags();
// generate the showering
doShowering(true,xcomb);
}
RealEmissionProcessPtr QTildeShowerHandler::hardMatrixElementCorrection(bool hard) {
// set the initial enhancement factors for the soft correction
_initialenhance = 1.;
_finalenhance = 1.;
// see if we can get the correction from the matrix element
// or decayer
RealEmissionProcessPtr real;
if(hard) {
if(_hardme&&_hardme->hasMECorrection()) {
_hardme->initializeMECorrection(_currenttree->perturbativeProcess(),
_initialenhance,_finalenhance);
if(hardMEC())
real =
_hardme->applyHardMatrixElementCorrection(_currenttree->perturbativeProcess());
}
}
else {
if(_decayme&&_decayme->hasMECorrection()) {
_decayme->initializeMECorrection(_currenttree->perturbativeProcess(),
_initialenhance,_finalenhance);
if(hardMEC())
real = _decayme->applyHardMatrixElementCorrection(_currenttree->perturbativeProcess());
}
}
return real;
}
ShowerParticleVector QTildeShowerHandler::createTimeLikeChildren(tShowerParticlePtr, IdList ids) {
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector children;
for(unsigned int ix=0;ix<2;++ix) {
children.push_back(new_ptr(ShowerParticle(ids[ix+1],true)));
if(children[ix]->id()==_progenitor->id()&&!ids[ix+1]->stable()&&abs(ids[ix+1]->id())!=ParticleID::tauminus)
children[ix]->set5Momentum(Lorentz5Momentum(_progenitor->progenitor()->mass()));
else
children[ix]->set5Momentum(Lorentz5Momentum(ids[ix+1]->mass()));
}
return children;
}
bool QTildeShowerHandler::timeLikeShower(tShowerParticlePtr particle,
ShowerInteraction type,
Branching fb, bool first) {
// don't do anything if not needed
if(_limitEmissions == 1 || hardOnly() ||
( _limitEmissions == 2 && _nfs != 0) ||
( _limitEmissions == 4 && _nfs + _nis != 0) ) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
// generate the emission
ShowerParticleVector children;
// generate the emission
if(!fb.kinematics)
fb = selectTimeLikeBranching(particle,type,HardBranchingPtr());
// no emission, return
if(!fb.kinematics) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
Branching fc[2] = {Branching(),Branching()};
assert(fb.kinematics);
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
// check highest pT
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the children
children = createTimeLikeChildren(particle,fb.ids);
// update the children
particle->showerKinematics()->
updateChildren(particle, children,fb.type);
// update number of emissions
++_nfs;
if(_limitEmissions!=0) {
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
// select branchings for children
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
// shower the first particle
if(fc[0].kinematics) timeLikeShower(children[0],type,fc[0],false);
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],false);
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
particle->showerKinematics()->updateParent(particle, children,_evolutionScheme,fb.type);
// branching has happened
if(first&&!children.empty())
particle->showerKinematics()->resetChildren(particle,children);
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
bool
QTildeShowerHandler::spaceLikeShower(tShowerParticlePtr particle, PPtr beam,
ShowerInteraction type) {
//using the pdf's associated with the ShowerHandler assures, that
//modified pdf's are used for the secondary interactions via
//CascadeHandler::resetPDFs(...)
tcPDFPtr pdf;
if(firstPDF().particle() == _beam)
pdf = firstPDF().pdf();
if(secondPDF().particle() == _beam)
pdf = secondPDF().pdf();
Energy freeze = pdfFreezingScale();
// don't do anything if not needed
if(_limitEmissions == 2 || hardOnly() ||
( _limitEmissions == 1 && _nis != 0 ) ||
( _limitEmissions == 4 && _nis + _nfs != 0 ) ) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
Branching bb;
// generate branching
while (true) {
bb=_splittingGenerator->chooseBackwardBranching(*particle,beam,
_initialenhance,
_beam,type,
pdf,freeze);
// return if no emission
if(!bb.kinematics) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
// if not vetoed break
if(!spaceLikeVetoed(bb,particle)) break;
// otherwise reset scale and continue
particle->vetoEmission(bb.type,bb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
}
// assign the splitting function and shower kinematics
particle->showerKinematics(bb.kinematics);
if(bb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(bb.kinematics->pT());
// For the time being we are considering only 1->2 branching
// particles as in Sudakov form factor
tcPDPtr part[2]={bb.ids[0],bb.ids[2]};
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent = new_ptr(ShowerParticle(part[0],false));
ShowerParticlePtr otherChild = new_ptr(ShowerParticle(part[1],true,true));
ShowerParticleVector theChildren;
theChildren.push_back(particle);
theChildren.push_back(otherChild);
//this updates the evolution scale
particle->showerKinematics()->
updateParent(newParent, theChildren,_evolutionScheme,bb.type);
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,newParent);
_currenttree->addInitialStateBranching(particle,newParent,otherChild);
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
++_nis;
bool emitted = _limitEmissions==0 ?
spaceLikeShower(newParent,beam,type) : false;
if(newParent->spinInfo()) newParent->spinInfo()->develop();
// now reconstruct the momentum
if(!emitted) {
if(_intrinsic.find(_progenitor)==_intrinsic.end()) {
bb.kinematics->updateLast(newParent,ZERO,ZERO);
}
else {
pair<Energy,double> kt=_intrinsic[_progenitor];
bb.kinematics->updateLast(newParent,
kt.first*cos(kt.second),
kt.first*sin(kt.second));
}
}
particle->showerKinematics()->
updateChildren(newParent, theChildren,bb.type);
if(_limitEmissions!=0) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
// perform the shower of the final-state particle
timeLikeShower(otherChild,type,Branching(),true);
updateHistory(otherChild);
if(theChildren[1]->spinInfo()) theChildren[1]->spinInfo()->develop();
// return the emitted
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
void QTildeShowerHandler::showerDecay(ShowerTreePtr decay) {
// work out the type of event
currentTree()->xcombPtr(StdXCombPtr());
currentTree()->identifyEventType();
_decayme = HwDecayerBasePtr();
_hardme = HwMEBasePtr();
// find the decayer
// try the normal way if possible
tDMPtr dm = decay->incomingLines().begin()->first->original() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->copy() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->progenitor()->decayMode();
// otherwise make a string and look it up
if(!dm) {
string tag = decay->incomingLines().begin()->first->original()->dataPtr()->name()
+ "->";
OrderedParticles outgoing;
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it=decay->outgoingLines().begin();it!=decay->outgoingLines().end();++it) {
if(abs(decay->incomingLines().begin()->first->original()->id()) == ParticleID::t &&
abs(it->first->original()->id())==ParticleID::Wplus &&
decay->treelinks().size() == 1) {
ShowerTreePtr Wtree = decay->treelinks().begin()->first;
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it2=Wtree->outgoingLines().begin();it2!=Wtree->outgoingLines().end();++it2) {
outgoing.insert(it2->first->original()->dataPtr());
}
}
else {
outgoing.insert(it->first->original()->dataPtr());
}
}
for(OrderedParticles::const_iterator it=outgoing.begin(); it!=outgoing.end();++it) {
if(it!=outgoing.begin()) tag += ",";
tag +=(**it).name();
}
tag += ";";
dm = findDecayMode(tag);
}
if(dm) _decayme = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// set the ShowerTree to be showered
currentTree(decay);
decay->applyTransforms();
hardTree(HardTreePtr());
// generate the showering
doShowering(false,XCPtr());
// if no vetos
// force calculation of spin correlations
SpinPtr spInfo = decay->incomingLines().begin()->first->progenitor()->spinInfo();
if(spInfo) {
if(!spInfo->developed()) spInfo->needsUpdate();
spInfo->develop();
}
}
bool QTildeShowerHandler::spaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass,ShowerInteraction type,
Branching fb) {
// don't do anything if not needed
if(_limitEmissions == 1 || hardOnly() ||
( _limitEmissions == 3 && _nis != 0) ||
( _limitEmissions == 4 && _nfs + _nis != 0) ) {
return false;
}
// generate the emission
ShowerParticleVector children;
// generate the emission
if(!fb.kinematics)
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,
HardBranchingPtr());
// no emission, return
if(!fb.kinematics) return false;
Branching fc[2];
if(particle->virtualMass()==ZERO)
particle->virtualMass(_progenitor->progenitor()->mass());
fc[0] = Branching();
fc[1] = Branching();
assert(fb.kinematics);
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the ShowerParticle objects for the two children
children = createTimeLikeChildren(particle,fb.ids);
// updateChildren the children
particle->showerKinematics()->
updateChildren(particle, children, fb.type);
// select branchings for children
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,
type,HardBranchingPtr());
fc[1] = selectTimeLikeBranching (children[1],type,HardBranchingPtr());
// old default
++_nis;
// shower the first particle
_currenttree->updateInitialStateShowerProduct(_progenitor,children[0]);
_currenttree->addInitialStateBranching(particle,children[0],children[1]);
if(fc[0].kinematics) spaceLikeDecayShower(children[0],maxScales,minmass,type,Branching());
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],true);
updateHistory(children[1]);
// TODO NEED AN UPDATE HERE FOR RECONOPT!=0
// branching has happened
return true;
}
vector<ShowerProgenitorPtr> QTildeShowerHandler::setupShower(bool hard) {
RealEmissionProcessPtr real;
// generate hard me if needed
if(_hardEmission==1) {
real = hardMatrixElementCorrection(hard);
if(real&&!real->outgoing().empty()) setupMECorrection(real);
}
// generate POWHEG hard emission if needed
else if(_hardEmission==2)
hardestEmission(hard);
// set the initial colour partners
setEvolutionPartners(hard,interaction_,false);
// get the particles to be showered
vector<ShowerProgenitorPtr> particlesToShower =
currentTree()->extractProgenitors();
// return the answer
return particlesToShower;
}
void QTildeShowerHandler::setEvolutionPartners(bool hard,ShowerInteraction type,
bool clear) {
// match the particles in the ShowerTree and hardTree
if(hardTree() && !hardTree()->connect(currentTree()))
throw Exception() << "Can't match trees in "
<< "QTildeShowerHandler::setEvolutionPartners()"
<< Exception::eventerror;
// extract the progenitors
vector<ShowerParticlePtr> particles =
currentTree()->extractProgenitorParticles();
// clear the partners if needed
if(clear) {
for(unsigned int ix=0;ix<particles.size();++ix) {
particles[ix]->partner(ShowerParticlePtr());
particles[ix]->clearPartners();
}
}
// sort out the colour partners
if(hardTree()) {
// find the partner
for(unsigned int ix=0;ix<particles.size();++ix) {
tShowerParticlePtr partner = hardTree()->particles()[particles[ix]]->branchingParticle()->partner();
if(!partner) continue;
for(map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
it=hardTree()->particles().begin();
it!=hardTree()->particles().end();++it) {
if(it->second->branchingParticle()==partner) {
particles[ix]->partner(it->first);
break;
}
}
if(!particles[ix]->partner())
throw Exception() << "Can't match partners in "
<< "QTildeShowerHandler::setEvolutionPartners()"
<< Exception::eventerror;
}
}
// Set the initial evolution scales
partnerFinder()->
setInitialEvolutionScales(particles,!hard,interaction_,!_hardtree);
if(hardTree() && _hardPOWHEG) {
bool tooHard=false;
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end();
for(unsigned int ix=0;ix<particles.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(particles[ix]);
Energy hardScale(ZERO);
ShowerPartnerType type(ShowerPartnerType::Undefined);
// final-state
if(particles[ix]->isFinalState()) {
if(mit!= eit && !mit->second->children().empty()) {
hardScale = mit->second->scale();
type = mit->second->type();
}
}
// initial-state
else {
if(mit!= eit && mit->second->parent()) {
hardScale = mit->second->parent()->scale();
type = mit->second->parent()->type();
}
}
if(type!=ShowerPartnerType::Undefined) {
if(type==ShowerPartnerType::QED) {
tooHard |= particles[ix]->scales().QED_noAO<hardScale;
}
else if(type==ShowerPartnerType::QCDColourLine) {
tooHard |= particles[ix]->scales().QCD_c_noAO<hardScale;
}
else if(type==ShowerPartnerType::QCDAntiColourLine) {
tooHard |= particles[ix]->scales().QCD_ac_noAO<hardScale;
}
}
}
if(tooHard) convertHardTree(hard,type);
}
}
void QTildeShowerHandler::updateHistory(tShowerParticlePtr particle) {
if(!particle->children().empty()) {
ShowerParticleVector theChildren;
for(unsigned int ix=0;ix<particle->children().size();++ix) {
ShowerParticlePtr part = dynamic_ptr_cast<ShowerParticlePtr>
(particle->children()[ix]);
theChildren.push_back(part);
}
// update the history if needed
if(particle==_currenttree->getFinalStateShowerProduct(_progenitor))
_currenttree->updateFinalStateShowerProduct(_progenitor,
particle,theChildren);
_currenttree->addFinalStateBranching(particle,theChildren);
for(unsigned int ix=0;ix<theChildren.size();++ix)
updateHistory(theChildren[ix]);
}
}
bool QTildeShowerHandler::startTimeLikeShower(ShowerInteraction type) {
// initialize basis vectors etc
if(!progenitor()->progenitor()->partner()) return false;
progenitor()->progenitor()->initializeFinalState();
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && !mit->second->children().empty() ) {
bool output=truncatedTimeLikeShower(progenitor()->progenitor(),
mit->second ,type,Branching(),true);
if(output) updateHistory(progenitor()->progenitor());
return output;
}
}
// do the shower
bool output = hardOnly() ? false :
timeLikeShower(progenitor()->progenitor() ,type,Branching(),true) ;
if(output) updateHistory(progenitor()->progenitor());
return output;
}
bool QTildeShowerHandler::startSpaceLikeShower(PPtr parent, ShowerInteraction type) {
// initialise the basis vectors
if(!progenitor()->progenitor()->partner()) return false;
progenitor()->progenitor()->initializeInitialState(parent);
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
return truncatedSpaceLikeShower( progenitor()->progenitor(),
parent, mit->second->parent(), type );
}
}
// perform the shower
return hardOnly() ? false :
spaceLikeShower(progenitor()->progenitor(),parent,type);
}
bool QTildeShowerHandler::
startSpaceLikeDecayShower(const ShowerParticle::EvolutionScales & maxScales,
Energy minimumMass,ShowerInteraction type) {
// set up the particle basis vectors
if(!progenitor()->progenitor()->partner()) return false;
progenitor()->progenitor()->initializeDecay();
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
HardBranchingPtr branch=mit->second;
while(branch->parent()) branch=branch->parent();
return truncatedSpaceLikeDecayShower(progenitor()->progenitor(),maxScales,
minimumMass, branch ,type, Branching());
}
}
// perform the shower
return hardOnly() ? false :
spaceLikeDecayShower(progenitor()->progenitor(),maxScales,minimumMass,type,Branching());
}
bool QTildeShowerHandler::timeLikeVetoed(const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction type = convertInteraction(fb.type);
// check whether emission was harder than largest pt of hard subprocess
if ( restrictPhasespace() && fb.kinematics->pT() > _progenitor->maxHardPt() )
return true;
// soft matrix element correction veto
if( softMEC()) {
if(_hardme && _hardme->hasMECorrection()) {
if(_hardme->softMatrixElementVeto(particle,
_progenitor->progenitor(),
particle->isFinalState(),
_progenitor->highestpT(),
fb.ids, fb.kinematics->z(),
fb.kinematics->scale(),
fb.kinematics->pT()))
return true;
}
else if(_decayme && _decayme->hasMECorrection()) {
if(_decayme->softMatrixElementVeto(particle,
_progenitor->progenitor(),
particle->isFinalState(),
_progenitor->highestpT(),
fb.ids, fb.kinematics->z(),
fb.kinematics->scale(),
fb.kinematics->pT()))
return true;
}
}
// veto on maximum pt
if(fb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
// general vetos
if (fb.kinematics && !_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoTimeLike(_progenitor,particle,fb,currentTree());
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if(vetoed) return true;
}
if ( firstInteraction() &&
profileScales() ) {
double weight =
profileScales()->
hardScaleProfile(_progenitor->hardScale(),fb.kinematics->pT());
if ( UseRandom::rnd() > weight )
return true;
}
return false;
}
bool QTildeShowerHandler::spaceLikeVetoed(const Branching & bb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction type = convertInteraction(bb.type);
// check whether emission was harder than largest pt of hard subprocess
if (restrictPhasespace() && bb.kinematics->pT() > _progenitor->maxHardPt())
return true;
// apply the soft correction
if( softMEC() && _hardme && _hardme->hasMECorrection() ) {
if(_hardme->softMatrixElementVeto(particle,
_progenitor->progenitor(),
particle->isFinalState(),
_progenitor->highestpT(),
bb.ids, bb.kinematics->z(),
bb.kinematics->scale(),
bb.kinematics->pT()))
return true;
}
// the more general vetos
// check vs max pt for the shower
if(bb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,bb,currentTree());
switch ((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if (vetoed) return true;
}
if ( firstInteraction() &&
profileScales() ) {
double weight =
profileScales()->
hardScaleProfile(_progenitor->hardScale(),bb.kinematics->pT());
if ( UseRandom::rnd() > weight )
return true;
}
return false;
}
bool QTildeShowerHandler::spaceLikeDecayVetoed( const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction type = convertInteraction(fb.type);
// apply the soft correction
if( softMEC() && _decayme && _decayme->hasMECorrection() ) {
if(_decayme->softMatrixElementVeto(particle,
_progenitor->progenitor(),
particle->isFinalState(),
_progenitor->highestpT(),
fb.ids, fb.kinematics->z(),
fb.kinematics->scale(),
fb.kinematics->pT()))
return true;
}
// veto on hardest pt in the shower
if(fb.kinematics->pT()> _progenitor->maximumpT(type)) return true;
// general vetos
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,fb,currentTree());
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
if (vetoed) return true;
}
}
return false;
}
void QTildeShowerHandler::hardestEmission(bool hard) {
HardTreePtr ISRTree;
// internal POWHEG in production or decay
if( (( _hardme && _hardme->hasPOWHEGCorrection()!=0 ) ||
( _decayme && _decayme->hasPOWHEGCorrection()!=0 ) ) ) {
RealEmissionProcessPtr real;
unsigned int type(0);
// production
if(_hardme) {
assert(hard);
real = _hardme->generateHardest( currentTree()->perturbativeProcess(),
interaction_);
type = _hardme->hasPOWHEGCorrection();
}
// decay
else {
assert(!hard);
real = _decayme->generateHardest( currentTree()->perturbativeProcess() );
type = _decayme->hasPOWHEGCorrection();
}
if(real) {
// set up ther hard tree
if(!real->outgoing().empty()) _hardtree = new_ptr(HardTree(real));
// set up the vetos
currentTree()->setVetoes(real->pT(),type);
}
// store initial state POWHEG radiation
if(_hardtree && _hardme && _hardme->hasPOWHEGCorrection()==1)
ISRTree = _hardtree;
}
else if (hard) {
// Get minimum pT cutoff used in shower approximation
Energy maxpt = 1.*GeV;
if ( currentTree()->showerApproximation() ) {
int colouredIn = 0;
int colouredOut = 0;
for( map< ShowerProgenitorPtr, tShowerParticlePtr >::iterator it
= currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if( it->second->coloured() ) ++colouredOut;
}
for( map< ShowerProgenitorPtr, ShowerParticlePtr >::iterator it
= currentTree()->incomingLines().begin();
it != currentTree()->incomingLines().end(); ++it ) {
if( it->second->coloured() ) ++colouredIn;
}
if ( currentTree()->showerApproximation()->ffPtCut() == currentTree()->showerApproximation()->fiPtCut() &&
currentTree()->showerApproximation()->ffPtCut() == currentTree()->showerApproximation()->iiPtCut() )
maxpt = currentTree()->showerApproximation()->ffPtCut();
else if ( colouredIn == 2 && colouredOut == 0 )
maxpt = currentTree()->showerApproximation()->iiPtCut();
else if ( colouredIn == 0 && colouredOut > 1 )
maxpt = currentTree()->showerApproximation()->ffPtCut();
else if ( colouredIn == 2 && colouredOut == 1 )
maxpt = min(currentTree()->showerApproximation()->iiPtCut(), currentTree()->showerApproximation()->fiPtCut());
else if ( colouredIn == 1 && colouredOut > 1 )
maxpt = min(currentTree()->showerApproximation()->ffPtCut(), currentTree()->showerApproximation()->fiPtCut());
else
maxpt = min(min(currentTree()->showerApproximation()->iiPtCut(), currentTree()->showerApproximation()->fiPtCut()),
currentTree()->showerApproximation()->ffPtCut());
}
// Generate hardtree from born and real emission subprocesses
_hardtree = generateCKKW(currentTree());
// Find transverse momentum of hardest emission
if (_hardtree){
for(set<HardBranchingPtr>::iterator it=_hardtree->branchings().begin();
it!=_hardtree->branchings().end();++it) {
if ((*it)->parent() && (*it)->status()==HardBranching::Incoming)
maxpt=(*it)->branchingParticle()->momentum().perp();
if ((*it)->children().size()==2 && (*it)->status()==HardBranching::Outgoing){
if ((*it)->branchingParticle()->id()!=21 &&
abs((*it)->branchingParticle()->id())>5 ){
if ((*it)->children()[0]->branchingParticle()->id()==21 ||
abs((*it)->children()[0]->branchingParticle()->id())<6)
maxpt=(*it)->children()[0]->branchingParticle()->momentum().perp();
else if ((*it)->children()[1]->branchingParticle()->id()==21 ||
abs((*it)->children()[1]->branchingParticle()->id())<6)
maxpt=(*it)->children()[1]->branchingParticle()->momentum().perp();
}
else {
if ( abs((*it)->branchingParticle()->id())<6){
if (abs((*it)->children()[0]->branchingParticle()->id())<6)
maxpt = (*it)->children()[1]->branchingParticle()->momentum().perp();
else
maxpt = (*it)->children()[0]->branchingParticle()->momentum().perp();
}
else maxpt = (*it)->children()[1]->branchingParticle()->momentum().perp();
}
}
}
}
// Hardest (pt) emission should be the first powheg emission.
maxpt=min(sqrt(lastXCombPtr()->lastShowerScale()),maxpt);
// set maximum pT for subsequent emissions from S events
if ( currentTree()->isPowhegSEvent() ) {
for( map< ShowerProgenitorPtr, tShowerParticlePtr >::iterator it
= currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if( ! it->second->coloured() ) continue;
it->first->maximumpT(maxpt, ShowerInteraction::QCD );
}
for( map< ShowerProgenitorPtr, ShowerParticlePtr >::iterator it
= currentTree()->incomingLines().begin();
it != currentTree()->incomingLines().end(); ++it ) {
if( ! it->second->coloured() ) continue;
it->first->maximumpT(maxpt, ShowerInteraction::QCD );
}
}
}
else
_hardtree = generateCKKW(currentTree());
// if hard me doesn't have a FSR powheg
// correction use decay powheg correction
if (_hardme && _hardme->hasPOWHEGCorrection()<2) {
addFSRUsingDecayPOWHEG(ISRTree);
}
// connect the trees
if(_hardtree) {
connectTrees(currentTree(),_hardtree,hard);
}
}
void QTildeShowerHandler::addFSRUsingDecayPOWHEG(HardTreePtr ISRTree) {
// check for intermediate colour singlet resonance
const ParticleVector inter = _hardme->subProcess()->intermediates();
if (inter.size()!=1 || inter[0]->momentum().m2()/GeV2 < 0 ||
inter[0]->dataPtr()->iColour()!=PDT::Colour0) {
return;
}
// ignore cases where outgoing particles are not coloured
map<ShowerProgenitorPtr, tShowerParticlePtr > out = currentTree()->outgoingLines();
if (out.size() != 2 ||
out. begin()->second->dataPtr()->iColour()==PDT::Colour0 ||
out.rbegin()->second->dataPtr()->iColour()==PDT::Colour0) {
return;
}
// look up decay mode
tDMPtr dm;
string tag;
string inParticle = inter[0]->dataPtr()->name() + "->";
vector<string> outParticles;
outParticles.push_back(out.begin ()->first->progenitor()->dataPtr()->name());
outParticles.push_back(out.rbegin()->first->progenitor()->dataPtr()->name());
for (int it=0; it<2; ++it){
tag = inParticle + outParticles[it] + "," + outParticles[(it+1)%2] + ";";
dm = generator()->findDecayMode(tag);
if(dm) break;
}
// get the decayer
HwDecayerBasePtr decayer;
if(dm) decayer = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// check if decayer has a FSR POWHEG correction
if (!decayer || decayer->hasPOWHEGCorrection()<2) {
return;
}
// generate the hardest emission
// create RealEmissionProcess
PPtr in = new_ptr(*inter[0]);
RealEmissionProcessPtr newProcess(new_ptr(RealEmissionProcess()));
newProcess->bornIncoming().push_back(in);
newProcess->bornOutgoing().push_back(out.begin ()->first->progenitor());
newProcess->bornOutgoing().push_back(out.rbegin()->first->progenitor());
// generate the FSR
newProcess = decayer->generateHardest(newProcess);
HardTreePtr FSRTree;
if(newProcess) {
// set up ther hard tree
if(!newProcess->outgoing().empty()) FSRTree = new_ptr(HardTree(newProcess));
// set up the vetos
currentTree()->setVetoes(newProcess->pT(),2);
}
if(!FSRTree) return;
// if there is no ISRTree make _hardtree from FSRTree
if (!ISRTree){
vector<HardBranchingPtr> inBranch,hardBranch;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit =currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit ) {
inBranch.push_back(new_ptr(HardBranching(cit->second,SudakovPtr(),
HardBranchingPtr(),
HardBranching::Incoming)));
inBranch.back()->beam(cit->first->original()->parents()[0]);
hardBranch.push_back(inBranch.back());
}
if(inBranch[0]->branchingParticle()->dataPtr()->coloured()) {
inBranch[0]->colourPartner(inBranch[1]);
inBranch[1]->colourPartner(inBranch[0]);
}
for(set<HardBranchingPtr>::iterator it=FSRTree->branchings().begin();
it!=FSRTree->branchings().end();++it) {
if((**it).branchingParticle()->id()!=in->id())
hardBranch.push_back(*it);
}
hardBranch[2]->colourPartner(hardBranch[3]);
hardBranch[3]->colourPartner(hardBranch[2]);
HardTreePtr newTree = new_ptr(HardTree(hardBranch,inBranch,
ShowerInteraction::QCD));
_hardtree = newTree;
}
// Otherwise modify the ISRTree to include the emission in FSRTree
else {
vector<tShowerParticlePtr> FSROut, ISROut;
set<HardBranchingPtr>::iterator itFSR, itISR;
// get outgoing particles
for(itFSR =FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).status()==HardBranching::Outgoing)
FSROut.push_back((*itFSR)->branchingParticle());
}
for(itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Outgoing)
ISROut.push_back((*itISR)->branchingParticle());
}
// find COM frame formed by outgoing particles
LorentzRotation eventFrameFSR, eventFrameISR;
eventFrameFSR = ((FSROut[0]->momentum()+FSROut[1]->momentum()).findBoostToCM());
eventFrameISR = ((ISROut[0]->momentum()+ISROut[1]->momentum()).findBoostToCM());
// find rotation between ISR and FSR frames
int j=0;
if (ISROut[0]->id()!=FSROut[0]->id()) j=1;
eventFrameISR.rotateZ( (eventFrameFSR*FSROut[0]->momentum()).phi()-
(eventFrameISR*ISROut[j]->momentum()).phi() );
eventFrameISR.rotateY( (eventFrameFSR*FSROut[0]->momentum()).theta()-
(eventFrameISR*ISROut[j]->momentum()).theta() );
eventFrameISR.invert();
for (itFSR=FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).branchingParticle()->id()==in->id()) continue;
for (itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Incoming) continue;
if ((**itFSR).branchingParticle()->id()==
(**itISR).branchingParticle()->id()){
// rotate FSRTree particle to ISRTree event frame
(**itISR).branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).branchingParticle()->momentum());
(**itISR).branchingParticle()->rescaleMass();
// add the children of the FSRTree particles to the ISRTree
if(!(**itFSR).children().empty()){
(**itISR).addChild((**itFSR).children()[0]);
(**itISR).addChild((**itFSR).children()[1]);
// rotate momenta to ISRTree event frame
(**itISR).children()[0]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[0]->branchingParticle()->momentum());
(**itISR).children()[1]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[1]->branchingParticle()->momentum());
}
}
}
}
_hardtree = ISRTree;
}
}
bool QTildeShowerHandler::truncatedTimeLikeShower(tShowerParticlePtr particle,
HardBranchingPtr branch,
ShowerInteraction type,
Branching fb, bool first) {
// select a branching if we don't have one
if(!fb.kinematics)
fb = selectTimeLikeBranching(particle,type,branch);
// must be an emission, the forced one it not a truncated one
assert(fb.kinematics);
ShowerParticleVector children;
Branching fc[2] = {Branching(),Branching()};
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the children
children = createTimeLikeChildren(particle,fb.ids);
// update the children
particle->showerKinematics()->
updateChildren(particle, children,fb.type);
// select branchings for children
if(!fc[0].kinematics) {
// select branching for first particle
if(!fb.hard && fb.iout ==1 )
fc[0] = selectTimeLikeBranching(children[0],type,branch);
else if(fb.hard && !branch->children()[0]->children().empty() )
fc[0] = selectTimeLikeBranching(children[0],type,branch->children()[0]);
else
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
}
// select branching for the second particle
if(!fc[1].kinematics) {
// select branching for first particle
if(!fb.hard && fb.iout ==2 )
fc[1] = selectTimeLikeBranching(children[1],type,branch);
else if(fb.hard && !branch->children()[1]->children().empty() )
fc[1] = selectTimeLikeBranching(children[1],type,branch->children()[1]);
else
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
}
// shower the first particle
if(fc[0].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 1)
truncatedTimeLikeShower(children[0],branch,type,fc[0],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 2)
truncatedTimeLikeShower(children[1],branch,type,fc[1],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[1]->children().empty() )
truncatedTimeLikeShower(children[1],branch->children()[1],type,fc[1],false);
else
timeLikeShower(children[1],type,fc[1],false);
}
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,_evolutionScheme,fb.type);
if(first&&!children.empty())
particle->showerKinematics()->resetChildren(particle,children);
if(particle->spinInfo()) particle->spinInfo()->develop();
// TODO NEED AN UPDATE HERE FOR RECONOPT!=0 ?
return true;
}
bool QTildeShowerHandler::truncatedSpaceLikeShower(tShowerParticlePtr particle, PPtr beam,
HardBranchingPtr branch,
ShowerInteraction type) {
tcPDFPtr pdf;
if(firstPDF().particle() == beamParticle())
pdf = firstPDF().pdf();
if(secondPDF().particle() == beamParticle())
pdf = secondPDF().pdf();
Energy freeze = pdfFreezingScale();
Branching bb;
// parameters of the force branching
double z(0.);
HardBranchingPtr timelike;
for( unsigned int ix = 0; ix < branch->children().size(); ++ix ) {
if( branch->children()[ix]->status() ==HardBranching::Outgoing) {
timelike = branch->children()[ix];
}
if( branch->children()[ix]->status() ==HardBranching::Incoming )
z = branch->children()[ix]->z();
}
// generate truncated branching
tcPDPtr part[2];
if(z>=0.&&z<=1.) {
while (true) {
if( !isTruncatedShowerON() || hardOnly() ) break;
bb = splittingGenerator()->chooseBackwardBranching( *particle,
beam, 1., beamParticle(),
type , pdf,freeze);
if( !bb.kinematics || bb.kinematics->scale() < branch->scale() ) {
bb = Branching();
break;
}
// particles as in Sudakov form factor
part[0] = bb.ids[0];
part[1] = bb.ids[2];
double zsplit = bb.kinematics->z();
// apply the vetos for the truncated shower
// if doesn't carry most of momentum
ShowerInteraction type2 = convertInteraction(bb.type);
if(type2==branch->sudakov()->interactionType() &&
zsplit < 0.5) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// others
if( part[0]->id() != particle->id() || // if particle changes type
bb.kinematics->pT() > progenitor()->maximumpT(type2) || // pt veto
bb.kinematics->scale() < branch->scale()) { // angular ordering veto
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// and those from the base class
if(spaceLikeVetoed(bb,particle)) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
break;
}
}
if( !bb.kinematics ) {
//do the hard emission
ShoKinPtr kinematics = new_ptr(IS_QTildeShowerKinematics1to2(
branch->scale(), z, branch->phi(),
branch->children()[0]->pT(), branch->sudakov()
));
// assign the splitting function and shower kinematics
particle->showerKinematics( kinematics );
if(kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(kinematics->pT());
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent =
new_ptr( ShowerParticle( branch->branchingParticle()->dataPtr(), false ) );
ShowerParticlePtr otherChild =
new_ptr( ShowerParticle( timelike->branchingParticle()->dataPtr(),
true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren,_evolutionScheme, branch->type());
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted=false;
if(!hardOnly()) {
if( branch->parent() ) {
emitted = truncatedSpaceLikeShower( newParent, beam, branch->parent() , type);
}
else {
emitted = spaceLikeShower( newParent, beam , type);
}
}
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[progenitor()];
kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren,bb.type);
if(hardOnly()) return true;
// perform the shower of the final-state particle
if( timelike->children().empty() ) {
timeLikeShower( otherChild , type,Branching(),true);
}
else {
truncatedTimeLikeShower( otherChild, timelike , type,Branching(), true);
}
updateHistory(otherChild);
// return the emitted
return true;
}
// assign the splitting function and shower kinematics
particle->showerKinematics( bb.kinematics );
if(bb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(bb.kinematics->pT());
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent = new_ptr( ShowerParticle( part[0], false ) );
ShowerParticlePtr otherChild = new_ptr( ShowerParticle( part[1], true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren,_evolutionScheme, bb.type);
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted = truncatedSpaceLikeShower( newParent, beam, branch,type);
// now reconstruct the momentum
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
bb.kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[ progenitor() ];
bb.kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren, bb.type);
// perform the shower of the final-state particle
timeLikeShower( otherChild , type,Branching(),true);
updateHistory(otherChild);
// return the emitted
return true;
}
bool QTildeShowerHandler::
truncatedSpaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass, HardBranchingPtr branch,
ShowerInteraction type, Branching fb) {
// select a branching if we don't have one
if(!fb.kinematics)
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,branch);
// must be an emission, the forced one it not a truncated one
assert(fb.kinematics);
ShowerParticleVector children;
Branching fc[2]={Branching(),Branching()};
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the ShowerParticle objects for the two children
children = createTimeLikeChildren(particle,fb.ids);
// updateChildren the children
particle->showerKinematics()->
updateChildren(particle, children, fb.type);
// select branchings for children
if(!fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
// select branching for first particle
if(!fb.hard)
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,branch);
else if(fb.hard && ! branch->children()[0]->children().empty() )
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,
branch->children()[0]);
else
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,
HardBranchingPtr());
}
else {
// select branching for first particle
if(fb.hard && !branch->children()[0]->children().empty() )
fc[0] = selectTimeLikeBranching(children[0],type,branch->children()[0]);
else
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
}
}
// select branching for the second particle
if(!fc[1].kinematics) {
if(children[1]->id()==particle->id()) {
// select branching for first particle
if(!fb.hard)
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,branch);
else if(fb.hard && ! branch->children()[1]->children().empty() )
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,
branch->children()[1]);
else
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,
HardBranchingPtr());
}
else {
if(fb.hard && !branch->children()[1]->children().empty() )
fc[1] = selectTimeLikeBranching(children[1],type,branch->children()[1]);
else
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
}
}
// old default
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),children[0]);
currentTree()->addInitialStateBranching(particle,children[0],children[1]);
// shower the first particle
if(fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[0]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[0]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[0]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
}
// shower the second particle
if(fc[1].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[1]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[1]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[1]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[1],false);
// normal shower
else
timeLikeShower(children[0],type,fc[1],false);
}
}
updateHistory(children[1]);
// TODO DO WE NEED A CHECK IF RECONPT !=0
return true;
}
void QTildeShowerHandler::connectTrees(ShowerTreePtr showerTree,
HardTreePtr hardTree, bool hard ) {
ShowerParticleVector particles;
// find the Sudakovs
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
// Sudakovs for ISR
if((**cit).parent()&&(**cit).status()==HardBranching::Incoming) {
++_nis;
array<long,3> br;
br[0] = (**cit).parent()->branchingParticle()->id();
br[1] = (**cit). branchingParticle()->id();
br[2] = (**cit).parent()->children()[0]==*cit ?
(**cit).parent()->children()[1]->branchingParticle()->id() :
(**cit).parent()->children()[0]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->initialStateBranchings();
if(br[1]<0&&br[0]==br[1]) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
}
else if(br[1]<0) {
br[1] = -br[1];
br[2] = -br[2];
}
long index = abs(br[1]);
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.particles;
if(ids[0]->id()==br[0]&&ids[1]->id()==br[1]&&ids[2]->id()==br[2]) {
sudakov=cjt->second.sudakov;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "QTildeShowerHandler::connectTrees() for ISR"
<< Exception::runerror;
(**cit).parent()->sudakov(sudakov);
}
// Sudakovs for FSR
else if(!(**cit).children().empty()) {
++_nfs;
array<long,3> br;
br[0] = (**cit) .branchingParticle()->id();
br[1] = (**cit).children()[0]->branchingParticle()->id();
br[2] = (**cit).children()[1]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->finalStateBranchings();
if(br[0]<0) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
br[2] = abs(br[2]);
}
long index = br[0];
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.particles;
if(ids[0]->id()==br[0]&&ids[1]->id()==br[1]&&ids[2]->id()==br[2]) {
sudakov=cjt->second.sudakov;
break;
}
}
if(!sudakov) {
throw Exception() << "Can't find Sudakov for the hard emission in "
<< "QTildeShowerHandler::connectTrees()"
<< Exception::runerror;
}
(**cit).sudakov(sudakov);
}
}
// calculate the evolution scale
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
partnerFinder()->
setInitialEvolutionScales(particles,!hard,interaction_,true);
hardTree->partnersSet(true);
// inverse reconstruction
if(hard) {
kinematicsReconstructor()->
deconstructHardJets(hardTree,interaction_);
}
else
kinematicsReconstructor()->
deconstructDecayJets(hardTree,interaction_);
// now reset the momenta of the showering particles
vector<ShowerProgenitorPtr> particlesToShower=showerTree->extractProgenitors();
// match them
map<ShowerProgenitorPtr,HardBranchingPtr> partners;
for(set<HardBranchingPtr>::const_iterator bit=hardTree->branchings().begin();
bit!=hardTree->branchings().end();++bit) {
Energy2 dmin( 1e30*GeV2 );
ShowerProgenitorPtr partner;
for(vector<ShowerProgenitorPtr>::const_iterator pit=particlesToShower.begin();
pit!=particlesToShower.end();++pit) {
if(partners.find(*pit)!=partners.end()) continue;
if( (**bit).branchingParticle()->id() != (**pit).progenitor()->id() ) continue;
if( (**bit).branchingParticle()->isFinalState() !=
(**pit).progenitor()->isFinalState() ) continue;
if( (**pit).progenitor()->isFinalState() ) {
Energy2 dtest =
sqr( (**pit).progenitor()->momentum().x() - (**bit).showerMomentum().x() ) +
sqr( (**pit).progenitor()->momentum().y() - (**bit).showerMomentum().y() ) +
sqr( (**pit).progenitor()->momentum().z() - (**bit).showerMomentum().z() ) +
sqr( (**pit).progenitor()->momentum().t() - (**bit).showerMomentum().t() );
// add mass difference for identical particles (e.g. Z0 Z0 production)
dtest += 1e10*sqr((**pit).progenitor()->momentum().m()-(**bit).showerMomentum().m());
if( dtest < dmin ) {
partner = *pit;
dmin = dtest;
}
}
else {
// ensure directions are right
if((**pit).progenitor()->momentum().z()/(**bit).showerMomentum().z()>ZERO) {
partner = *pit;
break;
}
}
}
if(!partner) throw Exception() << "Failed to match shower and hard trees in QTildeShowerHandler::hardestEmission"
<< Exception::eventerror;
partners[partner] = *bit;
}
for(vector<ShowerProgenitorPtr>::const_iterator pit=particlesToShower.begin();
pit!=particlesToShower.end();++pit) {
HardBranchingPtr partner = partners[*pit];
if((**pit).progenitor()->dataPtr()->stable()) {
(**pit).progenitor()->set5Momentum(partner->showerMomentum());
(**pit).copy()->set5Momentum(partner->showerMomentum());
}
else {
Lorentz5Momentum oldMomentum = (**pit).progenitor()->momentum();
Lorentz5Momentum newMomentum = partner->showerMomentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
(**pit).progenitor()->transform(boost);
(**pit).copy() ->transform(boost);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
(**pit).progenitor()->transform(boost);
(**pit).copy() ->transform(boost);
}
}
// correction boosts for daughter trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit = showerTree->treelinks().begin();
tit != showerTree->treelinks().end();++tit) {
ShowerTreePtr decayTree = tit->first;
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = decayTree->incomingLines().begin();
// reset the momentum of the decay particle
Lorentz5Momentum oldMomentum = cit->first->progenitor()->momentum();
Lorentz5Momentum newMomentum = tit->second.second->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
decayTree->transform(boost,true);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
decayTree->transform(boost,true);
}
}
void QTildeShowerHandler::doShowering(bool hard,XCPtr xcomb) {
// zero number of emissions
_nis = _nfs = 0;
// if MC@NLO H event and limited emissions
// indicate both final and initial state emission
if ( currentTree()->isMCatNLOHEvent() && _limitEmissions != 0 ) {
_nis = _nfs = 1;
}
// extract particles to shower
vector<ShowerProgenitorPtr> particlesToShower(setupShower(hard));
// check if we should shower
bool colCharge = false;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->dataPtr()->coloured() ||
particlesToShower[ix]->progenitor()->dataPtr()->charged()) {
colCharge = true;
break;
}
}
if(!colCharge) {
_currenttree->hasShowered(true);
return;
}
// setup the maximum scales for the shower
if (restrictPhasespace()) setupMaximumScales(particlesToShower,xcomb);
// set the hard scales for the profiles
setupHardScales(particlesToShower,xcomb);
// specific stuff for hard processes and decays
Energy minmass(ZERO), mIn(ZERO);
// hard process generate the intrinsic p_T once and for all
if(hard) {
generateIntrinsicpT(particlesToShower);
}
// decay compute the minimum mass of the final-state
else {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
if(particlesToShower[ix]->progenitor()->dataPtr()->stable()){
auto dm= ShowerHandler::currentHandler()->retConstituentMasses()?
particlesToShower[ix]->progenitor()->dataPtr()->constituentMass():
particlesToShower[ix]->progenitor()->dataPtr()->mass();
minmass += dm;
}else
minmass += particlesToShower[ix]->progenitor()->mass();
}
else {
mIn = particlesToShower[ix]->progenitor()->mass();
}
}
// throw exception if decay can't happen
if ( minmass > mIn ) {
throw Exception() << "QTildeShowerHandler.cc: Mass of decaying particle is "
<< "below constituent masses of decay products."
<< Exception::eventerror;
}
}
// setup for reweighted
bool reWeighting = _reWeight && hard && ShowerHandler::currentHandler()->firstInteraction();
double eventWeight=0.;
unsigned int nTryReWeight(0);
// create random particle vector (only need to do once)
vector<ShowerProgenitorPtr> tmp;
unsigned int nColouredIncoming = 0;
while(particlesToShower.size()>0){
unsigned int xx=UseRandom::irnd(particlesToShower.size());
tmp.push_back(particlesToShower[xx]);
particlesToShower.erase(particlesToShower.begin()+xx);
}
particlesToShower=tmp;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(!particlesToShower[ix]->progenitor()->isFinalState() &&
particlesToShower[ix]->progenitor()->coloured()) ++nColouredIncoming;
}
bool switchRecon = hard && nColouredIncoming !=1;
// main shower loop
unsigned int ntry(0);
bool reconstructed = false;
do {
// clear results of last attempt if needed
if(ntry!=0) {
currentTree()->clear();
setEvolutionPartners(hard,interaction_,true);
_nis = _nfs = 0;
// if MC@NLO H event and limited emissions
// indicate both final and initial state emission
if ( currentTree()->isMCatNLOHEvent() && _limitEmissions != 0 ) {
_nis = _nfs = 1;
}
for(unsigned int ix=0; ix<particlesToShower.size();++ix) {
SpinPtr spin = particlesToShower[ix]->progenitor()->spinInfo();
if(spin && spin->decayVertex() &&
dynamic_ptr_cast<tcSVertexPtr>(spin->decayVertex())) {
spin->decayVertex(VertexPtr());
}
}
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState() ||
(hard && !particlesToShower[ix]->progenitor()->isFinalState())) {
if(particlesToShower[ix]->progenitor()->spinInfo())
particlesToShower[ix]->progenitor()->spinInfo()->reset();
}
}
}
// loop over particles
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// extract the progenitor
progenitor(particlesToShower[ix]);
// final-state radiation
if(progenitor()->progenitor()->isFinalState()) {
if(!doFSR()) continue;
// perform shower
progenitor()->hasEmitted(startTimeLikeShower(interaction_));
}
// initial-state radiation
else {
if(!doISR()) continue;
// hard process
if(hard) {
// get the PDF
setBeamParticle(_progenitor->beam());
if(!beamParticle()) {
throw Exception() << "Incorrect type of beam particle in "
<< "QTildeShowerHandler::doShowering(). "
<< "This should not happen for conventional choices but may happen if you have used a"
<< " non-default choice and have not changed the create ParticleData line in the input files"
<< " for this particle to create BeamParticleData."
<< Exception::runerror;
}
// perform the shower
// set the beam particle
tPPtr beamparticle=progenitor()->original();
if(!beamparticle->parents().empty())
beamparticle=beamparticle->parents()[0];
// generate the shower
progenitor()->hasEmitted(startSpaceLikeShower(beamparticle,
interaction_));
}
// decay
else {
// skip colour and electrically neutral particles
if(!progenitor()->progenitor()->dataPtr()->coloured() &&
!progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->hasEmitted(false);
continue;
}
// perform shower
// set the scales correctly. The current scale is the maximum scale for
// emission not the starting scale
ShowerParticle::EvolutionScales maxScales(progenitor()->progenitor()->scales());
progenitor()->progenitor()->scales() = ShowerParticle::EvolutionScales();
if(progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->progenitor()->scales().QED = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QED_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasColour()) {
progenitor()->progenitor()->scales().QCD_c = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_c_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasAntiColour()) {
progenitor()->progenitor()->scales().QCD_ac = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_ac_noAO = progenitor()->progenitor()->mass();
}
// perform the shower
progenitor()->hasEmitted(startSpaceLikeDecayShower(maxScales,minmass,
interaction_));
}
}
}
// do the kinematic reconstruction, checking if it worked
reconstructed = hard ?
kinematicsReconstructor()->
reconstructHardJets (currentTree(),intrinsicpT(),interaction_,
switchRecon && ntry>maximumTries()/2) :
kinematicsReconstructor()->
reconstructDecayJets(currentTree(),interaction_);
if(!reconstructed) continue;
// apply vetos on the full shower
for(vector<FullShowerVetoPtr>::const_iterator it=_fullShowerVetoes.begin();
it!=_fullShowerVetoes.end();++it) {
int veto = (**it).applyVeto(currentTree());
if(veto<0) continue;
// veto the shower
if(veto==0) {
reconstructed = false;
break;
}
// veto the shower and reweight
else if(veto==1) {
reconstructed = false;
break;
}
// veto the event
else if(veto==2) {
throw Veto();
}
}
if(reWeighting) {
if(reconstructed) eventWeight += 1.;
reconstructed=false;
++nTryReWeight;
if(nTryReWeight==_nReWeight) {
reWeighting = false;
if(eventWeight==0.) throw Veto();
}
}
}
while(!reconstructed&&maximumTries()>++ntry);
// check if failed to generate the shower
if(ntry==maximumTries()) {
if(hard)
throw ShowerHandler::ShowerTriesVeto(ntry);
else
throw Exception() << "Failed to generate the shower after "
<< ntry << " attempts in QTildeShowerHandler::showerDecay()"
<< Exception::eventerror;
}
// handle the weights and apply any reweighting required
if(nTryReWeight>0) {
tStdEHPtr seh = dynamic_ptr_cast<tStdEHPtr>(generator()->currentEventHandler());
static bool first = true;
if(seh) {
seh->reweight(eventWeight/double(nTryReWeight));
}
else if(first) {
generator()->log() << "Reweighting the shower only works with internal Herwig7 processes"
<< "Presumably you are showering Les Houches Events. These will not be"
<< "reweighted\n";
first = false;
}
}
// tree has now showered
_currenttree->hasShowered(true);
hardTree(HardTreePtr());
}
void QTildeShowerHandler:: convertHardTree(bool hard,ShowerInteraction type) {
map<ColinePtr,ColinePtr> cmap;
// incoming particles
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit=currentTree()->incomingLines().begin();cit!=currentTree()->incomingLines().end();++cit) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(cit->first->progenitor());
// put the colour lines in the map
ShowerParticlePtr oldParticle = cit->first->progenitor();
ShowerParticlePtr newParticle = mit->second->branchingParticle();
ColinePtr cLine = oldParticle-> colourLine();
ColinePtr aLine = oldParticle->antiColourLine();
if(newParticle->colourLine() &&
cmap.find(newParticle-> colourLine())==cmap.end())
cmap[newParticle-> colourLine()] = cLine;
if(newParticle->antiColourLine() &&
cmap.find(newParticle->antiColourLine())==cmap.end())
cmap[newParticle->antiColourLine()] = aLine;
// check whether or not particle emits
bool emission = mit->second->parent();
if(emission) {
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
}
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
}
newParticle = mit->second->parent()->branchingParticle();
}
// get the new colour lines
ColinePtr newCLine,newALine;
// sort out colour lines
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newCLine = cmap[ctemp];
}
else {
newCLine = new_ptr(ColourLine());
cmap[ctemp] = newCLine;
}
}
// and anticolour lines
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newALine = cmap[ctemp];
}
else {
newALine = new_ptr(ColourLine());
cmap[ctemp] = newALine;
}
}
// remove colour lines from old particle
if(aLine) {
aLine->removeAntiColoured(cit->first->copy());
aLine->removeAntiColoured(cit->first->progenitor());
}
if(cLine) {
cLine->removeColoured(cit->first->copy());
cLine->removeColoured(cit->first->progenitor());
}
// add particle to colour lines
if(newCLine) newCLine->addColoured (newParticle);
if(newALine) newALine->addAntiColoured(newParticle);
// insert new particles
cit->first->copy(newParticle);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*newParticle,1,false)));
cit->first->progenitor(sp);
currentTree()->incomingLines()[cit->first]=sp;
cit->first->perturbative(!emission);
// and the emitted particle if needed
if(emission) {
ShowerParticlePtr newOut = mit->second->parent()->children()[1]->branchingParticle();
if(newOut->colourLine()) {
ColinePtr ctemp = newOut-> colourLine();
ctemp->removeColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addColoured (newOut);
}
if(newOut->antiColourLine()) {
ColinePtr ctemp = newOut->antiColourLine();
ctemp->removeAntiColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addAntiColoured(newOut);
}
ShowerParticlePtr sout=new_ptr(ShowerParticle(*newOut,1,true));
ShowerProgenitorPtr out=new_ptr(ShowerProgenitor(cit->first->original(),newOut,sout));
out->perturbative(false);
currentTree()->outgoingLines().insert(make_pair(out,sout));
}
if(hard) {
// sort out the value of x
if(mit->second->beam()->momentum().z()>ZERO) {
sp->x(newParticle->momentum(). plus()/mit->second->beam()->momentum(). plus());
}
else {
sp->x(newParticle->momentum().minus()/mit->second->beam()->momentum().minus());
}
}
}
// outgoing particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cit=currentTree()->outgoingLines().begin();cit!=currentTree()->outgoingLines().end();++cit) {
map<tShowerTreePtr,pair<tShowerProgenitorPtr,
tShowerParticlePtr> >::const_iterator tit;
for(tit = currentTree()->treelinks().begin();
tit != currentTree()->treelinks().end();++tit) {
if(tit->second.first && tit->second.second==cit->first->progenitor())
break;
}
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(cit->first->progenitor());
if(mit==hardTree()->particles().end()) continue;
// put the colour lines in the map
ShowerParticlePtr oldParticle = cit->first->progenitor();
ShowerParticlePtr newParticle = mit->second->branchingParticle();
ShowerParticlePtr newOut;
ColinePtr cLine = oldParticle-> colourLine();
ColinePtr aLine = oldParticle->antiColourLine();
if(newParticle->colourLine() &&
cmap.find(newParticle-> colourLine())==cmap.end())
cmap[newParticle-> colourLine()] = cLine;
if(newParticle->antiColourLine() &&
cmap.find(newParticle->antiColourLine())==cmap.end())
cmap[newParticle->antiColourLine()] = aLine;
// check whether or not particle emits
bool emission = !mit->second->children().empty();
if(emission) {
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
}
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
}
newParticle = mit->second->children()[0]->branchingParticle();
newOut = mit->second->children()[1]->branchingParticle();
if(newParticle->id()!=oldParticle->id()&&newParticle->id()==newOut->id())
swap(newParticle,newOut);
}
// get the new colour lines
ColinePtr newCLine,newALine;
// sort out colour lines
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newCLine = cmap[ctemp];
}
else {
newCLine = new_ptr(ColourLine());
cmap[ctemp] = newCLine;
}
}
// and anticolour lines
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newALine = cmap[ctemp];
}
else {
newALine = new_ptr(ColourLine());
cmap[ctemp] = newALine;
}
}
// remove colour lines from old particle
if(aLine) {
aLine->removeAntiColoured(cit->first->copy());
aLine->removeAntiColoured(cit->first->progenitor());
}
if(cLine) {
cLine->removeColoured(cit->first->copy());
cLine->removeColoured(cit->first->progenitor());
}
// special for unstable particles
if(newParticle->id()==oldParticle->id() &&
(tit!=currentTree()->treelinks().end()||!oldParticle->dataPtr()->stable())) {
Lorentz5Momentum oldMomentum = oldParticle->momentum();
Lorentz5Momentum newMomentum = newParticle->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
if(tit!=currentTree()->treelinks().end()) tit->first->transform(boost,false);
oldParticle->transform(boost);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
oldParticle->transform(boost);
if(tit!=currentTree()->treelinks().end()) tit->first->transform(boost,false);
newParticle=oldParticle;
}
// add particle to colour lines
if(newCLine) newCLine->addColoured (newParticle);
if(newALine) newALine->addAntiColoured(newParticle);
// insert new particles
cit->first->copy(newParticle);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*newParticle,1,true)));
cit->first->progenitor(sp);
currentTree()->outgoingLines()[cit->first]=sp;
cit->first->perturbative(!emission);
// and the emitted particle if needed
if(emission) {
if(newOut->colourLine()) {
ColinePtr ctemp = newOut-> colourLine();
ctemp->removeColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addColoured (newOut);
}
if(newOut->antiColourLine()) {
ColinePtr ctemp = newOut->antiColourLine();
ctemp->removeAntiColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addAntiColoured(newOut);
}
ShowerParticlePtr sout=new_ptr(ShowerParticle(*newOut,1,true));
ShowerProgenitorPtr out=new_ptr(ShowerProgenitor(cit->first->original(),newOut,sout));
out->perturbative(false);
currentTree()->outgoingLines().insert(make_pair(out,sout));
}
// update any decay products
if(tit!=currentTree()->treelinks().end())
currentTree()->updateLink(tit->first,make_pair(cit->first,sp));
}
// reset the tree
currentTree()->resetShowerProducts();
// reextract the particles and set the colour partners
vector<ShowerParticlePtr> particles =
currentTree()->extractProgenitorParticles();
// clear the partners
for(unsigned int ix=0;ix<particles.size();++ix) {
particles[ix]->partner(ShowerParticlePtr());
particles[ix]->clearPartners();
}
// clear the tree
hardTree(HardTreePtr());
// Set the initial evolution scales
partnerFinder()->
setInitialEvolutionScales(particles,!hard,type,!_hardtree);
}
Branching QTildeShowerHandler::selectTimeLikeBranching(tShowerParticlePtr particle,
ShowerInteraction type,
HardBranchingPtr branch) {
Branching fb;
unsigned int iout=0;
while (true) {
// break if doing truncated shower and no truncated shower needed
if(branch && (!isTruncatedShowerON()||hardOnly())) break;
fb=_splittingGenerator->chooseForwardBranching(*particle,_finalenhance,type);
// no emission break
if(!fb.kinematics) break;
// special for truncated shower
if(branch) {
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// find the truncated line
iout=0;
if(fb.ids[1]->id()!=fb.ids[2]->id()) {
if(fb.ids[1]->id()==particle->id()) iout=1;
else if (fb.ids[2]->id()==particle->id()) iout=2;
}
else if(fb.ids[1]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
// only if same interaction for forced branching
ShowerInteraction type2 = convertInteraction(fb.type);
// and evolution
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// standard vetos for all emissions
if(timeLikeVetoed(fb,particle)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
continue;
}
// special for already decayed particles
// don't allow flavour changing branchings
bool vetoDecay = false;
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,
tShowerParticlePtr> >::const_iterator tit = currentTree()->treelinks().begin();
tit != currentTree()->treelinks().end();++tit) {
if(tit->second.first == progenitor()) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it = currentTree()->outgoingLines().find(progenitor());
if(it!=currentTree()->outgoingLines().end() && particle == it->second &&
fb.ids[0]!=fb.ids[1] && fb.ids[1]!=fb.ids[2]) {
vetoDecay = true;
break;
}
}
}
if(vetoDecay) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
continue;
}
break;
}
// normal case
if(!branch) {
if(fb.kinematics) fb.hard = false;
return fb;
}
// truncated emission
if(fb.kinematics) {
fb.hard = false;
fb.iout = iout;
return fb;
}
// otherwise need to return the hard emission
// construct the kinematics for the hard emission
ShoKinPtr showerKin = new_ptr(FS_QTildeShowerKinematics1to2(
branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT(),
branch->sudakov()
));
IdList idlist(3);
idlist[0] = particle->dataPtr();
idlist[1] = branch->children()[0]->branchingParticle()->dataPtr();
idlist[2] = branch->children()[1]->branchingParticle()->dataPtr();
fb = Branching( showerKin, idlist, branch->sudakov(),branch->type() );
fb.hard = true;
fb.iout=0;
// return it
return fb;
}
Branching QTildeShowerHandler::selectSpaceLikeDecayBranching(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass,ShowerInteraction type,
HardBranchingPtr branch) {
Branching fb;
unsigned int iout=0;
while (true) {
// break if doing truncated shower and no truncated shower needed
if(branch && (!isTruncatedShowerON()||hardOnly())) break;
// select branching
fb=_splittingGenerator->chooseDecayBranching(*particle,maxScales,minmass,
_initialenhance,type);
// return if no radiation
if(!fb.kinematics) break;
// special for truncated shower
if(branch) {
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// find the truncated line
iout=0;
if(fb.ids[1]->id()!=fb.ids[2]->id()) {
if(fb.ids[1]->id()==particle->id()) iout=1;
else if (fb.ids[2]->id()==particle->id()) iout=2;
}
else if(fb.ids[1]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
ShowerInteraction type2 = convertInteraction(fb.type);
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// if not vetoed break
if(spaceLikeDecayVetoed(fb,particle)) {
// otherwise reset scale and continue
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
break;
}
// normal case
if(!branch) {
if(fb.kinematics) fb.hard = false;
return fb;
}
// truncated emission
if(fb.kinematics) {
fb.hard = false;
fb.iout = iout;
return fb;
}
// otherwise need to return the hard emission
// construct the kinematics for the hard emission
ShoKinPtr showerKin = new_ptr(Decay_QTildeShowerKinematics1to2(
branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT(),
branch->sudakov()));
IdList idlist(3);
idlist[0] = particle->dataPtr();
idlist[1] = branch->children()[0]->branchingParticle()->dataPtr();
idlist[2] = branch->children()[1]->branchingParticle()->dataPtr();
// create the branching
fb = Branching( showerKin, idlist, branch->sudakov(),ShowerPartnerType::QCDColourLine );
fb.hard=true;
fb.iout=0;
// return it
return fb;
}
void QTildeShowerHandler::checkFlags() {
string error = "Inconsistent hard emission set-up in QTildeShowerHandler::showerHardProcess(). ";
if ( ( currentTree()->isMCatNLOSEvent() || currentTree()->isMCatNLOHEvent() ) ) {
if (_hardEmission ==2 )
throw Exception() << error
<< "Cannot generate POWHEG matching with MC@NLO shower "
<< "approximation. Add 'set QTildeShowerHandler:HardEmission 0' to input file."
<< Exception::runerror;
if ( canHandleMatchboxTrunc() )
throw Exception() << error
<< "Cannot use truncated qtilde shower with MC@NLO shower "
<< "approximation. Set LHCGenerator:EventHandler"
<< ":CascadeHandler to '/Herwig/Shower/ShowerHandler' or "
<< "'/Herwig/Shower/Dipole/DipoleShowerHandler'."
<< Exception::runerror;
}
else if ( ((currentTree()->isPowhegSEvent() || currentTree()->isPowhegHEvent()) ) &&
_hardEmission != 2){
if ( canHandleMatchboxTrunc())
throw Exception() << error
<< "Unmatched events requested for POWHEG shower "
<< "approximation. Set QTildeShowerHandler:HardEmission to "
<< "'POWHEG'."
<< Exception::runerror;
else if (_hardEmissionWarn) {
_hardEmissionWarn = false;
_hardEmission=2;
throw Exception() << error
<< "Unmatched events requested for POWHEG shower "
<< "approximation. Changing QTildeShowerHandler:HardEmission from "
<< _hardEmission << " to 2"
<< Exception::warning;
}
}
if ( currentTree()->isPowhegSEvent() || currentTree()->isPowhegHEvent()) {
if (currentTree()->showerApproximation()->needsTruncatedShower() &&
!canHandleMatchboxTrunc() )
throw Exception() << error
<< "Current shower handler cannot generate truncated shower. "
<< "Set Generator:EventHandler:CascadeHandler to "
<< "'/Herwig/Shower/PowhegShowerHandler'."
<< Exception::runerror;
}
else if ( currentTree()->truncatedShower() && _missingTruncWarn) {
_missingTruncWarn=false;
throw Exception() << "Warning: POWHEG shower approximation used without "
<< "truncated shower. Set Generator:EventHandler:"
<< "CascadeHandler to '/Herwig/Shower/PowhegShowerHandler' and "
<< "'MEMatching:TruncatedShower Yes'."
<< Exception::warning;
}
// else if ( !dipme && _hardEmissionMode > 1 &&
// firstInteraction())
// throw Exception() << error
// << "POWHEG matching requested for LO events. Include "
// << "'set Factory:ShowerApproximation MEMatching' in input file."
// << Exception::runerror;
}
tPPair QTildeShowerHandler::remakeRemnant(tPPair oldp){
// get the parton extractor
PartonExtractor & pex = *lastExtractor();
// get the new partons
tPPair newp = make_pair(findFirstParton(oldp.first ),
findFirstParton(oldp.second));
// if the same do nothing
if(newp == oldp) return oldp;
// Creates the new remnants and returns the new PartonBinInstances
// ATTENTION Broken here for very strange configuration
PBIPair newbins = pex.newRemnants(oldp, newp, newStep());
newStep()->addIntermediate(newp.first);
newStep()->addIntermediate(newp.second);
// return the new partons
return newp;
}
PPtr QTildeShowerHandler::findFirstParton(tPPtr seed) const{
if(seed->parents().empty()) return seed;
tPPtr parent = seed->parents()[0];
//if no parent there this is a loose end which will
//be connected to the remnant soon.
if(!parent || parent == incomingBeams().first ||
parent == incomingBeams().second ) return seed;
else return findFirstParton(parent);
}
void QTildeShowerHandler::decay(ShowerTreePtr tree, ShowerDecayMap & decay) {
// must be one incoming particle
assert(tree->incomingLines().size()==1);
// apply any transforms
tree->applyTransforms();
// if already decayed return
if(!tree->outgoingLines().empty()) return;
// now we need to replace the particle with a new copy after the shower
// find particle after the shower
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit = tree->parent()->treelinks().find(tree);
assert(tit!=tree->parent()->treelinks().end());
ShowerParticlePtr newparent=tit->second.second;
PerturbativeProcessPtr newProcess = new_ptr(PerturbativeProcess());
newProcess->incoming().push_back(make_pair(newparent,PerturbativeProcessPtr()));
DecayProcessMap decayMap;
ShowerHandler::decay(newProcess,decayMap);
ShowerTree::constructTrees(tree,decay,newProcess,decayMap);
}
namespace {
ShowerProgenitorPtr
findFinalStateLine(ShowerTreePtr tree, long id, Lorentz5Momentum momentum) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::iterator partner;
Energy2 dmin(1e30*GeV2);
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::iterator
cit =tree->outgoingLines().begin(); cit!=tree->outgoingLines().end(); ++cit) {
if(cit->second->id()!=id) continue;
Energy2 test =
sqr(cit->second->momentum().x()-momentum.x())+
sqr(cit->second->momentum().y()-momentum.y())+
sqr(cit->second->momentum().z()-momentum.z())+
sqr(cit->second->momentum().t()-momentum.t());
if(test<dmin) {
dmin = test;
partner = cit;
}
}
return partner->first;
}
ShowerProgenitorPtr
findInitialStateLine(ShowerTreePtr tree, long id, Lorentz5Momentum momentum) {
map<ShowerProgenitorPtr,ShowerParticlePtr>::iterator partner;
Energy2 dmin(1e30*GeV2);
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::iterator
cit =tree->incomingLines().begin(); cit!=tree->incomingLines().end(); ++cit) {
if(cit->second->id()!=id) continue;
Energy2 test =
sqr(cit->second->momentum().x()-momentum.x())+
sqr(cit->second->momentum().y()-momentum.y())+
sqr(cit->second->momentum().z()-momentum.z())+
sqr(cit->second->momentum().t()-momentum.t());
if(test<dmin) {
dmin = test;
partner = cit;
}
}
return partner->first;
}
void fixSpectatorColours(PPtr newSpect,ShowerProgenitorPtr oldSpect,
ColinePair & cline,ColinePair & aline, bool reconnect) {
cline.first = oldSpect->progenitor()->colourLine();
cline.second = newSpect->colourLine();
aline.first = oldSpect->progenitor()->antiColourLine();
aline.second = newSpect->antiColourLine();
if(!reconnect) return;
if(cline.first) {
cline.first ->removeColoured(oldSpect->copy());
cline.first ->removeColoured(oldSpect->progenitor());
cline.second->removeColoured(newSpect);
cline.first ->addColoured(newSpect);
}
if(aline.first) {
aline.first ->removeAntiColoured(oldSpect->copy());
aline.first ->removeAntiColoured(oldSpect->progenitor());
aline.second->removeAntiColoured(newSpect);
aline.first ->addAntiColoured(newSpect);
}
}
void fixInitialStateEmitter(ShowerTreePtr tree, PPtr newEmit,PPtr emitted, ShowerProgenitorPtr emitter,
ColinePair cline,ColinePair aline,double x) {
// sort out the colours
if(emitted->dataPtr()->iColour()==PDT::Colour8) {
// emitter
if(cline.first && cline.first == emitter->progenitor()->antiColourLine() &&
cline.second !=newEmit->antiColourLine()) {
// sort out not radiating line
ColinePtr col = emitter->progenitor()->colourLine();
if(col) {
col->removeColoured(emitter->copy());
col->removeColoured(emitter->progenitor());
newEmit->colourLine()->removeColoured(newEmit);
col->addColoured(newEmit);
}
}
else if(aline.first && aline.first == emitter->progenitor()->colourLine() &&
aline.second !=newEmit->colourLine()) {
// sort out not radiating line
ColinePtr anti = emitter->progenitor()->antiColourLine();
if(anti) {
anti->removeAntiColoured(emitter->copy());
anti->removeAntiColoured(emitter->progenitor());
newEmit->colourLine()->removeAntiColoured(newEmit);
anti->addAntiColoured(newEmit);
}
}
else
assert(false);
// emitted
if(cline.first && cline.second==emitted->colourLine()) {
cline.second->removeColoured(emitted);
cline.first->addColoured(emitted);
}
else if(aline.first && aline.second==emitted->antiColourLine()) {
aline.second->removeAntiColoured(emitted);
aline.first->addAntiColoured(emitted);
}
else
assert(false);
}
else {
if(emitter->progenitor()->antiColourLine() ) {
ColinePtr col = emitter->progenitor()->antiColourLine();
col->removeAntiColoured(emitter->copy());
col->removeAntiColoured(emitter->progenitor());
if(newEmit->antiColourLine()) {
newEmit->antiColourLine()->removeAntiColoured(newEmit);
col->addAntiColoured(newEmit);
}
else if (emitted->colourLine()) {
emitted->colourLine()->removeColoured(emitted);
col->addColoured(emitted);
}
else
assert(false);
}
if(emitter->progenitor()->colourLine() ) {
ColinePtr col = emitter->progenitor()->colourLine();
col->removeColoured(emitter->copy());
col->removeColoured(emitter->progenitor());
if(newEmit->colourLine()) {
newEmit->colourLine()->removeColoured(newEmit);
col->addColoured(newEmit);
}
else if (emitted->antiColourLine()) {
emitted->antiColourLine()->removeAntiColoured(emitted);
col->addAntiColoured(emitted);
}
else
assert(false);
}
}
// update the emitter
emitter->copy(newEmit);
ShowerParticlePtr sp = new_ptr(ShowerParticle(*newEmit,1,false));
sp->x(x);
emitter->progenitor(sp);
tree->incomingLines()[emitter]=sp;
emitter->perturbative(false);
// add emitted
sp=new_ptr(ShowerParticle(*emitted,1,true));
ShowerProgenitorPtr gluon=new_ptr(ShowerProgenitor(emitter->original(),emitted,sp));
gluon->perturbative(false);
tree->outgoingLines().insert(make_pair(gluon,sp));
}
void fixFinalStateEmitter(ShowerTreePtr tree, PPtr newEmit,PPtr emitted, ShowerProgenitorPtr emitter,
ColinePair cline,ColinePair aline) {
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
// special case if decayed
for(tit = tree->treelinks().begin(); tit != tree->treelinks().end();++tit) {
if(tit->second.first && tit->second.second==emitter->progenitor())
break;
}
// sort out the colour lines
if(cline.first && cline.first == emitter->progenitor()->antiColourLine() &&
cline.second !=newEmit->antiColourLine()) {
// sort out not radiating line
ColinePtr col = emitter->progenitor()->colourLine();
if(col) {
col->removeColoured(emitter->copy());
col->removeColoured(emitter->progenitor());
newEmit->colourLine()->removeColoured(newEmit);
col->addColoured(newEmit);
}
}
else if(aline.first && aline.first == emitter->progenitor()->colourLine() &&
aline.second !=newEmit->colourLine()) {
// sort out not radiating line
ColinePtr anti = emitter->progenitor()->antiColourLine();
if(anti) {
anti->removeAntiColoured(emitter->copy());
anti->removeAntiColoured(emitter->progenitor());
newEmit->colourLine()->removeAntiColoured(newEmit);
anti->addAntiColoured(newEmit);
}
}
else
assert(false);
// update the emitter
emitter->copy(newEmit);
ShowerParticlePtr sp = new_ptr(ShowerParticle(*newEmit,1,true));
emitter->progenitor(sp);
tree->outgoingLines()[emitter]=sp;
emitter->perturbative(false);
// update for decaying particles
if(tit!=tree->treelinks().end())
tree->updateLink(tit->first,make_pair(emitter,sp));
// add the emitted particle
// sort out the colour
if(cline.first && cline.second==emitted->antiColourLine()) {
cline.second->removeAntiColoured(emitted);
cline.first->addAntiColoured(emitted);
}
else if(aline.first && aline.second==emitted->colourLine()) {
aline.second->removeColoured(emitted);
aline.first->addColoured(emitted);
}
else
assert(false);
sp=new_ptr(ShowerParticle(*emitted,1,true));
ShowerProgenitorPtr gluon=new_ptr(ShowerProgenitor(emitter->original(),
emitted,sp));
gluon->perturbative(false);
tree->outgoingLines().insert(make_pair(gluon,sp));
}
}
void QTildeShowerHandler::setupMECorrection(RealEmissionProcessPtr real) {
assert(real);
// II emission
if(real->emitter() < real->incoming().size() &&
real->spectator() < real->incoming().size()) {
// recoiling system
for( map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt= currentTree()->outgoingLines().begin();
cjt != currentTree()->outgoingLines().end();++cjt ) {
cjt->first->progenitor()->transform(real->transformation());
cjt->first->copy()->transform(real->transformation());
}
// the the radiating system
ShowerProgenitorPtr emitter,spectator;
unsigned int iemit = real->emitter();
unsigned int ispect = real->spectator();
int ig = int(real->emitted())-int(real->incoming().size());
emitter = findInitialStateLine(currentTree(),
real->bornIncoming()[iemit]->id(),
real->bornIncoming()[iemit]->momentum());
spectator = findInitialStateLine(currentTree(),
real->bornIncoming()[ispect]->id(),
real->bornIncoming()[ispect]->momentum());
// sort out the colours
ColinePair cline,aline;
fixSpectatorColours(real->incoming()[ispect],spectator,cline,aline,true);
// update the spectator
spectator->copy(real->incoming()[ispect]);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*real->incoming()[ispect],1,false)));
sp->x(ispect ==0 ? real->x().first :real->x().second);
spectator->progenitor(sp);
currentTree()->incomingLines()[spectator]=sp;
spectator->perturbative(true);
// now for the emitter
fixInitialStateEmitter(currentTree(),real->incoming()[iemit],real->outgoing()[ig],
emitter,cline,aline,iemit ==0 ? real->x().first :real->x().second);
}
// FF emission
else if(real->emitter() >= real->incoming().size() &&
real->spectator() >= real->incoming().size()) {
assert(real->outgoing()[real->emitted()-real->incoming().size()]->id()==ParticleID::g);
// find the emitter and spectator in the shower tree
ShowerProgenitorPtr emitter,spectator;
int iemit = int(real->emitter())-int(real->incoming().size());
emitter = findFinalStateLine(currentTree(),
real->bornOutgoing()[iemit]->id(),
real->bornOutgoing()[iemit]->momentum());
int ispect = int(real->spectator())-int(real->incoming().size());
spectator = findFinalStateLine(currentTree(),
real->bornOutgoing()[ispect]->id(),
real->bornOutgoing()[ispect]->momentum());
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
// first the spectator
// special case if decayed
for(tit = currentTree()->treelinks().begin(); tit != currentTree()->treelinks().end();++tit) {
if(tit->second.first && tit->second.second==spectator->progenitor())
break;
}
// sort out the colours
ColinePair cline,aline;
fixSpectatorColours(real->outgoing()[ispect],spectator,cline,aline,true);
// update the spectator
spectator->copy(real->outgoing()[ispect]);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*real->outgoing()[ispect],1,true)));
spectator->progenitor(sp);
currentTree()->outgoingLines()[spectator]=sp;
spectator->perturbative(true);
// update for decaying particles
if(tit!=currentTree()->treelinks().end())
currentTree()->updateLink(tit->first,make_pair(spectator,sp));
// now the emitting particle
int ig = int(real->emitted())-int(real->incoming().size());
fixFinalStateEmitter(currentTree(),real->outgoing()[iemit],
real->outgoing()[ig],
emitter,cline,aline);
}
// IF emission
else {
// scattering process
if(real->incoming().size()==2) {
ShowerProgenitorPtr emitter,spectator;
unsigned int iemit = real->emitter();
unsigned int ispect = real->spectator();
int ig = int(real->emitted())-int(real->incoming().size());
ColinePair cline,aline;
// incoming spectator
if(ispect<2) {
spectator = findInitialStateLine(currentTree(),
real->bornIncoming()[ispect]->id(),
real->bornIncoming()[ispect]->momentum());
fixSpectatorColours(real->incoming()[ispect],spectator,cline,aline,true);
// update the spectator
spectator->copy(real->incoming()[ispect]);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*real->incoming()[ispect],1,false)));
sp->x(ispect ==0 ? real->x().first :real->x().second);
spectator->progenitor(sp);
currentTree()->incomingLines()[spectator]=sp;
spectator->perturbative(true);
}
// outgoing spectator
else {
spectator = findFinalStateLine(currentTree(),
real->bornOutgoing()[ispect-real->incoming().size()]->id(),
real->bornOutgoing()[ispect-real->incoming().size()]->momentum());
// special case if decayed
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
for(tit = currentTree()->treelinks().begin(); tit != currentTree()->treelinks().end();++tit) {
if(tit->second.first && tit->second.second==spectator->progenitor())
break;
}
fixSpectatorColours(real->outgoing()[ispect-real->incoming().size()],spectator,cline,aline,true);
// update the spectator
spectator->copy(real->outgoing()[ispect-real->incoming().size()]);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*real->outgoing()[ispect-real->incoming().size()],1,true)));
spectator->progenitor(sp);
currentTree()->outgoingLines()[spectator]=sp;
spectator->perturbative(true);
// update for decaying particles
if(tit!=currentTree()->treelinks().end())
currentTree()->updateLink(tit->first,make_pair(spectator,sp));
}
// incoming emitter
if(iemit<2) {
emitter = findInitialStateLine(currentTree(),
real->bornIncoming()[iemit]->id(),
real->bornIncoming()[iemit]->momentum());
fixInitialStateEmitter(currentTree(),real->incoming()[iemit],real->outgoing()[ig],
emitter,aline,cline,iemit ==0 ? real->x().first :real->x().second);
}
// outgoing emitter
else {
emitter = findFinalStateLine(currentTree(),
real->bornOutgoing()[iemit-real->incoming().size()]->id(),
real->bornOutgoing()[iemit-real->incoming().size()]->momentum());
fixFinalStateEmitter(currentTree(),real->outgoing()[iemit-real->incoming().size()],
real->outgoing()[ig],emitter,aline,cline);
}
}
// decay process
else {
assert(real->spectator()==0);
unsigned int iemit = real->emitter()-real->incoming().size();
int ig = int(real->emitted())-int(real->incoming().size());
ColinePair cline,aline;
// incoming spectator
ShowerProgenitorPtr spectator = findInitialStateLine(currentTree(),
real->bornIncoming()[0]->id(),
real->bornIncoming()[0]->momentum());
fixSpectatorColours(real->incoming()[0],spectator,cline,aline,false);
// find the emitter
ShowerProgenitorPtr emitter =
findFinalStateLine(currentTree(),
real->bornOutgoing()[iemit]->id(),
real->bornOutgoing()[iemit]->momentum());
// recoiling system
for( map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt= currentTree()->outgoingLines().begin();
cjt != currentTree()->outgoingLines().end();++cjt ) {
if(cjt->first==emitter) continue;
cjt->first->progenitor()->transform(real->transformation());
cjt->first->copy()->transform(real->transformation());
}
// sort out the emitter
fixFinalStateEmitter(currentTree(),real->outgoing()[iemit],
real->outgoing()[ig],emitter,aline,cline);
}
}
// clean up the shower tree
_currenttree->resetShowerProducts();
}
diff --git a/Shower/QTilde/SplittingFunctions/SplittingFunction.cc b/Shower/QTilde/SplittingFunctions/SplittingFunction.cc
--- a/Shower/QTilde/SplittingFunctions/SplittingFunction.cc
+++ b/Shower/QTilde/SplittingFunctions/SplittingFunction.cc
@@ -1,900 +1,915 @@
// -*- C++ -*-
//
// SplittingFunction.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SplittingFunction class.
//
#include "SplittingFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "Herwig/Shower/QTilde/Base/ShowerParticle.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeAbstractClass<SplittingFunction,Interfaced>
describeSplittingFunction ("Herwig::SplittingFunction","");
void SplittingFunction::Init() {
static ClassDocumentation<SplittingFunction> documentation
("The SplittingFunction class is the based class for 1->2 splitting functions"
" in Herwig");
static Switch<SplittingFunction,ColourStructure> interfaceColourStructure
("ColourStructure",
"The colour structure for the splitting function",
&SplittingFunction::_colourStructure, Undefined, false, false);
static SwitchOption interfaceColourStructureTripletTripletOctet
(interfaceColourStructure,
"TripletTripletOctet",
"3 -> 3 8",
TripletTripletOctet);
static SwitchOption interfaceColourStructureOctetOctetOctet
(interfaceColourStructure,
"OctetOctetOctet",
"8 -> 8 8",
OctetOctetOctet);
static SwitchOption interfaceColourStructureOctetTripletTriplet
(interfaceColourStructure,
"OctetTripletTriplet",
"8 -> 3 3bar",
OctetTripletTriplet);
static SwitchOption interfaceColourStructureTripletOctetTriplet
(interfaceColourStructure,
"TripletOctetTriplet",
"3 -> 8 3",
TripletOctetTriplet);
static SwitchOption interfaceColourStructureSextetSextetOctet
(interfaceColourStructure,
"SextetSextetOctet",
"6 -> 6 8",
SextetSextetOctet);
static SwitchOption interfaceColourStructureChargedChargedNeutral
(interfaceColourStructure,
"ChargedChargedNeutral",
"q -> q 0",
ChargedChargedNeutral);
static SwitchOption interfaceColourStructureNeutralChargedCharged
(interfaceColourStructure,
"NeutralChargedCharged",
"0 -> q qbar",
NeutralChargedCharged);
static SwitchOption interfaceColourStructureChargedNeutralCharged
(interfaceColourStructure,
"ChargedNeutralCharged",
"q -> 0 q",
ChargedNeutralCharged);
static Switch<SplittingFunction,ShowerInteraction>
interfaceInteractionType
("InteractionType",
"Type of the interaction",
&SplittingFunction::_interactionType,
ShowerInteraction::UNDEFINED, false, false);
static SwitchOption interfaceInteractionTypeQCD
(interfaceInteractionType,
"QCD","QCD",ShowerInteraction::QCD);
static SwitchOption interfaceInteractionTypeQED
(interfaceInteractionType,
"QED","QED",ShowerInteraction::QED);
static Switch<SplittingFunction,bool> interfaceAngularOrdered
("AngularOrdered",
"Whether or not this interaction is angular ordered, "
"normally only g->q qbar and gamma-> f fbar are the only ones which aren't.",
&SplittingFunction::angularOrdered_, true, false, false);
static SwitchOption interfaceAngularOrderedYes
(interfaceAngularOrdered,
"Yes",
"Interaction is angular ordered",
true);
static SwitchOption interfaceAngularOrderedNo
(interfaceAngularOrdered,
"No",
"Interaction isn't angular ordered",
false);
static Switch<SplittingFunction,unsigned int> interfaceScaleChoice
("ScaleChoice",
"The scale choice to be used",
&SplittingFunction::scaleChoice_, 2, false, false);
static SwitchOption interfaceScaleChoicepT
(interfaceScaleChoice,
"pT",
"pT of the branching",
0);
static SwitchOption interfaceScaleChoiceQ2
(interfaceScaleChoice,
"Q2",
"Q2 of the branching",
1);
static SwitchOption interfaceScaleChoiceFromAngularOrdering
(interfaceScaleChoice,
"FromAngularOrdering",
"If angular order use pT, otherwise Q2",
2);
+ static Switch<SplittingFunction,bool> interfaceStrictAO
+ ("StrictAO",
+ "Whether or not to apply strict angular-ordering,"
+ " i.e. for QED even in QCD emission, and vice versa",
+ &SplittingFunction::strictAO_, true, false, false);
+ static SwitchOption interfaceStrictAOYes
+ (interfaceStrictAO,
+ "Yes",
+ "Apply strict ordering",
+ true);
+ static SwitchOption interfaceStrictAONo
+ (interfaceStrictAO,
+ "No",
+ "Don't apply strict ordering",
+ false);
}
void SplittingFunction::persistentOutput(PersistentOStream & os) const {
os << oenum(_interactionType)
<< oenum(_colourStructure) << _colourFactor
<< angularOrdered_ << scaleChoice_ << strictAO_;
}
void SplittingFunction::persistentInput(PersistentIStream & is, int) {
is >> ienum(_interactionType)
>> ienum(_colourStructure) >> _colourFactor
>> angularOrdered_ >> scaleChoice_ >> strictAO_;
}
void SplittingFunction::colourConnection(tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second,
ShowerPartnerType partnerType,
const bool back) const {
if(_colourStructure==TripletTripletOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cparent.first && cparent.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
newline->addColoured ( first);
newline->addAntiColoured (second);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cfirst.first && cfirst.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
newline->addColoured(second);
newline->addColoured(parent);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==OctetOctetOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
// ensure first gluon is hardest
if( first->id()==second->id() && parent->showerKinematics()->z()<0.5 )
swap(first,second);
// colour line radiates
if(partnerType==ShowerPartnerType::QCDColourLine) {
// The colour line is radiating
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addAntiColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
else
assert(false);
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// The colour line is radiating
if(partnerType==ShowerPartnerType::QCDColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
newline->addColoured(parent);
newline->addColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
else
assert(false);
}
}
else if(_colourStructure == OctetTripletTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
cparent.first ->addColoured ( first);
cparent.second->addAntiColoured(second);
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second) ||
(!cfirst.first && cfirst.second));
// g -> q qbar
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// g -> qbar q
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addAntiColoured(parent);
newline->addColoured(second);
newline->addColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure == TripletOctetTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second) ||
(!cparent.first && cparent.second));
// q -> g q
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
newline->addColoured (second);
newline->addAntiColoured( first);
}
// qbar -> g qbar
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(first);
newline->addColoured ( first);
newline->addAntiColoured(second);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// q -> g q
if(parent->id()>0) {
cfirst.first ->addColoured(parent);
cfirst.second->addColoured(second);
}
else {
cfirst.first ->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==SextetSextetOctet) {
//make sure we're not doing backward evolution
assert(!back);
//make sure something sensible
assert(parent->colourLine() || parent->antiColourLine());
//get the colour lines or anti-colour lines
bool isAntiColour=true;
ColinePair cparent;
if(parent->colourLine()) {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[1]));
isAntiColour=false;
}
else {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[1]));
}
//check for sensible input
// assert(cparent.first && cparent.second);
// sextet has 2 colour lines
if(!isAntiColour) {
//pick at random which of the colour topolgies to take
double topology = UseRandom::rnd();
if(topology < 0.25) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
}
// sextet has 2 anti-colour lines
else {
double topology = UseRandom::rnd();
if(topology < 0.25){
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
}
}
else if(_colourStructure == ChargedChargedNeutral) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(first);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(first);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// q -> q g
if(cfirst.first) {
cfirst.first->addColoured(parent);
}
// qbar -> qbar g
if(cfirst.second) {
cfirst.second->addAntiColoured(parent);
}
}
}
else if(_colourStructure == ChargedNeutralCharged) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(second);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(second);
}
}
else {
if (second->dataPtr()->iColour()==PDT::Colour3 ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addColoured(second);
newline->addColoured(parent);
}
else if (second->dataPtr()->iColour()==PDT::Colour3bar ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
}
}
else if(_colourStructure == NeutralChargedCharged ) {
if(!back) {
if(first->dataPtr()->coloured()) {
ColinePtr newline=new_ptr(ColourLine());
if(first->dataPtr()->iColour()==PDT::Colour3) {
newline->addColoured (first );
newline->addAntiColoured(second);
}
else if (first->dataPtr()->iColour()==PDT::Colour3bar) {
newline->addColoured (second);
newline->addAntiColoured(first );
}
else
assert(false);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// gamma -> q qbar
if(cfirst.first) {
cfirst.first->addAntiColoured(second);
}
// gamma -> qbar q
else if(cfirst.second) {
cfirst.second->addColoured(second);
}
else
assert(false);
}
}
else {
assert(false);
}
}
void SplittingFunction::doinit() {
Interfaced::doinit();
assert(_interactionType!=ShowerInteraction::UNDEFINED);
assert((_colourStructure>0&&_interactionType==ShowerInteraction::QCD) ||
(_colourStructure<0&&_interactionType==ShowerInteraction::QED) );
if(_colourFactor>0.) return;
// compute the colour factors if need
if(_colourStructure==TripletTripletOctet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==OctetOctetOctet) {
_colourFactor = 3.;
}
else if(_colourStructure==OctetTripletTriplet) {
_colourFactor = 0.5;
}
else if(_colourStructure==TripletOctetTriplet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==SextetSextetOctet) {
_colourFactor = 10./3.;
}
else if(_colourStructure<0) {
_colourFactor = 1.;
}
else {
assert(false);
}
}
bool SplittingFunction::checkColours(const IdList & ids) const {
if(_colourStructure==TripletTripletOctet) {
if(ids[0]!=ids[1]) return false;
if((ids[0]->iColour()==PDT::Colour3||ids[0]->iColour()==PDT::Colour3bar) &&
ids[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==OctetOctetOctet) {
for(unsigned int ix=0;ix<3;++ix) {
if(ids[ix]->iColour()!=PDT::Colour8) return false;
}
return true;
}
else if(_colourStructure==OctetTripletTriplet) {
if(ids[0]->iColour()!=PDT::Colour8) return false;
if(ids[1]->iColour()==PDT::Colour3&&ids[2]->iColour()==PDT::Colour3bar)
return true;
if(ids[1]->iColour()==PDT::Colour3bar&&ids[2]->iColour()==PDT::Colour3)
return true;
return false;
}
else if(_colourStructure==TripletOctetTriplet) {
if(ids[0]!=ids[2]) return false;
if((ids[0]->iColour()==PDT::Colour3||ids[0]->iColour()==PDT::Colour3bar) &&
ids[1]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==SextetSextetOctet) {
if(ids[0]!=ids[1]) return false;
if((ids[0]->iColour()==PDT::Colour6 || ids[0]->iColour()==PDT::Colour6bar) &&
ids[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==ChargedChargedNeutral) {
if(ids[0]!=ids[1]) return false;
if(ids[2]->iCharge()!=0) return false;
if(ids[0]->iCharge()==ids[1]->iCharge()) return true;
return false;
}
else if(_colourStructure==ChargedNeutralCharged) {
if(ids[0]!=ids[2]) return false;
if(ids[1]->iCharge()!=0) return false;
if(ids[0]->iCharge()==ids[2]->iCharge()) return true;
return false;
}
else if(_colourStructure==NeutralChargedCharged) {
if(ids[1]->id()!=-ids[2]->id()) return false;
if(ids[0]->iCharge()!=0) return false;
if(ids[1]->iCharge()==-ids[2]->iCharge()) return true;
return false;
}
else {
assert(false);
}
return false;
}
namespace {
bool hasColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3 || colour==PDT::Colour8 || colour == PDT::Colour6;
}
bool hasAntiColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3bar || colour==PDT::Colour8 || colour == PDT::Colour6bar;
}
}
void SplittingFunction::evaluateFinalStateScales(ShowerPartnerType partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr emitter,
tShowerParticlePtr emitted) {
// identify emitter and emitted
double zEmitter = z, zEmitted = 1.-z;
bool bosonSplitting(false);
// special for g -> gg, particle highest z is emitter
if(emitter->id() == emitted->id() && emitter->id() == parent->id() &&
zEmitted > zEmitter) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// otherwise if particle ID same
else if(emitted->id()==parent->id()) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// no real emitter/emitted
else if(emitter->id()!=parent->id()) {
bosonSplitting = true;
}
// may need to add angularOrder flag here
// now the various scales
// QED
if(partnerType==ShowerPartnerType::QED) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged ||
colourStructure()==NeutralChargedCharged );
// normal case
if(!bosonSplitting) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged );
// set the scales
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
if(strictAO_)
emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c );
else
emitter->scales().QCD_c = min( scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO );
if(strictAO_)
emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac );
else
emitter->scales().QCD_ac = min( scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO);
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
emitted->scales().QCD_c = ZERO;
emitted->scales().QCD_c_noAO = ZERO;
emitted->scales().QCD_ac = ZERO;
emitted->scales().QCD_ac_noAO = ZERO;
}
// gamma -> f fbar
else {
assert(colourStructure()==NeutralChargedCharged );
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
if(hasColour(emitter)) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitter)) {
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
if(hasColour(emitted)) {
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitted)) {
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
}
}
// QCD
else {
// normal case eg q -> q g and g -> g g
if(!bosonSplitting) {
if(strictAO_)
emitter->scales().QED = min(zEmitter*scale,parent->scales().QED );
else
emitter->scales().QED = min( scale,parent->scales().QED );
emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO);
if(partnerType==ShowerPartnerType::QCDColourLine) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min( scale,parent->scales().QCD_ac_noAO);
}
else {
emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min( scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
// emitted
emitted->scales().QED = ZERO;
emitted->scales().QED_noAO = ZERO;
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
// g -> q qbar
else {
// emitter
if(emitter->dataPtr()->charged()) {
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
}
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
// emitted
if(emitted->dataPtr()->charged()) {
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
}
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
}
}
void SplittingFunction::evaluateInitialStateScales(ShowerPartnerType partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
// scale for time-like child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
if(parent->id()==spacelike->id()) {
// parent
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
}
else if(parent->id()==timelike->id()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
}
else {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = ZERO ;
parent ->scales().QCD_c_noAO = ZERO ;
parent ->scales().QCD_ac = ZERO ;
parent ->scales().QCD_ac_noAO = ZERO ;
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = min(AOScale,spacelike->scales().QCD_ac );
timelike->scales().QCD_c_noAO = min( scale,spacelike->scales().QCD_ac_noAO);
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = min(AOScale,spacelike->scales().QCD_c );
timelike->scales().QCD_ac_noAO = min( scale,spacelike->scales().QCD_c_noAO );
}
}
}
// QCD
else {
// timelike
if(timelike->dataPtr()->charged()) {
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
}
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
if(parent->id()==spacelike->id()) {
parent ->scales().QED = min(scale,spacelike->scales().QED );
parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO );
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
}
else {
if(parent->dataPtr()->charged()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
}
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
}
}
}
void SplittingFunction::evaluateDecayScales(ShowerPartnerType partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
assert(parent->id()==spacelike->id());
// angular-ordered scale for 2nd child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
// spacelike
spacelike->scales().QED = scale;
spacelike->scales().QED_noAO = scale;
}
// QCD
else {
// timelike
timelike->scales().QED = ZERO;
timelike->scales().QED_noAO = ZERO;
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
// spacelike
spacelike->scales().QED = max(scale,parent->scales().QED );
spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO );
}
spacelike->scales().QCD_c = max(scale,parent->scales().QCD_c );
spacelike->scales().QCD_c_noAO = max(scale,parent->scales().QCD_c_noAO );
spacelike->scales().QCD_ac = max(scale,parent->scales().QCD_ac );
spacelike->scales().QCD_ac_noAO = max(scale,parent->scales().QCD_ac_noAO);
}
diff --git a/Shower/QTilde/SplittingFunctions/SplittingFunction.h b/Shower/QTilde/SplittingFunctions/SplittingFunction.h
--- a/Shower/QTilde/SplittingFunctions/SplittingFunction.h
+++ b/Shower/QTilde/SplittingFunctions/SplittingFunction.h
@@ -1,382 +1,382 @@
// -*- C++ -*-
//
// SplittingFunction.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_SplittingFunction_H
#define HERWIG_SplittingFunction_H
//
// This is the declaration of the SplittingFunction class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "Herwig/Shower/QTilde/ShowerConfig.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "Herwig/Decay/DecayMatrixElement.h"
#include "Herwig/Shower/QTilde/Kinematics/ShowerKinematics.fh"
#include "ThePEG/EventRecord/ColourLine.h"
#include "ThePEG/PDT/ParticleData.h"
#include "SplittingFunction.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
* Enum to define the possible types of colour structure which can occur in
* the branching.
*/
enum ColourStructure {Undefined=0,
TripletTripletOctet = 1,OctetOctetOctet =2,
OctetTripletTriplet = 3,TripletOctetTriplet=4,
SextetSextetOctet = 5,
ChargedChargedNeutral=-1,ChargedNeutralCharged=-2,
NeutralChargedCharged=-3};
/** \ingroup Shower
*
* This is an abstract class which defines the common interface
* for all \f$1\to2\f$ splitting functions, for both initial-state
* and final-state radiation.
*
* The SplittingFunction class contains a number of purely virtual members
* which must be implemented in the inheriting classes. The class also stores
* the interaction type of the spltting function.
*
* The inheriting classes need to specific the splitting function
* \f$P(z,2p_j\cdot p_k)\f$, in terms of the energy fraction \f$z\f$ and
* the evolution scale. In order to allow the splitting functions to be used
* with different choices of evolution functions the scale is given by
* \f[2p_j\cdot p_k=(p_j+p_k)^2-m_{jk}^2=Q^2-(p_j+p_k)^2=z(1-z)\tilde{q}^2=
* \frac{p_T^2}{z(1-z)}-m_{jk}^2+\frac{m_j^2}{z}+\frac{m_k^2}{1-z},\f]
* where \f$Q^2\f$ is the virtuality of the branching particle,
* $p_T$ is the relative transverse momentum of the branching products and
* \f$\tilde{q}^2\f$ is the angular variable described in hep-ph/0310083.
*
* In addition an overestimate of the
* splitting function, \f$P_{\rm over}(z)\f$ which only depends upon \f$z\f$,
* the integral, inverse of the integral for this overestimate and
* ratio of the true splitting function to the overestimate must be provided
* as they are necessary for the veto alogrithm used to implement the evolution.
*
* @see \ref SplittingFunctionInterfaces "The interfaces"
* defined for SplittingFunction.
*/
class SplittingFunction: public Interfaced {
public:
/**
* The default constructor.
* @param b All splitting functions must have an interaction order
*/
SplittingFunction()
: Interfaced(), _interactionType(ShowerInteraction::UNDEFINED),
_colourStructure(Undefined), _colourFactor(-1.),
- angularOrdered_(true), scaleChoice_(2), strictAO_(false) {}
+ angularOrdered_(true), scaleChoice_(2), strictAO_(true) {}
public:
/**
* Methods to return the interaction type and order for the splitting function
*/
//@{
/**
* Return the type of the interaction
*/
ShowerInteraction interactionType() const {return _interactionType;}
/**
* Return the colour structure
*/
ColourStructure colourStructure() const {return _colourStructure;}
/**
* Return the colour factor
*/
double colourFactor(const IdList &ids) const {
if(_colourStructure>0)
return _colourFactor;
else if(_colourStructure<0) {
if(_colourStructure==ChargedChargedNeutral ||
_colourStructure==ChargedNeutralCharged) {
return sqr(double(ids[0]->iCharge())/3.);
}
else if(_colourStructure==NeutralChargedCharged) {
double fact = sqr(double(ids[1]->iCharge())/3.);
if(ids[1]->coloured())
fact *= abs(double(ids[1]->iColour()));
return fact;
}
else
assert(false);
}
else
assert(false);
}
//@}
/**
* Purely virtual method which should determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const = 0;
/**
* Method to check the colours are correct
*/
virtual bool checkColours(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* Purely virtual method which should return the exact value of the splitting function,
* \f$P\f$ evaluated in terms of the energy fraction, \f$z\f$, and the evolution scale
\f$\tilde{q}^2\f$.
* @param z The energy fraction.
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass, const RhoDMatrix & rho) const = 0;
/**
* Purely virtual method which should return
* an overestimate of the splitting function,
* \f$P_{\rm over}\f$ such that the result \f$P_{\rm over}\geq P\f$. This function
* should be simple enough that it does not depend on the evolution scale.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const = 0;
/**
* Purely virtual method which should return
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass, const RhoDMatrix & rho) const = 0;
/**
* Purely virtual method which should return the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const = 0;
/**
* Purely virtual method which should return the inverse of the
* indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$ which is used to
* generate the value of \f$z\f$.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const = 0;
//@}
/**
* Purely virtual method which should make the proper colour connection
* between the emitting parent and the branching products.
* @param parent The parent for the branching
* @param first The first branching product
* @param second The second branching product
* @param partnerType The type of evolution partner
* @param back Whether this is foward or backward evolution.
*/
virtual void colourConnection(tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second,
ShowerPartnerType partnerType,
const bool back) const;
/**
* Method to calculate the azimuthal angle for forward evolution
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &) = 0;
/**
* Method to calculate the azimuthal angle for backward evolution
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &) = 0;
/**
* Calculate the matrix element for the splitting
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param phi The azimuthal angle, \f$\phi\f$.
* @param timeLike Whether timelike or spacelike, affects inclusive of mass terms
*/
virtual DecayMEPtr matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi,
bool timeLike) = 0;
/**
* Whether or not the interaction is angular ordered
*/
bool angularOrdered() const {return angularOrdered_;}
/**
* Scale choice
*/
bool pTScale() const {
return scaleChoice_ == 2 ? angularOrdered_ : scaleChoice_ == 0;
}
/**
* Functions to state scales after branching happens
*/
//@{
/**
* Sort out scales for final-state emission
*/
void evaluateFinalStateScales(ShowerPartnerType type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
/**
* Sort out scales for initial-state emission
*/
void evaluateInitialStateScales(ShowerPartnerType type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
/**
* Sort out scales for decay emission
*/
void evaluateDecayScales(ShowerPartnerType type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
protected:
/**
* Set the colour factor
*/
void colourFactor(double in) {_colourFactor=in;}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
SplittingFunction & operator=(const SplittingFunction &) = delete;
private:
/**
* The interaction type for the splitting function.
*/
ShowerInteraction _interactionType;
/**
* The colour structure
*/
ColourStructure _colourStructure;
/**
* The colour factor
*/
double _colourFactor;
/**
* Whether or not this interaction is angular-ordered
*/
bool angularOrdered_;
/**
* The choice of scale
*/
unsigned int scaleChoice_;
/**
* Enforce strict AO
*/
bool strictAO_;
};
}
#endif /* HERWIG_SplittingFunction_H */
diff --git a/src/defaults/Shower.in b/src/defaults/Shower.in
--- a/src/defaults/Shower.in
+++ b/src/defaults/Shower.in
@@ -1,312 +1,320 @@
# -*- ThePEG-repository -*-
############################################################
# Setup of default parton shower
#
# Useful switches for users are marked near the top of
# this file.
#
# Don't edit this file directly, but reset the switches
# in your own input files!
############################################################
library HwMPI.so
library HwShower.so
library HwMatching.so
mkdir /Herwig/Shower
cd /Herwig/Shower
create Herwig::QTildeShowerHandler ShowerHandler
newdef ShowerHandler:MPIHandler /Herwig/UnderlyingEvent/MPIHandler
newdef ShowerHandler:RemDecayer /Herwig/Partons/RemnantDecayer
# use LO PDFs for Shower, can be changed later
newdef ShowerHandler:PDFA /Herwig/Partons/ShowerLOPDF
newdef ShowerHandler:PDFB /Herwig/Partons/ShowerLOPDF
newdef ShowerHandler:PDFARemnant /Herwig/Partons/RemnantPDF
newdef ShowerHandler:PDFBRemnant /Herwig/Partons/RemnantPDF
#####################################
# initial setup, don't change these!
#####################################
create Herwig::SplittingGenerator SplittingGenerator
create Herwig::ShowerAlphaQCD AlphaQCD
create Herwig::ShowerAlphaQED AlphaQED
create Herwig::PartnerFinder PartnerFinder
newdef PartnerFinder:PartnerMethod 1
newdef PartnerFinder:ScaleChoice 1
create Herwig::KinematicsReconstructor KinematicsReconstructor
newdef KinematicsReconstructor:ReconstructionOption Colour3
newdef KinematicsReconstructor:InitialStateReconOption SofterFraction
newdef KinematicsReconstructor:InitialInitialBoostOption LongTransBoost
newdef /Herwig/Partons/RemnantDecayer:AlphaS AlphaQCD
newdef /Herwig/Partons/RemnantDecayer:AlphaEM AlphaQED
newdef ShowerHandler:PartnerFinder PartnerFinder
newdef ShowerHandler:KinematicsReconstructor KinematicsReconstructor
newdef ShowerHandler:SplittingGenerator SplittingGenerator
newdef ShowerHandler:SpinCorrelations Yes
newdef ShowerHandler:SoftCorrelations Singular
##################################################################
# Intrinsic pT
#
# Recommended:
# 1.9 GeV for Tevatron W/Z production.
# 2.1 GeV for LHC W/Z production at 10 TeV
# 2.2 GeV for LHC W/Z production at 14 TeV
#
# Set all parameters to 0 to disable
##################################################################
newdef ShowerHandler:IntrinsicPtGaussian 1.3*GeV
newdef ShowerHandler:IntrinsicPtBeta 0
newdef ShowerHandler:IntrinsicPtGamma 0*GeV
newdef ShowerHandler:IntrinsicPtIptmax 0*GeV
#############################################################
# Set up truncated shower handler.
#############################################################
create Herwig::PowhegShowerHandler PowhegShowerHandler
set PowhegShowerHandler:MPIHandler /Herwig/UnderlyingEvent/MPIHandler
set PowhegShowerHandler:RemDecayer /Herwig/Partons/RemnantDecayer
newdef PowhegShowerHandler:PDFA /Herwig/Partons/ShowerLOPDF
newdef PowhegShowerHandler:PDFB /Herwig/Partons/ShowerLOPDF
newdef PowhegShowerHandler:PDFARemnant /Herwig/Partons/RemnantPDF
newdef PowhegShowerHandler:PDFBRemnant /Herwig/Partons/RemnantPDF
newdef PowhegShowerHandler:MPIHandler /Herwig/UnderlyingEvent/MPIHandler
newdef PowhegShowerHandler:RemDecayer /Herwig/Partons/RemnantDecayer
newdef PowhegShowerHandler:PDFA /Herwig/Partons/ShowerLOPDF
newdef PowhegShowerHandler:PDFB /Herwig/Partons/ShowerLOPDF
newdef PowhegShowerHandler:PDFARemnant /Herwig/Partons/RemnantPDF
newdef PowhegShowerHandler:PDFBRemnant /Herwig/Partons/RemnantPDF
newdef PowhegShowerHandler:PartnerFinder PartnerFinder
newdef PowhegShowerHandler:KinematicsReconstructor KinematicsReconstructor
newdef PowhegShowerHandler:SplittingGenerator SplittingGenerator
newdef PowhegShowerHandler:Interactions QCDandQED
newdef PowhegShowerHandler:SpinCorrelations Yes
newdef PowhegShowerHandler:SoftCorrelations Singular
newdef PowhegShowerHandler:IntrinsicPtGaussian 1.3*GeV
newdef PowhegShowerHandler:IntrinsicPtBeta 0
newdef PowhegShowerHandler:IntrinsicPtGamma 0*GeV
newdef PowhegShowerHandler:IntrinsicPtIptmax 0*GeV
newdef PowhegShowerHandler:EvolutionScheme Q2
#############################################################
# End of interesting user servicable section.
#
# Anything that follows below should only be touched if you
# know what you're doing.
#
# Really.
#############################################################
#
# a few default values
newdef ShowerHandler:MECorrMode 1
newdef ShowerHandler:EvolutionScheme Q2
newdef AlphaQCD:ScaleFactor 1.0
newdef AlphaQCD:NPAlphaS 2
newdef AlphaQCD:Qmin 0.935
newdef AlphaQCD:NumberOfLoops 2
newdef AlphaQCD:AlphaIn 0.126234
#
#
# Lets set up all the splittings
create Herwig::HalfHalfOneSplitFn QtoQGammaSplitFn
set QtoQGammaSplitFn:InteractionType QED
set QtoQGammaSplitFn:ColourStructure ChargedChargedNeutral
set QtoQGammaSplitFn:AngularOrdered Yes
+set QtoQGammaSplitFn:StrictAO No
create Herwig::HalfHalfOneSplitFn QtoQGSplitFn
newdef QtoQGSplitFn:InteractionType QCD
newdef QtoQGSplitFn:ColourStructure TripletTripletOctet
set QtoQGSplitFn:AngularOrdered Yes
+set QtoQGSplitFn:StrictAO No
create Herwig::OneOneOneSplitFn GtoGGSplitFn
newdef GtoGGSplitFn:InteractionType QCD
newdef GtoGGSplitFn:ColourStructure OctetOctetOctet
set GtoGGSplitFn:AngularOrdered Yes
+set GtoGGSplitFn:StrictAO No
create Herwig::OneOneOneMassiveSplitFn WtoWGammaSplitFn
newdef WtoWGammaSplitFn:InteractionType QED
newdef WtoWGammaSplitFn:ColourStructure ChargedChargedNeutral
set WtoWGammaSplitFn:AngularOrdered Yes
+set WtoWGammaSplitFn:StrictAO No
create Herwig::OneHalfHalfSplitFn GtoQQbarSplitFn
newdef GtoQQbarSplitFn:InteractionType QCD
newdef GtoQQbarSplitFn:ColourStructure OctetTripletTriplet
set GtoQQbarSplitFn:AngularOrdered Yes
+set GtoQQbarSplitFn:StrictAO No
create Herwig::OneHalfHalfSplitFn GammatoQQbarSplitFn
newdef GammatoQQbarSplitFn:InteractionType QED
newdef GammatoQQbarSplitFn:ColourStructure NeutralChargedCharged
set GammatoQQbarSplitFn:AngularOrdered Yes
+set GammatoQQbarSplitFn:StrictAO No
create Herwig::HalfOneHalfSplitFn QtoGQSplitFn
newdef QtoGQSplitFn:InteractionType QCD
newdef QtoGQSplitFn:ColourStructure TripletOctetTriplet
set QtoGQSplitFn:AngularOrdered Yes
+set QtoGQSplitFn:StrictAO No
create Herwig::HalfOneHalfSplitFn QtoGammaQSplitFn
newdef QtoGammaQSplitFn:InteractionType QED
newdef QtoGammaQSplitFn:ColourStructure ChargedNeutralCharged
set QtoGammaQSplitFn:AngularOrdered Yes
+set QtoGammaQSplitFn:StrictAO No
#
# Now the Sudakovs
create Herwig::PTCutOff PTCutOff
newdef PTCutOff:pTmin 1.222798*GeV
create Herwig::SudakovFormFactor SudakovCommon
newdef SudakovCommon:Alpha AlphaQCD
newdef SudakovCommon:Cutoff PTCutOff
newdef SudakovCommon:PDFmax 1.0
cp SudakovCommon QtoQGSudakov
newdef QtoQGSudakov:SplittingFunction QtoQGSplitFn
newdef QtoQGSudakov:PDFmax 1.9
cp SudakovCommon QtoQGammaSudakov
set QtoQGammaSudakov:SplittingFunction QtoQGammaSplitFn
set QtoQGammaSudakov:Alpha AlphaQED
set QtoQGammaSudakov:PDFmax 1.9
cp QtoQGammaSudakov LtoLGammaSudakov
cp PTCutOff LtoLGammaPTCutOff
# Technical parameter to stop evolution.
set LtoLGammaPTCutOff:pTmin 0.000001
set LtoLGammaSudakov:Cutoff LtoLGammaPTCutOff
cp SudakovCommon GtoGGSudakov
newdef GtoGGSudakov:SplittingFunction GtoGGSplitFn
newdef GtoGGSudakov:PDFmax 2.0
cp SudakovCommon WtoWGammaSudakov
newdef WtoWGammaSudakov:SplittingFunction WtoWGammaSplitFn
set WtoWGammaSudakov:Alpha AlphaQED
cp SudakovCommon GtoQQbarSudakov
newdef GtoQQbarSudakov:SplittingFunction GtoQQbarSplitFn
newdef GtoQQbarSudakov:PDFmax 120.0
cp SudakovCommon GammatoQQbarSudakov
newdef GammatoQQbarSudakov:SplittingFunction GammatoQQbarSplitFn
set GammatoQQbarSudakov:Alpha AlphaQED
newdef GammatoQQbarSudakov:PDFmax 120.0
cp SudakovCommon GtobbbarSudakov
newdef GtobbbarSudakov:SplittingFunction GtoQQbarSplitFn
newdef GtobbbarSudakov:PDFmax 40000.0
cp SudakovCommon GtoccbarSudakov
newdef GtoccbarSudakov:SplittingFunction GtoQQbarSplitFn
newdef GtoccbarSudakov:PDFmax 2000.0
cp SudakovCommon QtoGQSudakov
newdef QtoGQSudakov:SplittingFunction QtoGQSplitFn
cp SudakovCommon QtoGammaQSudakov
newdef QtoGammaQSudakov:SplittingFunction QtoGammaQSplitFn
set QtoGammaQSudakov:Alpha AlphaQED
cp SudakovCommon utoGuSudakov
newdef utoGuSudakov:SplittingFunction QtoGQSplitFn
newdef utoGuSudakov:PDFFactor OverOneMinusZ
newdef utoGuSudakov:PDFmax 5.0
cp SudakovCommon dtoGdSudakov
newdef dtoGdSudakov:SplittingFunction QtoGQSplitFn
newdef dtoGdSudakov:PDFFactor OverOneMinusZ
#
# Now add the final splittings
#
do SplittingGenerator:AddFinalSplitting u->u,g; QtoQGSudakov
do SplittingGenerator:AddFinalSplitting d->d,g; QtoQGSudakov
do SplittingGenerator:AddFinalSplitting s->s,g; QtoQGSudakov
do SplittingGenerator:AddFinalSplitting c->c,g; QtoQGSudakov
do SplittingGenerator:AddFinalSplitting b->b,g; QtoQGSudakov
do SplittingGenerator:AddFinalSplitting t->t,g; QtoQGSudakov
#
do SplittingGenerator:AddFinalSplitting g->g,g; GtoGGSudakov
#
do SplittingGenerator:AddFinalSplitting g->u,ubar; GtoQQbarSudakov
do SplittingGenerator:AddFinalSplitting g->d,dbar; GtoQQbarSudakov
do SplittingGenerator:AddFinalSplitting g->s,sbar; GtoQQbarSudakov
do SplittingGenerator:AddFinalSplitting g->c,cbar; GtoccbarSudakov
do SplittingGenerator:AddFinalSplitting g->b,bbar; GtobbbarSudakov
do SplittingGenerator:AddFinalSplitting g->t,tbar; GtoQQbarSudakov
#
do SplittingGenerator:AddFinalSplitting gamma->u,ubar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->d,dbar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->s,sbar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->c,cbar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->b,bbar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->t,tbar; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->e-,e+; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->mu-,mu+; GammatoQQbarSudakov
do SplittingGenerator:AddFinalSplitting gamma->tau-,tau+; GammatoQQbarSudakov
#
do SplittingGenerator:AddFinalSplitting u->u,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting d->d,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting s->s,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting c->c,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting b->b,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting t->t,gamma; QtoQGammaSudakov
do SplittingGenerator:AddFinalSplitting e-->e-,gamma; LtoLGammaSudakov
do SplittingGenerator:AddFinalSplitting mu-->mu-,gamma; LtoLGammaSudakov
do SplittingGenerator:AddFinalSplitting tau-->tau-,gamma; LtoLGammaSudakov
do SplittingGenerator:AddFinalSplitting W+->W+,gamma; WtoWGammaSudakov
#
# Now lets add the initial splittings. Remember the form a->b,c; means
# that the current particle b is given and we backward branch to new
# particle a which is initial state and new particle c which is final state
#
do SplittingGenerator:AddInitialSplitting u->u,g; QtoQGSudakov
do SplittingGenerator:AddInitialSplitting d->d,g; QtoQGSudakov
do SplittingGenerator:AddInitialSplitting s->s,g; QtoQGSudakov
do SplittingGenerator:AddInitialSplitting c->c,g; QtoQGSudakov
do SplittingGenerator:AddInitialSplitting b->b,g; QtoQGSudakov
do SplittingGenerator:AddInitialSplitting u->u,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting d->d,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting s->s,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting c->c,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting b->b,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting t->t,gamma; QtoQGammaSudakov
do SplittingGenerator:AddInitialSplitting g->g,g; GtoGGSudakov
#
do SplittingGenerator:AddInitialSplitting g->d,dbar; GtoQQbarSudakov
do SplittingGenerator:AddInitialSplitting g->u,ubar; GtoQQbarSudakov
do SplittingGenerator:AddInitialSplitting g->s,sbar; GtoQQbarSudakov
do SplittingGenerator:AddInitialSplitting g->c,cbar; GtoccbarSudakov
do SplittingGenerator:AddInitialSplitting g->b,bbar; GtobbbarSudakov
#
do SplittingGenerator:AddInitialSplitting gamma->d,dbar; GammatoQQbarSudakov
do SplittingGenerator:AddInitialSplitting gamma->u,ubar; GammatoQQbarSudakov
do SplittingGenerator:AddInitialSplitting gamma->s,sbar; GammatoQQbarSudakov
do SplittingGenerator:AddInitialSplitting gamma->c,cbar; GammatoQQbarSudakov
do SplittingGenerator:AddInitialSplitting gamma->b,bbar; GammatoQQbarSudakov
#
do SplittingGenerator:AddInitialSplitting d->g,d; dtoGdSudakov
do SplittingGenerator:AddInitialSplitting u->g,u; utoGuSudakov
do SplittingGenerator:AddInitialSplitting s->g,s; QtoGQSudakov
do SplittingGenerator:AddInitialSplitting c->g,c; QtoGQSudakov
do SplittingGenerator:AddInitialSplitting b->g,b; QtoGQSudakov
do SplittingGenerator:AddInitialSplitting dbar->g,dbar; dtoGdSudakov
do SplittingGenerator:AddInitialSplitting ubar->g,ubar; utoGuSudakov
do SplittingGenerator:AddInitialSplitting sbar->g,sbar; QtoGQSudakov
do SplittingGenerator:AddInitialSplitting cbar->g,cbar; QtoGQSudakov
do SplittingGenerator:AddInitialSplitting bbar->g,bbar; QtoGQSudakov
#
do SplittingGenerator:AddInitialSplitting d->gamma,d; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting u->gamma,u; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting s->gamma,s; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting c->gamma,c; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting b->gamma,b; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting dbar->gamma,dbar; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting ubar->gamma,ubar; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting sbar->gamma,sbar; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting cbar->gamma,cbar; QtoGammaQSudakov
do SplittingGenerator:AddInitialSplitting bbar->gamma,bbar; QtoGammaQSudakov
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:02 PM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805745
Default Alt Text
(182 KB)
Attached To
R563 testingHerwigHG
Event Timeline
Log In to Comment