Page MenuHomeHEPForge

No OneTemporary

diff --git a/Changes-API.md b/Changes-API.md
index 8538fc2..c3c285c 100644
--- a/Changes-API.md
+++ b/Changes-API.md
@@ -1,61 +1,64 @@
# Changelog for HEJ API
This log lists only changes on the HEJ API. These are primarily code changes
relevant for calling HEJ as an API. This file should only be read as an addition
to `Changes.md`, where the main features are documented.
## Version 2.X
### 2.X.0
* Made `MatrixElement.tree_kin(...)` and `MatrixElement.tree_param(...)` public
* New class `CrossSectionAccumulator` to keep track of Cross Section of the
different subproccess
* New template struct `Parameters` similar to old `Weights`
- `Weights` are now an alias for `Parameters<double>`. Calling `Weights` did
not change
- `Weights.hh` was replaced by `Parameters.hh`. The old `Weights.hh` header
will be removed in HEJ Version 2.3.0
* Function to multiplication and division of `EventParameters.weight` by double
- This can be combined with `Parameters`, e.g.
`Parameters<EventParameters>*Weights`, see also `Events.parameters()`
- Moved `EventParameters` to `Parameters.hh` header
* Restructured `Event` class
- `Event` can now only be build from a (new) `Event::EventData` class
- Removed default constructor for `Event`
- `Event::EventData` replaces the old `UnclusteredEvent` struct.
- `UnclusteredEvent` is now deprecated, and will be removed in HEJ Version
2.3.0
- Removed `Event.unclustered()` function
- Added new member function `Events.parameters()`, to directly access
(underlying) `Parameters<EventParameters>`
+ - New member functions `begin_partons`, `end_partons` with aliases
+ `cbegin_partons`, `cend_partons` for constant iterators over
+ outgoing partons.
* New function `Event::EventData.reconstruct_intermediate()` to reconstruct
bosons from decays, e.g. `positron + nu_e => Wp`
* Added optional Colour charges to particles (`Particle.colour`)
- Colour connection in the HEJ limit can be generated via
`Event.generate_colours` (automatically done in the resummation)
* New abstact `EventReader` class, as base for reading events from files
- Moved LHE file reader to `HEJ::LesHouchesReader`
- New `HEJ::HDF5Reader` to read `hdf5` files
## Version 2.0
### 2.0.5
* no further changes to API
### 2.0.4
* Fixed wrong path of `HEJ_INCLUDE_DIR` in `hej-config.cmake`
### 2.0.3
* no further changes to API
### 2.0.2
* no further changes to API
### 2.0.1
* no further changes to API
diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh
index 3b08c7e..c0a93a3 100644
--- a/include/HEJ/Event.hh
+++ b/include/HEJ/Event.hh
@@ -1,281 +1,298 @@
/** \file
* \brief Declares the Event class and helpers
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
+#include <boost/iterator/filter_iterator.hpp>
+
#include "HEJ/event_types.hh"
#include "HEJ/Parameters.hh"
#include "HEJ/Particle.hh"
#include "HEJ/RNG.hh"
#include "fastjet/ClusterSequence.hh"
namespace LHEF{
class HEPEUP;
class HEPRUP;
}
namespace fastjet{
class JetDefinition;
}
namespace HEJ{
struct UnclusteredEvent;
/** @brief An event with clustered jets
*
* This is the main HEJ 2 event class.
* It contains kinematic information including jet clustering,
* parameter (e.g. scale) settings and the event weight.
*/
class Event{
public:
class EventData;
+
+ using ConstPartonIterator = boost::filter_iterator<
+ bool (*)(Particle const &),
+ std::vector<Particle>::const_iterator
+ >;
//! No default Constructor
Event() = delete;
//! Event Constructor adding jet clustering to an unclustered event
//! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
[[deprecated("UnclusteredEvent will be replaced by EventData")]]
Event(
UnclusteredEvent const & ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
);
//! Incoming particles
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Outgoing particles
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
+ //! Iterator to the first outgoing parton
+ ConstPartonIterator begin_partons() const;
+ //! Iterator to the first outgoing parton
+ ConstPartonIterator cbegin_partons() const;
+
+ //! Iterator to the end of the outgoing partons
+ ConstPartonIterator end_partons() const;
+ //! Iterator to the end of the outgoing partons
+ ConstPartonIterator cend_partons() const;
+
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return decays_;
}
//! The jets formed by the outgoing partons, sorted in rapidity
std::vector<fastjet::PseudoJet> const & jets() const{
return jets_;
}
//! All chosen parameter, i.e. scale choices (const version)
Parameters<EventParameters> const & parameters() const{
return parameters_;
}
//! All chosen parameter, i.e. scale choices
Parameters<EventParameters> & parameters(){
return parameters_;
}
//! Central parameter choice (const version)
EventParameters const & central() const{
return parameters_.central;
}
//! Central parameter choice
EventParameters & central(){
return parameters_.central;
}
//! Parameter (scale) variations (const version)
std::vector<EventParameters> const & variations() const{
return parameters_.variations;
}
//! Parameter (scale) variations
std::vector<EventParameters> & variations(){
return parameters_.variations;
}
//! Parameter (scale) variation (const version)
/**
* @param i Index of the requested variation
*/
EventParameters const & variations(size_t i) const{
return parameters_.variations[i];
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters & variations(size_t i){
return parameters_.variations[i];
}
//! Indices of the jets the outgoing partons belong to
/**
* @param jets Jets to be tested
* @returns A vector containing, for each outgoing parton,
* the index in the vector of jets the considered parton
* belongs to. If the parton is not inside any of the
* passed jets, the corresponding index is set to -1.
*/
std::vector<int> particle_jet_indices(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cs_.particle_jet_indices(jets);
}
//! Jet definition used for clustering
fastjet::JetDefinition const & jet_def() const{
return cs_.jet_def();
}
//! Minimum jet transverse momentum
double min_jet_pt() const{
return min_jet_pt_;
}
//! Event type
event_type::EventType type() const{
return type_;
}
//! Give colours to each particle
/**
* @returns true if new colours are generated, i.e. same as is_HEJ()
* @details Colour ordering is done according to leading colour in the MRK
* limit, see \cite Andersen:2011zd. This only affects \ref
* is_HEJ() "HEJ" configurations, all other \ref event_type
* "EventTypes" will be ignored.
* @note This overwrites all previously set colours.
*/
bool generate_colours(HEJ::RNG &);
private:
//! \internal
//! @brief Construct Event explicitly from input.
/** This is only intended to be called from EventData.
*
* \warning The input is taken _as is_, sorting and classification has to be
* done externally, i.e. by EventData
*/
Event(
std::array<Particle, 2> && incoming,
std::vector<Particle> && outgoing,
std::unordered_map<size_t, std::vector<Particle>> && decays,
Parameters<EventParameters> && parameters,
fastjet::JetDefinition const & jet_def,
double const min_jet_pt
);
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
std::unordered_map<size_t, std::vector<Particle>> decays_;
std::vector<fastjet::PseudoJet> jets_;
Parameters<EventParameters> parameters_;
fastjet::ClusterSequence cs_;
double min_jet_pt_;
event_type::EventType type_;
}; // end class Event
//! Class to store general Event setup, i.e. Phase space and weights
class Event::EventData{
public:
//! Default Constructor
EventData() = default;
//! Constructor from LesHouches event information
EventData(LHEF::HEPEUP const & hepeup);
//! Constructor with all values given
EventData(
std::array<Particle, 2> const & incoming_,
std::vector<Particle> const & outgoing_,
std::unordered_map<size_t, std::vector<Particle>> const & decays_,
Parameters<EventParameters> const & parameters_
):
incoming(incoming_), outgoing(outgoing_),
decays(decays_), parameters(parameters_)
{};
//! Move Constructor with all values given
EventData(
std::array<Particle, 2> && incoming_,
std::vector<Particle> && outgoing_,
std::unordered_map<size_t, std::vector<Particle>> && decays_,
Parameters<EventParameters> && parameters_
):
incoming(std::move(incoming_)), outgoing(std::move(outgoing_)),
decays(std::move(decays_)), parameters(std::move(parameters_))
{};
//! Generate an Event from the stored EventData.
/**
* @details Do jet clustering and classification.
* Use this to generate an Event.
*
* @note Calling this function destroys EventData
*
* @param jet_def Jet definition
* @param min_jet_pt minimal \f$p_T\f$ for each jet
*
* @returns Full clustered and classified event.
*/
Event cluster(
fastjet::JetDefinition const & jet_def, double const min_jet_pt);
//! Alias for cluster()
Event operator()(
fastjet::JetDefinition const & jet_def, double const min_jet_pt){
return cluster(jet_def, min_jet_pt);
};
//! Sort particles in rapidity
void sort();
//! Reconstruct intermediate particles from final-state leptons
/**
* Final-state leptons are created from virtual photons, W, or Z bosons.
* This function tries to reconstruct such intermediate bosons if they
* are not part of the event record.
*/
void reconstruct_intermediate();
std::array<Particle, 2> incoming;
std::vector<Particle> outgoing;
std::unordered_map<size_t, std::vector<Particle>> decays;
Parameters<EventParameters> parameters;
}; // end class EventData
//! Print Event
std::ostream& operator<<(std::ostream & os, Event const & ev);
//! Square of the partonic centre-of-mass energy \f$\hat{s}\f$
double shat(Event const & ev);
//! Convert an event to a LHEF::HEPEUP
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
// put deprecated warning at the end, so don't get the warning inside Event.hh,
// additionally doxygen can not identify [[deprecated]] correctly
struct [[deprecated("UnclusteredEvent will be replaced by EventData")]]
UnclusteredEvent;
//! An event before jet clustering
//! @deprecated UnclusteredEvent will be replaced by EventData in HEJ 2.2.0
struct UnclusteredEvent{
//! Default Constructor
UnclusteredEvent() = default;
//! Constructor from LesHouches event information
UnclusteredEvent(LHEF::HEPEUP const & hepeup);
std::array<Particle, 2> incoming; /**< Incoming Particles */
std::vector<Particle> outgoing; /**< Outgoing Particles */
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays;
//! Central parameter (e.g. scale) choice
EventParameters central;
std::vector<EventParameters> variations; /**< For parameter variation */
};
}
diff --git a/src/Event.cc b/src/Event.cc
index 8c298bd..63ea509 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,749 +1,771 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <utility>
#include "LHEF/LHEF.h"
#include "fastjet/JetDefinition.hh"
#include "HEJ/Constants.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/PDG_codes.hh"
namespace HEJ{
namespace {
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(std::vector<Particle> const & outgoing){
bool has_AWZH_boson = false;
for(auto const & out: outgoing){
if(is_AWZH_boson(out.type)){
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
}
else if(! is_parton(out.type)) return false;
}
return true;
}
/**
* \brief function which determines if type change is consistent with Wp emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* \see is_Wm_Change
*/
bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
return false;
}
/**
* \brief function which determines if type change is consistent with Wm emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* Ensures that change type of quark line is possible by a flavour changing
* Wm emission. Allows checking of qqx currents also.
*/
bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
return false;
}
/**
* \brief checks if particle type remains same from incoming to outgoing
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
*/
bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
const int qqxCurrent = qqx?-1:1;
if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
else return false;
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief check if we have a valid Impact factor
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
* @param qqx returns +1 if Wp, -1 if Wm, else 0
*/
bool is_valid_impact_factor(
ParticleID in, ParticleID out, bool qqx, int & W_change
){
if( no_flavour_change(in, out, qqx) ){
return true;
}
if( is_Wp_Change(in, out, qqx) ) {
W_change+=1;
return true;
}
if( is_Wm_Change(in, out, qqx) ) {
W_change-=1;
return true;
}
return false;
}
//! Returns all possible classifications from the impact factors
// the beginning points are changed s.t. after the the classification they
// point to the beginning of the (potential) FKL chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
// This function can be used with forward & backwards iterators
template<class OutIterator, class IndexIterator>
size_t possible_impact_factors(
ParticleID incoming_id, // incoming
OutIterator & begin_out, OutIterator const & end_out, // outgoing
IndexIterator & begin_idx, // jet indices
int & W_change, std::vector<Particle> const & boson,
bool const backward // backward?
){
using event_type::EventType;
assert(boson.size() < 2);
// keep track of all states that we don't test
size_t not_tested = EventType::qqxmid;
if(backward)
not_tested |= EventType::unof | EventType::qqxexf;
else
not_tested |= EventType::unob | EventType::qqxexb;
// Is this LL current?
if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
++begin_out;
++begin_idx;
return not_tested | EventType::FKL;
}
// or NLL current?
// -> needs two partons in two different jets
if( std::distance(begin_out, end_out)>=2
&& *begin_idx>=0 && *(begin_idx+1)>=0 && *begin_idx!=*(begin_idx+1)
){
// Is this unordered emisson?
if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
if( is_valid_impact_factor(
incoming_id, (begin_out+1)->type, false, W_change )
){
// veto Higgs inside uno
assert((begin_out+1)<end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
return EventType::FixedOrder;
}
begin_out+=2;
begin_idx+=2;
return not_tested | (backward?EventType::unob:EventType::unof);
}
}
// Is this QQbar?
else if( incoming_id==pid::gluon ){
if( is_valid_impact_factor(
begin_out->type, (begin_out+1)->type, true, W_change )
){
// veto Higgs inside qqx
assert((begin_out+1)<end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
return EventType::FixedOrder;
}
begin_out+=2;
begin_idx+=2;
return not_tested | (backward?EventType::qqxexb:EventType::qqxexf);
}
}
}
return EventType::FixedOrder;
}
//! Returns all possible classifications from central emissions
// the beginning points are changed s.t. after the the classification they
// point to the end of the emission chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
template<class OutIterator, class IndexIterator>
size_t possible_central(
OutIterator & begin_out, OutIterator const & end_out,
IndexIterator & begin_idx,
int & W_change, std::vector<Particle> const & boson
){
using event_type::EventType;
assert(boson.size() < 2);
// if we already passed the central chain,
// then it is not a valid all-order state
if(std::distance(begin_out, end_out) < 0) return EventType::FixedOrder;
// keep track of all states that we don't test
size_t possible = EventType::unob | EventType::unof
| EventType::qqxexb | EventType::qqxexf;
// Find the first non-gluon/non-FKL
while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
++begin_out;
++begin_idx;
}
// end of chain -> FKL
if( begin_out==end_out ){
return possible | EventType::FKL;
}
// is this a qqbar-pair?
// needs two partons in two separate jets
if( is_valid_impact_factor(
begin_out->type, (begin_out+1)->type, true, W_change )
&& *begin_idx>=0 && *(begin_idx+1)>=0 && *begin_idx!=*(begin_idx+1)
){
// veto Higgs inside qqx
if( !boson.empty() && boson.front().type == ParticleID::h
&& boson.front().rapidity() > begin_out->rapidity()
&& boson.front().rapidity() < (begin_out+1)->rapidity()
){
return EventType::FixedOrder;
}
begin_out+=2;
begin_idx+=2;
// remaining chain should be pure gluon/FKL
for(; begin_out<end_out; ++begin_out){
if(begin_out->type != pid::gluon) return EventType::FixedOrder;
++begin_idx;
}
return possible | EventType::qqxmid;
}
return EventType::FixedOrder;
}
/**
* \brief Checks for all event types
* @param ev Event
* @returns Event Type
*
*/
event_type::EventType classify(Event const & ev){
using event_type::EventType;
if(! has_2_jets(ev))
return EventType::no_2_jets;
// currently we can't handle multiple boson states in the ME. So they are
// considered "bad_final_state" even though the "classify" could work with
// them.
if(! final_state_ok(ev.outgoing()))
return EventType::bad_final_state;
// initialise variables
auto const & in = ev.incoming();
auto const & out = filter_partons(ev.outgoing());
auto indices{ev.particle_jet_indices({ev.jets()})};
assert(std::distance(begin(in), end(in)) == 2);
assert(out.size() >= 2);
assert(std::distance(begin(out), end(out)) >= 2);
assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
// we only allow one boson through final_state_ok
assert(boson.size()<=1);
// keep track of potential W couplings, at the end the sum should be 0
int remaining_Wp = 0;
int remaining_Wm = 0;
if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
if(boson.front().type>0) ++remaining_Wp;
else ++remaining_Wm;
}
int W_change = 0;
// range for current checks
auto begin_out{out.cbegin()};
auto end_out{out.crbegin()};
auto begin_idx{indices.cbegin()};
auto end_idx{indices.crbegin()};
size_t final_type = ~(EventType::no_2_jets | EventType::bad_final_state);
// check forward impact factor
final_type &= possible_impact_factors(
in.front().type,
begin_out, end_out.base(), begin_idx,
W_change, boson, true );
assert(std::distance(begin_out, end_out.base())
== std::distance(begin_idx, end_idx.base()));
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check backward impact factor
final_type &= possible_impact_factors(
in.back().type,
end_out, std::make_reverse_iterator(begin_out), end_idx,
W_change, boson, false );
assert(std::distance(begin_out, end_out.base())
== std::distance(begin_idx, end_idx.base()));
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check central emissions
final_type &= possible_central(
begin_out, end_out.base(), begin_idx, W_change, boson );
assert(std::distance(begin_out, end_out.base())
== std::distance(begin_idx, end_idx.base()));
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
// Check whether the right number of Ws are present
if( remaining_Wp != 0 || remaining_Wm != 0 ) return EventType::FixedOrder;
// result has to be unique
if( (final_type & (final_type-1)) != 0) return EventType::FixedOrder;
return static_cast<EventType>(final_type);
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
const fastjet::PseudoJet momentum{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
};
if(is_parton(id))
return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
return Particle{ id, std::move(momentum), {} };
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace anonymous
Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
parameters.central = EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
};
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent const & ev,
fastjet::JetDefinition const & jet_def, double const min_jet_pt
):
Event( Event::EventData{
ev.incoming, ev.outgoing, ev.decays,
Parameters<EventParameters>{ev.central, ev.variations}
}.cluster(jet_def, min_jet_pt) )
{}
//! @TODO remove in HEJ 2.2.0
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
Event::EventData const evData{hepeup};
incoming = evData.incoming;
outgoing = evData.outgoing;
decays = evData.decays;
central = evData.parameters.central;
variations = evData.parameters.variations;
}
void Event::EventData::sort(){
// sort particles
std::sort(
begin(incoming), end(incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
auto old_outgoing = std::move(outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
outgoing.clear();
outgoing.reserve(old_outgoing.size());
for(size_t i: idx) {
outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
if(!decays.empty()){
auto old_decays = std::move(decays);
decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
decays.emplace(i, std::move(decay->second));
}
assert(old_decays.size() == decays.size());
}
}
namespace {
Particle reconstruct_boson(std::vector<Particle> const & leptons) {
Particle decayed_boson;
decayed_boson.p = leptons[0].p + leptons[1].p;
const int pidsum = leptons[0].type + leptons[1].type;
if(pidsum == +1) {
assert(is_antilepton(leptons[0]));
if(is_antineutrino(leptons[0])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_neutrino(leptons[1]));
// charged antilepton + neutrino means we had a W+
decayed_boson.type = pid::Wp;
}
else if(pidsum == -1) {
assert(is_antilepton(leptons[0]));
if(is_neutrino(leptons[1])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_antineutrino(leptons[0]));
// charged lepton + antineutrino means we had a W-
decayed_boson.type = pid::Wm;
}
else {
throw not_implemented{
"final state with leptons "
+ name(leptons[0].type)
+ " and "
+ name(leptons[1].type)
};
}
return decayed_boson;
}
}
void Event::EventData::reconstruct_intermediate() {
const auto begin_leptons = std::partition(
begin(outgoing), end(outgoing),
[](Particle const & p) {return !is_anylepton(p);}
);
if(begin_leptons == end(outgoing)) return;
assert(is_anylepton(*begin_leptons));
std::vector<Particle> leptons(begin_leptons, end(outgoing));
outgoing.erase(begin_leptons, end(outgoing));
if(leptons.size() != 2) {
throw not_implemented{"Final states with one or more than two leptons"};
}
std::sort(
begin(leptons), end(leptons),
[](Particle const & p0, Particle const & p1) {
return p0.type < p1.type;
}
);
outgoing.emplace_back(reconstruct_boson(leptons));
decays.emplace(outgoing.size()-1, std::move(leptons));
}
Event Event::EventData::cluster(
fastjet::JetDefinition const & jet_def, double const min_jet_pt
){
sort();
Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
std::move(parameters),
jet_def, min_jet_pt
};
assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
rapidity_less{}));
ev.type_ = classify(ev);
return ev;
}
Event::Event(
std::array<Particle, 2> && incoming,
std::vector<Particle> && outgoing,
std::unordered_map<size_t, std::vector<Particle>> && decays,
Parameters<EventParameters> && parameters,
fastjet::JetDefinition const & jet_def,
double const min_jet_pt
): incoming_{std::move(incoming)},
outgoing_{std::move(outgoing)},
decays_{std::move(decays)},
parameters_{std::move(parameters)},
cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
min_jet_pt_{min_jet_pt}
{
jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
}
namespace {
void connect_incoming(Particle & in, int & colour, int & anti_colour){
in.colour = std::make_pair(anti_colour, colour);
// gluon
if(in.type == pid::gluon)
return;
if(in.type > 0){
// quark
assert(is_quark(in));
in.colour->second = 0;
colour*=-1;
return;
}
// anti-quark
assert(is_antiquark(in));
in.colour->first = 0;
anti_colour*=-1;
return;
}
}
bool Event::generate_colours(RNG & ran){
// generate only for HEJ events
if(!event_type::is_HEJ(type()))
return false;
assert(std::is_sorted(
begin(outgoing()), end(outgoing()), rapidity_less{}));
assert(incoming()[0].pz() < incoming()[1].pz());
// positive (anti-)colour -> can connect
// negative (anti-)colour -> not available/used up by (anti-)quark
int colour = COLOUR_OFFSET;
int anti_colour = colour+1;
// initialise first
connect_incoming(incoming_[0], colour, anti_colour);
for(auto & part: outgoing_){
assert(colour>0 || anti_colour>0);
if(part.type == ParticleID::gluon){
// gluon
if(colour>0 && anti_colour>0){
// on g line => connect to colour OR anti-colour (random)
if(ran.flat() < 0.5){
part.colour = std::make_pair(colour+2,colour);
colour+=2;
} else {
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(colour > 0){
// on q line => connect to available colour
part.colour = std::make_pair(colour+2, colour);
colour+=2;
} else {
assert(colour<0 && anti_colour>0);
// on qx line => connect to available anti-colour
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark(part)) {
// quark
assert(anti_colour>0);
if(colour>0){
// on g line => connect and remove anti-colour
part.colour = std::make_pair(anti_colour, 0);
anti_colour+=2;
anti_colour*=-1;
} else {
// on qx line => new colour
colour*=-1;
part.colour = std::make_pair(colour, 0);
}
} else if(is_antiquark(part)) {
// anti-quark
assert(colour>0);
if(anti_colour>0){
// on g line => connect and remove colour
part.colour = std::make_pair(0, colour);
colour+=2;
colour*=-1;
} else {
// on q line => new anti-colour
anti_colour*=-1;
part.colour = std::make_pair(0, anti_colour);
}
}
// else not a parton
}
// Connect last
connect_incoming(incoming_[1], anti_colour, colour);
return true;
} // generate_colours
+ Event::ConstPartonIterator Event::begin_partons() const {
+ return cbegin_partons();
+ };
+ Event::ConstPartonIterator Event::cbegin_partons() const {
+ return boost::make_filter_iterator(
+ static_cast<bool (*)(Particle const &)>(is_parton),
+ cbegin(outgoing()),
+ cend(outgoing())
+ );
+ };
+
+ Event::ConstPartonIterator Event::end_partons() const {
+ return cend_partons();
+ };
+ Event::ConstPartonIterator Event::cend_partons() const {
+ return boost::make_filter_iterator(
+ static_cast<bool (*)(Particle const &)>(is_parton),
+ cend(outgoing()),
+ cend(outgoing())
+ );
+ };
+
namespace {
void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
const std::streamsize orig_prec = os.precision();
os <<std::scientific<<std::setprecision(6) << "["
<<std::setw(13)<<std::right<< part.px() << ", "
<<std::setw(13)<<std::right<< part.py() << ", "
<<std::setw(13)<<std::right<< part.pz() << ", "
<<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
os.precision(orig_prec);
}
}
std::ostream& operator<<(std::ostream & os, Event const & ev){
const std::streamsize orig_prec = os.precision();
os <<std::setprecision(4)<<std::fixed;
std::cout << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
std::cout << "Incoming particles:\n";
for(auto const & in: ev.incoming()){
std::cout <<std::setw(3)<< in.type << ": ";
print_momentum(os, in.p);
std::cout << std::endl;
}
std::cout << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
for(auto const & out: ev.outgoing()){
std::cout <<std::setw(3)<< out.type << ": ";
print_momentum(os, out.p);
std::cout << " => rapidity="
<<std::setw(7)<<std::right<< out.rapidity() << std::endl;
}
std::cout << "\nForming Jets: " << ev.jets().size() << "\n";
for(auto const & jet: ev.jets()){
print_momentum(os, jet);
std::cout << " => rapidity="
<<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
}
os << std::defaultfloat;
os.precision(orig_prec);
return os;
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type(); // event type
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
result.IDUP.reserve(num_particles); // PID
result.ISTUP.reserve(num_particles); // status (in, out, decay)
result.PUP.reserve(num_particles); // momentum
result.MOTHUP.reserve(num_particles); // index mother particle
result.ICOLUP.reserve(num_particles); // colour
// incoming
for(Particle const & in: event.incoming()){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
assert(in.colour);
result.ICOLUP.emplace_back(*in.colour);
}
// outgoing
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
if(out.colour)
result.ICOLUP.emplace_back(*out.colour);
else{
assert(is_AWZH_boson(out));
result.ICOLUP.emplace_back(std::make_pair(0,0));
}
}
// decays
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 637c3a0..629ab4a 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,1743 +1,1747 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/MatrixElement.hh"
#include <algorithm>
#include <assert.h>
#include <limits>
#include <math.h>
#include <stddef.h>
#include <unordered_map>
#include <utility>
#include "CLHEP/Vector/LorentzVector.h"
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/currents.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
#include "HEJ/Event.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/Particle.hh"
#include "HEJ/utility.hh"
namespace HEJ{
double MatrixElement::omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j
) const {
const double lambda = param_.regulator_lambda;
const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
if(! param_.log_correction) return result;
// use alpha_s(sqrt(q_j*lambda)), evolved to mur
return (
1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
)*result;
}
Weights MatrixElement::operator()(
Event const & event
) const {
return tree(event)*virtual_corrections(event);
}
Weights MatrixElement::tree(
Event const & event
) const {
return tree_param(event)*tree_kin(event);
}
Weights MatrixElement::tree_param(
Event const & event
) const {
if(! is_HEJ(event.type())) {
return Weights{0., std::vector<double>(event.variations().size(), 0.)};
}
Weights result;
// only compute once for each renormalisation scale
std::unordered_map<double, double> known;
result.central = tree_param(event, event.central().mur);
known.emplace(event.central().mur, result.central);
for(auto const & var: event.variations()) {
const auto ME_it = known.find(var.mur);
if(ME_it == end(known)) {
const double wt = tree_param(event, var.mur);
result.variations.emplace_back(wt);
known.emplace(var.mur, wt);
}
else {
result.variations.emplace_back(ME_it->second);
}
}
return result;
}
Weights MatrixElement::virtual_corrections(
Event const & event
) const {
if(! is_HEJ(event.type())) {
return Weights{0., std::vector<double>(event.variations().size(), 0.)};
}
Weights result;
// only compute once for each renormalisation scale
std::unordered_map<double, double> known;
result.central = virtual_corrections(event, event.central().mur);
known.emplace(event.central().mur, result.central);
for(auto const & var: event.variations()) {
const auto ME_it = known.find(var.mur);
if(ME_it == end(known)) {
const double wt = virtual_corrections(event, var.mur);
result.variations.emplace_back(wt);
known.emplace(var.mur, wt);
}
else {
result.variations.emplace_back(ME_it->second);
}
}
return result;
}
double MatrixElement::virtual_corrections_W(
Event const & event,
double mur,
Particle const & WBoson
) const{
auto const & in = event.incoming();
const auto partons = filter_partons(event.outgoing());
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
assert(partons.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - partons[0].p;
size_t first_idx = 0;
size_t last_idx = partons.size() - 1;
bool wc = true;
bool wqq = false;
// With extremal qqx or unordered gluon outside the extremal
// partons then it is not part of the FKL ladder and does not
// contribute to the virtual corrections. W emitted from the
// most backward leg must be taken into account in t-channel
if (event.type() == event_type::FKL) {
if (in[0].type != partons[0].type ){
q -= WBoson.p;
wc = false;
}
}
else if (event.type() == event_type::unob) {
q -= partons[1].p;
++first_idx;
if (in[0].type != partons[1].type ){
q -= WBoson.p;
wc = false;
}
}
else if (event.type() == event_type::qqxexb) {
q -= partons[1].p;
++first_idx;
if (abs(partons[0].type) != abs(partons[1].type)){
q -= WBoson.p;
wc = false;
}
}
if(event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
size_t first_idx_qqx = last_idx;
size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(partons) + 1, end(partons) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon); }
);
if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
if(abs(backquark->type) != abs((backquark+1)->type)) {
wqq=true;
wc=false;
}
last_idx = std::distance(begin(partons), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -=partons[j+1].p;
} // End Loop one
if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
if (wqq) q -= WBoson.p;
for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -= partons[j+1].p;
}
if (wc) q -= WBoson.p;
assert(
nearby(q, -1*pb, norm)
|| is_AWZH_boson(partons.back().type)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
return exp(exponent);
}
double MatrixElement::virtual_corrections(
Event const & event,
double mur
) const{
auto const & in = event.incoming();
auto const & out = event.outgoing();
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
const auto AWZH_boson = std::find_if(
begin(out), end(out),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){
return virtual_corrections_W(event, mur, *AWZH_boson);
}
assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
assert(out.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - out[0].p;
size_t first_idx = 0;
size_t last_idx = out.size() - 1;
// if there is a Higgs boson, extremal qqx or unordered gluon
// outside the extremal partons then it is not part of the FKL
// ladder and does not contribute to the virtual corrections
if((out.front().type == pid::Higgs)
|| event.type() == event_type::unob
|| event.type() == event_type::qqxexb){
q -= out[1].p;
++first_idx;
}
if((out.back().type == pid::Higgs)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
size_t first_idx_qqx = last_idx;
size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(out) + 1, end(out) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
);
if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0;
last_idx = std::distance(begin(out), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
assert(
nearby(q, -1*pb, norm)
|| out.back().type == pid::Higgs
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
return exp(exponent);
}
} // namespace HEJ
namespace {
//! Lipatov vertex for partons emitted into extremal jets
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
- p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction for partons emitted into extremal jets
double C2Lipatovots(
CLHEP::HepLorentzVector qav,
CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector p1,
CLHEP::HepLorentzVector p2,
double lambda
) {
double kperp=(qav-qbv).perp();
if (kperp>lambda)
return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
return Cls-4./(kperp*kperp);
}
}
//! Lipatov vertex
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,
CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
- qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
+ ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
+ pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
- pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
- pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction
double C2Lipatovots(
CLHEP::HepLorentzVector qav,
CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector pa,
CLHEP::HepLorentzVector pb,
CLHEP::HepLorentzVector p1,
CLHEP::HepLorentzVector p2,
double lambda
) {
double kperp=(qav-qbv).perp();
if (kperp>lambda)
return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
double temp=Cls-4./(kperp*kperp);
return temp;
}
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
if (aptype==21&&bptype==21) {
return jM2gg(pn,pb,p1,pa);
} else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2qg(pn,pb,p1,pa);
else
return jM2qbarg(pn,pb,p1,pa);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return jM2qg(p1,pa,pn,pb);
else
return jM2qbarg(p1,pa,pn,pb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2qQ(pn,pb,p1,pa);
else
return jM2qQbar(pn,pb,p1,pa);
}
else {
if (aptype>0)
return jM2qQbar(p1,pa,pn,pb);
else
return jM2qbarQbar(pn,pb,p1,pa);
}
}
throw std::logic_error("unknown particle types");
}
/** Matrix element squared for tree-level current-current scattering With W+Jets
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_W_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc
){
// We know it cannot be gg incoming.
assert(!(aptype==21 && bptype==21));
if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jMWqg(pn,plbar,pl,pb,p1,pa);
else
return jMWqbarg(pn,plbar,pl,pb,p1,pa);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return jMWqg(p1,plbar,pl,pa,pn,pb);
else
return jMWqbarg(p1,plbar,pl,pa,pn,pb);
}
else { // they are both quark
if (wc==true){ // emission off b, (first argument pbout)
if (bptype>0) {
if (aptype>0)
return jMWqQ(pn,plbar,pl,pb,p1,pa);
else
return jMWqQbar(pn,plbar,pl,pb,p1,pa);
}
else {
if (aptype>0)
return jMWqbarQ(pn,plbar,pl,pb,p1,pa);
else
return jMWqbarQbar(pn,plbar,pl,pb,p1,pa);
}
}
else{ // emission off a, (first argument paout)
if (aptype > 0) {
if (bptype > 0)
return jMWqQ(p1,plbar,pl,pa,pn,pb);
else
return jMWqQbar(p1,plbar,pl,pa,pn,pb);
}
else { // a is anti-quark
if (bptype > 0)
return jMWqbarQ(p1,plbar,pl,pa,pn,pb);
else
return jMWqbarQbar(p1,plbar,pl,pa,pn,pb);
}
}
}
throw std::logic_error("unknown particle types");
}
/** Matrix element squared for backwards uno tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param pg Unordered gluon momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for unob Tree-Level Current-Current Scattering
*/
double ME_W_unob_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc
){
// we know they are not both gluons
if (bptype == 21 && aptype != 21) { // b gluon => W emission off a
if (aptype > 0)
return jM2Wunogqg(pg,p1,plbar,pl,pa,pn,pb);
else
return jM2Wunogqbarg(pg,p1,plbar,pl,pa,pn,pb);
}
else { // they are both quark
if (wc==true) {// emission off b, i.e. b is first current
if (bptype>0){
if (aptype>0)
return junobMWqQg(pn,plbar,pl,pb,p1,pa,pg);
else
return junobMWqQbarg(pn,plbar,pl,pb,p1,pa,pg);
}
else{
if (aptype>0)
return junobMWqbarQg(pn,plbar,pl,pb,p1,pa,pg);
else
return junobMWqbarQbarg(pn,plbar,pl,pb,p1,pa,pg);
}
}
else {// wc == false, emission off a, i.e. a is first current
if (aptype > 0) {
if (bptype > 0) //qq
return jM2WunogqQ(pg,p1,plbar,pl,pa,pn,pb);
else //qqbar
return jM2WunogqQbar(pg,p1,plbar,pl,pa,pn,pb);
}
else { // a is anti-quark
if (bptype > 0) //qbarq
return jM2WunogqbarQ(pg,p1,plbar,pl,pa,pn,pb);
else //qbarqbar
return jM2WunogqbarQbar(pg,p1,plbar,pl,pa,pn,pb);
}
}
}
}
/** Matrix element squared for uno forward tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param pg Unordered gluon momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for unof Tree-Level Current-Current Scattering
*/
double ME_W_unof_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc
){
// we know they are not both gluons
if (aptype==21 && bptype!=21) {//a gluon => W emission off b
if (bptype > 0)
return jM2Wunogqg(pg, pn,plbar, pl, pb, p1, pa);
else
return jM2Wunogqbarg(pg, pn,plbar, pl, pb, p1, pa);
}
else { // they are both quark
if (wc==true) {// emission off b, i.e. b is first current
if (bptype>0){
if (aptype>0)
return jM2WunogqQ(pg,pn,plbar,pl,pb,p1,pa);
else
return jM2WunogqQbar(pg,pn,plbar,pl,pb,p1,pa);
}
else{
if (aptype>0)
return jM2WunogqbarQ(pg,pn,plbar,pl,pb,p1,pa);
else
return jM2WunogqbarQbar(pg,pn,plbar,pl,pb,p1,pa);
}
}
else {// wc == false, emission off a, i.e. a is first current
if (aptype > 0) {
if (bptype > 0) //qq
return junofMWgqQ(pg,pn,pb,p1,plbar,pl,pa);
else //qqbar
return junofMWgqQbar(pg,pn,pb,p1,plbar,pl,pa);
}
else { // a is anti-quark
if (bptype > 0) //qbarq
return junofMWgqbarQ(pg,pn,pb,p1,plbar,pl,pa);
else //qbarqbar
return junofMWgqbarQbar(pg,pn,pb,p1,plbar,pl,pa);
}
}
}
}
/** \brief Matrix element squared for backward qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state q Momentum
* @param pqbar Final state qbar Momentum
* @param pn Final state n Momentum
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for qqxb Tree-Level Current-Current Scattering
*/
double ME_W_qqxb_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc
){
// CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
bool swapQuarkAntiquark=false;
double CFbackward;
if (pqbar.rapidity() > pq.rapidity()){
swapQuarkAntiquark=true;
CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pq.minus())+(pq.minus())/pa.minus())+1./3.)*3./4.;
}
else{
CFbackward = (0.5*(3.-1./3.)*(pa.minus()/(pqbar.minus())+(pqbar.minus())/pa.minus())+1./3.)*3./4.;
}
// With qqbar we could have 2 incoming gluons and W Emission
if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
// This will be a wqqx emission as there is no other possible W Emission Site.
if (swapQuarkAntiquark){
return jM2Wggtoqqbarg(pa, pqbar, plbar, pl, pq, pn,pb)*CFbackward;}
else {
return jM2Wggtoqbarqg(pa, pq, plbar, pl, pqbar, pn,pb)*CFbackward;}
}
else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx
if (wc!=1){ // W Emitted from backwards qqx
if (swapQuarkAntiquark){
return jM2WgQtoqqbarQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;}
else{
return jM2WgQtoqbarqQ(pa, pq, plbar, pl, pqbar, pn, pb)*CFbackward;}
}
else { // W Must be emitted from forwards leg.
if(bptype > 0){
if (swapQuarkAntiquark){
return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, false)*CFbackward;}
else{
return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, false)*CFbackward;}
} else {
if (swapQuarkAntiquark){
return jM2WgqtoQQqW(pb, pa, pn, pqbar, pq, plbar, pl, true)*CFbackward;}
else{
return jM2WgqtoQQqW(pb, pa, pn, pq, pqbar, plbar, pl, true)*CFbackward;}
}
}
}
else{
throw std::logic_error("Incompatible incoming particle types with qqxb");
}
}
/* \brief Matrix element squared for forward qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state q Momentum
* @param pqbar Final state qbar Momentum
* @param p1 Final state 1 Momentum
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for qqxf Tree-Level Current-Current Scattering
*/
double ME_W_qqxf_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc
){
// CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
bool swapQuarkAntiquark=false;
double CFforward;
if (pqbar.rapidity() < pq.rapidity()){
swapQuarkAntiquark=true;
CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pq.plus())+(pq.plus())/pb.plus())+1./3.)*3./4.;
}
else{
CFforward = (0.5*(3.-1./3.)*(pb.plus()/(pqbar.plus())+(pqbar.plus())/pb.plus())+1./3.)*3./4.;
}
// With qqbar we could have 2 incoming gluons and W Emission
if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
// This will be a wqqx emission as there is no other possible W Emission Site.
if (swapQuarkAntiquark){
return jM2Wggtoqqbarg(pb, pqbar, plbar, pl, pq, p1,pa)*CFforward;}
else {
return jM2Wggtoqbarqg(pb, pq, plbar, pl, pqbar, p1,pa)*CFforward;}
}
else if (bptype==21&&aptype!=21) {// b gluon => W emission off a or qqx
if (wc==1){ // W Emitted from forwards qqx
if (swapQuarkAntiquark){
return jM2WgQtoqbarqQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;}
else {
return jM2WgQtoqqbarQ(pb, pq, plbar,pl, pqbar, p1, pa)*CFforward;}
}
// W Must be emitted from backwards leg.
if (aptype > 0){
if (swapQuarkAntiquark){
return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, false)*CFforward;}
else{
return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, false)*CFforward;}
} else
{
if (swapQuarkAntiquark){
return jM2WgqtoQQqW(pa,pb, p1, pqbar, pq, plbar, pl, true)*CFforward;}
else{
return jM2WgqtoQQqW(pa,pb, p1, pq, pqbar, plbar, pl, true)*CFforward;}
}
}
else{
throw std::logic_error("Incompatible incoming particle types with qqxf");
}
}
/* \brief Matrix element squared for central qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param nabove Number of gluons emitted before central qqxpair
* @param nbelow Number of gluons emitted after central qqxpair
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum\
* @param pq Final state qbar Momentum
* @param pqbar Final state q Momentum
* @param partons Vector of all outgoing partons
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param wqq Boolean. True siginfies W boson is emitted from Central qqx
* @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
* @returns ME Squared for qqxmid Tree-Level Current-Current Scattering
*/
double ME_W_qqxmid_current(
int aptype, int bptype,
int nabove, int nbelow,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
std::vector<HLV> partons,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wqq, bool const wc
){
// CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
bool swapQuarkAntiquark=false;
if (pqbar.rapidity() < pq.rapidity()){
swapQuarkAntiquark=true;
}
double CFforward = (0.5*(3.-1./3.)*( pb.plus()/(partons[partons.size()-1].plus())
+ (partons[partons.size()-1].plus())/pb.plus() )+1./3.)*3./4.;
double CFbackward = (0.5*(3.-1./3.)*( pa.minus()/(partons[0].minus())
+ (partons[0].minus())/pa.minus() )+1./3.)*3./4.;
double wt=1.;
if (aptype==21) wt*=CFbackward;
if (bptype==21) wt*=CFforward;
if (aptype <=0 && bptype <=0){ // Both External AntiQuark
if (wqq==1){//emission from central qqbar
return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons,true,true, swapQuarkAntiquark, nabove);
}
else if (wc==1){//emission from b leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, true);
}
else { // emission from a leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true,true, swapQuarkAntiquark, nabove, nbelow, false);
}
} // end both antiquark
else if (aptype<=0){ // a is antiquark
if (wqq==1){//emission from central qqbar
return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove);
}
else if (wc==1){//emission from b leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons,false,true, swapQuarkAntiquark, nabove, nbelow, true);
}
else { // emission from a leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, true, swapQuarkAntiquark, nabove, nbelow, false);
}
} // end a is antiquark
else if (bptype<=0){ // b is antiquark
if (wqq==1){//emission from central qqbar
return wt*jM2WqqtoqQQq(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove);
}
else if (wc==1){//emission from b leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, true);
}
else { // emission from a leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, true, false, swapQuarkAntiquark, nabove, nbelow, false);
}
} //end b is antiquark
else{ //Both Quark or gluon
if (wqq==1){//emission from central qqbar
return wt*jM2WqqtoqQQq(pa, pb, pl, plbar, partons, false, false, swapQuarkAntiquark, nabove);}
else if (wc==1){//emission from b leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, true);
}
else { // emission from a leg
return wt*jM2WqqtoqQQqW(pa, pb, pl,plbar, partons, false, false, swapQuarkAntiquark, nabove, nbelow, false);
}
}
}
/** \brief Matrix element squared for tree-level current-current scattering with Higgs
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared for Tree-Level Current-Current Scattering with Higgs
*/
double ME_Higgs_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype==21) // gg initial state
return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
}
else if (bptype==21&&aptype!=21) {
if (aptype > 0)
return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
else {
if (aptype>0)
return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered forward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param punof Unordered Particle Momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered forward emission
*/
double ME_Higgs_current_unof(
int aptype, int bptype,
CLHEP::HepLorentzVector const & punof,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (aptype>0)
return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered backward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param punob Unordered back Particle Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered backward emission
*/
double ME_Higgs_current_unob(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & punob,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (bptype==21&&aptype!=21) {
if (aptype > 0)
return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (aptype>0) {
if (bptype>0)
return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (bptype>0)
return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
}
void validate(HEJ::MatrixElementConfig const & config) {
#ifndef HEJ_BUILD_WITH_QCDLOOP
if(!config.Higgs_coupling.use_impact_factors) {
throw std::invalid_argument{
"Invalid Higgs coupling settings.\n"
"HEJ without QCDloop support can only use impact factors.\n"
"Set use_impact_factors to true or recompile HEJ.\n"
};
}
#endif
if(config.Higgs_coupling.use_impact_factors
&& config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
} // namespace anonymous
namespace HEJ{
MatrixElement::MatrixElement(
std::function<double (double)> alpha_s,
MatrixElementConfig conf
):
alpha_s_{std::move(alpha_s)},
param_{std::move(conf)}
{
validate(param_);
}
double MatrixElement::tree_kin(
Event const & ev
) const {
if(! is_HEJ(ev.type())) return 0.;
auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing()))
return tree_kin_jets(ev);
switch(AWZH_boson->type){
case pid::Higgs:
return tree_kin_Higgs(ev);
case pid::Wp:
case pid::Wm:
return tree_kin_W(ev);
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
namespace{
constexpr int extremal_jet_idx = 1;
constexpr int no_extremal_jet_idx = 0;
bool treat_as_extremal(Particle const & parton){
return parton.p.user_index() == extremal_jet_idx;
}
template<class InputIterator>
double FKL_ladder_weight(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
double lambda
){
double wt = 1;
auto qi = q0;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1 = qi - g;
if(treat_as_extremal(*gluon_it)){
wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
} else{
wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
}
qi = qip1;
}
return wt;
}
} // namespace anonymous
std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
Event const & ev
) const{
auto out_partons = filter_partons(ev.outgoing());
if(out_partons.size() == ev.jets().size()){
// no additional emissions in extremal jets, don't need to tag anything
for(auto & parton: out_partons){
parton.p.set_user_index(no_extremal_jet_idx);
}
return out_partons;
}
// TODO: avoid reclustering
fastjet::ClusterSequence cs(to_PseudoJet(out_partons), ev.jet_def());
const auto jets = sorted_by_rapidity(cs.inclusive_jets(ev.min_jet_pt()));
assert(jets.size() >= 2);
auto most_backward = begin(jets);
auto most_forward = end(jets) - 1;
// skip jets caused by unordered emission or qqx
if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
assert(jets.size() >= 3);
++most_backward;
}
else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
assert(jets.size() >= 3);
--most_forward;
}
const auto extremal_jet_indices = cs.particle_jet_indices(
{*most_backward, *most_forward}
);
assert(extremal_jet_indices.size() == out_partons.size());
for(size_t i = 0; i < out_partons.size(); ++i){
assert(HEJ::is_parton(out_partons[i]));
const int idx = (extremal_jet_indices[i]>=0)?
extremal_jet_idx:
no_extremal_jet_idx;
out_partons[i].p.set_user_index(idx);
}
return out_partons;
}
double MatrixElement::tree_kin_jets(
Event const & ev
) const {
auto const & incoming = ev.incoming();
const auto partons = tag_extremal_jet_partons(ev);
if(is_uno(ev.type())){
throw not_implemented("unordered emission not implemented for pure jets");
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
return ME_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa
)/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
pa - p1, pa, pb, p1, pn,
param_.regulator_lambda
);
}
namespace{
double tree_kin_W_FKL(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
bool wc = true;
auto q0 = pa - p1;
if (aptype!=partons[0].type) { //leg a emits w
wc = false;
q0 -=pl + plbar;
}
const double current_factor = ME_W_current(
aptype, bptype, pn, pb,
p1, pa, plbar, pl, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*ladder_factor;
}
double tree_kin_W_unob(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
auto pg = to_HepLorentzVector(partons[0]);
auto p1 = to_HepLorentzVector(partons[1]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto begin_ladder = begin(partons) + 2;
auto end_ladder = end(partons) - 1;
bool wc = true;
auto q0 = pa - p1 -pg;
if (aptype!=partons[1].type) { //leg a emits w
wc = false;
q0 -=pl + plbar;
}
const double current_factor = ME_W_unob_current(
aptype, bptype, pn, pb,
p1, pa, pg, plbar, pl, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_unof(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 2]);
auto pg = to_HepLorentzVector(partons[partons.size() - 1]);
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 2;
bool wc = true;
auto q0 = pa - p1;
if (aptype!=partons[0].type) { //leg a emits w
wc = false;
q0 -=pl + plbar;
}
const double current_factor = ME_W_unof_current(
aptype, bptype, pn, pb,
p1, pa, pg, plbar, pl, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_qqxb(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
HLV pq,pqbar;
if(is_quark(partons[0])){
pq = to_HepLorentzVector(partons[0]);
pqbar = to_HepLorentzVector(partons[1]);
}
else{
pq = to_HepLorentzVector(partons[1]);
pqbar = to_HepLorentzVector(partons[0]);
}
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto begin_ladder = begin(partons) + 2;
auto end_ladder = end(partons) - 1;
bool wc = true;
auto q0 = pa - pq - pqbar;
if (partons[1].type!=partons[0].type) { //leg a emits w
wc = false;
q0 -=pl + plbar;
}
const double current_factor = ME_W_qqxb_current(
aptype, bptype, pa, pb,
pq, pqbar, pn, plbar, pl, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_qqxf(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
HLV pq,pqbar;
if(is_quark(partons[partons.size() - 1])){
pq = to_HepLorentzVector(partons[partons.size() - 1]);
pqbar = to_HepLorentzVector(partons[partons.size() - 2]);
}
else{
pq = to_HepLorentzVector(partons[partons.size() - 2]);
pqbar = to_HepLorentzVector(partons[partons.size() - 1]);
}
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 2;
bool wc = true;
auto q0 = pa - p1;
if (aptype!=partons[0].type) { //leg a emits w
wc = false;
q0 -=pl + plbar;
}
const double current_factor = ME_W_qqxf_current(
aptype, bptype, pa, pb,
pq, pqbar, p1, plbar, pl, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_qqxmid(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda
) {
HLV pq,pqbar;
const auto backmidquark = std::find_if(
begin(partons)+1, end(partons)-1,
[](Particle const & s){ return s.type != pid::gluon; }
);
assert(backmidquark!=end(partons)-1);
if (is_quark(backmidquark->type)){
pq = to_HepLorentzVector(*backmidquark);
pqbar = to_HepLorentzVector(*(backmidquark+1));
}
else {
pqbar = to_HepLorentzVector(*backmidquark);
pq = to_HepLorentzVector(*(backmidquark+1));
}
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto q0 = pa - p1;
// t-channel momentum after qqx
auto qqxt = q0;
bool wc, wqq;
if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit
wqq=false;
if (aptype==partons[0].type) {
wc = true;
}
else{
wc = false;
q0-=pl+plbar;
}
}
else{
wqq = true;
wc = false;
qqxt-=pl+plbar;
}
auto begin_ladder = begin(partons) + 1;
auto end_ladder_1 = (backmidquark);
auto begin_ladder_2 = (backmidquark+2);
auto end_ladder = end(partons) - 1;
for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
qqxt -= to_HepLorentzVector(*parton_it);
}
int nabove = std::distance(begin_ladder, backmidquark);
int nbelow = std::distance(begin_ladder_2, end_ladder);
std::vector<HLV> partonsHLV;
partonsHLV.reserve(partons.size());
for (size_t i = 0; i != partons.size(); ++i) {
partonsHLV.push_back(to_HepLorentzVector(partons[i]));
}
const double current_factor = ME_W_qqxmid_current(
aptype, bptype, nabove, nbelow, pa, pb,
pq, pqbar, partonsHLV, plbar, pl, wqq, wc
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder_1,
q0, pa, pb, p1, pn,
lambda
)*FKL_ladder_weight(
begin_ladder_2, end_ladder,
qqxt, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
} // namespace anonymous
double MatrixElement::tree_kin_W(Event const & ev) const {
using namespace event_type;
auto const & incoming(ev.incoming());
auto const & decays(ev.decays());
HLV plbar, pl;
for (auto& x: decays) {
if (x.second.at(0).type < 0){
plbar = to_HepLorentzVector(x.second.at(0));
pl = to_HepLorentzVector(x.second.at(1));
}
else{
pl = to_HepLorentzVector(x.second.at(0));
plbar = to_HepLorentzVector(x.second.at(1));
}
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto partons = tag_extremal_jet_partons(ev);
if(ev.type() == unordered_backward){
return tree_kin_W_unob(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
if(ev.type() == unordered_forward){
return tree_kin_W_unof(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
if(ev.type() == extremal_qqxb){
return tree_kin_W_qqxb(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
if(ev.type() == extremal_qqxf){
return tree_kin_W_qqxf(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
if(ev.type() == central_qqx){
return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda);
}
double MatrixElement::tree_kin_Higgs(
Event const & ev
) const {
if(is_uno(ev.type())){
return tree_kin_Higgs_between(ev);
}
if(ev.outgoing().front().type == pid::Higgs){
return tree_kin_Higgs_first(ev);
}
if(ev.outgoing().back().type == pid::Higgs){
return tree_kin_Higgs_last(ev);
}
return tree_kin_Higgs_between(ev);
}
namespace {
// Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
#ifdef HEJ_BUILD_WITH_QCDLOOP
// TODO: code duplication with currents.cc
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
}
double K_g(
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
double K(
ParticleID type,
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(type == ParticleID::gluon) return K_g(pout, pin);
return C_F;
}
#endif
// Colour factor in strict MRK limit
double K_MRK(ParticleID type) {
return (type == ParticleID::gluon)?C_A:C_F;
}
}
double MatrixElement::MH2_forwardH(
CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
ParticleID type2,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector pH,
double t1, double t2
) const{
ignore(p2out, p2in);
const double shat = p1in.invariantMass2(p2in);
// gluon case
#ifdef HEJ_BUILD_WITH_QCDLOOP
if(!param_.Higgs_coupling.use_impact_factors){
return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH(
p1out, p1in, p2out, p2in, pH,
param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
param_.Higgs_coupling.mb
)/(4*(N_C*N_C - 1));
}
#endif
return K_MRK(type2)/C_A*9./2.*shat*shat*(
C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
)/(t1*t2);
}
double MatrixElement::tree_kin_Higgs_first(
Event const & ev
) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.front().type == pid::Higgs);
if(outgoing[1].type != pid::gluon) {
assert(incoming.front().type == outgoing[1].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.front());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
const auto q0 = pa - p1 - pH;
const double t1 = q0.m2();
const double t2 = (pn - pb).m2();
return MH2_forwardH(
p1, pa, incoming[1].type, pn, pb, pH,
t1, t2
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
double MatrixElement::tree_kin_Higgs_last(
Event const & ev
) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.back().type == pid::Higgs);
if(outgoing[outgoing.size()-2].type != pid::gluon) {
assert(incoming.back().type == outgoing[outgoing.size()-2].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.back());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
const double t1 = q0.m2();
const double t2 = (pn + pH - pb).m2();
return MH2_forwardH(
pn, pb, incoming[0].type, p1, pa, pH,
t2, t1
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
double MatrixElement::tree_kin_Higgs_between(
Event const & ev
) const {
using namespace event_type;
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
const auto the_Higgs = std::find_if(
begin(outgoing), end(outgoing),
[](Particle const & s){ return s.type == pid::Higgs; }
);
assert(the_Higgs != end(outgoing));
const auto pH = to_HepLorentzVector(*the_Higgs);
const auto partons = tag_extremal_jet_partons(ev);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(
partons[(ev.type() == unob)?1:0]
);
auto pn = to_HepLorentzVector(
partons[partons.size() - ((ev.type() == unof)?2:1)]
);
auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
assert(
(first_after_Higgs == end(partons) && (
(ev.type() == unob)
|| partons.back().type != pid::gluon
))
|| first_after_Higgs->rapidity() >= the_Higgs->rapidity()
);
assert(
(first_after_Higgs == begin(partons) && (
(ev.type() == unof)
|| partons.front().type != pid::gluon
))
|| (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
);
// always treat the Higgs as if it were in between the extremal FKL partons
if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
else if(first_after_Higgs == end(partons)) --first_after_Higgs;
// t-channel momentum before Higgs
auto qH = pa;
for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
qH -= to_HepLorentzVector(*parton_it);
}
auto q0 = pa - p1;
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
double current_factor;
if(ev.type() == unob){
current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno"
incoming[0].type, incoming[1].type,
pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
const auto p_unob = to_HepLorentzVector(partons.front());
q0 -= p_unob;
p1 += p_unob;
++begin_ladder;
}
else if(ev.type() == unof){
current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno"
incoming[0].type, incoming[1].type,
to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
pn += to_HepLorentzVector(partons.back());
--end_ladder;
}
else{
current_factor = ME_Higgs_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
}
const double ladder_factor = FKL_ladder_weight(
begin_ladder, first_after_Higgs,
q0, pa, pb, p1, pn,
param_.regulator_lambda
)*FKL_ladder_weight(
first_after_Higgs, end_ladder,
qH - pH, pa, pb, p1, pn,
param_.regulator_lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
namespace {
double get_AWZH_coupling(Event const & ev, double alpha_s) {
const auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](auto const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing())) return 1.;
switch(AWZH_boson->type){
case pid::Higgs:
return alpha_s*alpha_s;
case pid::Wp:
case pid::Wm:
return gw*gw*gw*gw/4.;
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
}
double MatrixElement::tree_param(
Event const & ev,
double mur
) const{
assert(is_HEJ(ev.type()));
- const auto partons = filter_partons(ev.outgoing());
+ const auto begin_partons = ev.begin_partons();
+ const auto end_partons = ev.end_partons();
+ const auto num_partons = std::distance(begin_partons, end_partons);
const double alpha_s = alpha_s_(mur);
const double gs2 = 4.*M_PI*alpha_s;
- double res = std::pow(gs2, partons.size());
+ double res = std::pow(gs2, num_partons);
if(param_.log_correction){
// use alpha_s(q_perp), evolved to mur
- assert(partons.size() >= 2);
- for(size_t i = 1; i < partons.size()-1; ++i){
- res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/partons[i].p.perp());
+ assert(num_partons >= 2);
+ const auto first_emission = std::next(begin_partons);
+ const auto last_emission = std::prev(end_partons);
+ for(auto parton = first_emission; parton != last_emission; ++parton){
+ res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp());
}
}
return get_AWZH_coupling(ev, alpha_s)*res;
}
} // namespace HEJ
diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index 7d28d21..20a004d 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,809 +1,810 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/PhaseSpacePoint.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <random>
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/Event.hh"
#include "HEJ/JetSplitter.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/resummation_jet.hh"
#include "HEJ/utility.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
namespace HEJ{
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int qqxmid1_idx = -9;
constexpr int qqxmid2_idx = -8;
constexpr int qqxb_idx = -7;
constexpr int qqxf_idx = -6;
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace {
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in arXiv:1805.04446 (see Fig. 2)
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
return sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
const int ng = dist(ran_.get());
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
assert(idx >= 0);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(new_idx >= 0);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
namespace {
- //! returns index of most backward q-qbar jet
- int getBackQuarkJet(Event const & ev){
- std::vector<Particle> const born_parton{filter_partons(ev.outgoing())};
+ auto get_first_anyquark_emission(Event const & ev) {
// find born quarks (ignore extremal partons)
auto const firstquark = std::find_if(
- born_parton.cbegin()+1, born_parton.cend()-2,
- [](Particle const & s){ return (is_anyquark(s)); }
- );
+ std::next(ev.begin_partons()), std::prev(ev.end_partons(), 2),
+ [](Particle const & s){ return (is_anyquark(s)); }
+ );
// assert that it is a q-q_bar pair.
- assert(firstquark != born_parton.cend()-2);
- assert( ( is_quark(*firstquark) && is_antiquark(*(firstquark+1)) )
- || ( is_antiquark(*firstquark) && is_quark(*(firstquark+1)) ));
+ assert(std::distance(firstquark, ev.end_partons()) != 2);
+ assert(
+ ( is_quark(*firstquark) && is_antiquark(*std::next(firstquark)) )
+ || ( is_antiquark(*firstquark) && is_quark(*std::next(firstquark)) )
+ );
+ return firstquark;
+ }
+ //! returns index of most backward q-qbar jet
+ template<class Iterator>
+ int get_back_quark_jet(Event const & ev, Iterator firstquark){
// find jets at FO corresponding to the quarks
// technically this isn't necessary for LO
std::vector<int> const born_indices{ ev.particle_jet_indices(ev.jets()) };
- int const firstjet_idx = born_indices[
- std::distance(born_parton.cbegin(), firstquark) ];
+ const auto firstquark_idx = std::distance(ev.begin_partons(), firstquark);
+ int const firstjet_idx = born_indices[firstquark_idx];
assert(firstjet_idx>0);
- assert( born_indices[ std::distance(born_parton.cbegin(), firstquark+1) ]
- == firstjet_idx+1 );
+ assert( born_indices[firstquark_idx+1] == firstjet_idx+1 );
return firstjet_idx;
}
+ //! returns index of most backward q-qbar jet
+ int getBackQuarkJet(Event const & ev){
+ const auto firstquark = get_first_anyquark_emission(ev);
+ return get_back_quark_jet(ev, firstquark);
+ }
+
template<class ConstIterator, class Iterator>
void label_extremal_qqx(
ConstIterator born_begin, ConstIterator born_end,
Iterator first_out
){
// find born quarks
const auto firstquark = std::find_if(
born_begin, born_end-1,
[](Particle const & s){ return (is_anyquark(s)); }
);
assert(firstquark != born_end-1);
const auto secondquark = std::find_if(
firstquark+1, born_end,
[](Particle const & s){ return (is_anyquark(s)); }
);
assert(secondquark != born_end);
assert( ( is_quark(*firstquark) && is_antiquark(*secondquark) )
|| ( is_antiquark(*firstquark) && is_quark(*secondquark) ));
assert(first_out->type == ParticleID::gluon);
assert((first_out+1)->type == ParticleID::gluon);
// copy type from born
first_out->type = firstquark->type;
(first_out+1)->type = secondquark->type;
}
}
void PhaseSpacePoint::label_qqx(Event const & event){
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
assert(filter_partons(outgoing_).size() == outgoing_.size());
if(qqxb_){
label_extremal_qqx( event.outgoing().cbegin(), event.outgoing().cend(),
outgoing_.begin()
);
return;
}
if(qqxf_){ // same as qqxb with reversed order
label_extremal_qqx( event.outgoing().crbegin(), event.outgoing().crend(),
outgoing_.rbegin()
);
return;
}
// central qqx
- std::vector<Particle> const born_parton{filter_partons(event.outgoing())};
- // find born quarks (ignore extremal partons)
- auto const firstquark = std::find_if(
- born_parton.cbegin()+1, born_parton.cend()-2,
- [](Particle const & s){ return (is_anyquark(s)); }
- );
- // assert that it is a q-q_bar pair.
- assert(firstquark != born_parton.cend()-2);
- assert( ( is_quark(*firstquark) && is_antiquark(*(firstquark+1)) )
- || ( is_antiquark(*firstquark) && is_quark(*(firstquark+1)) ));
+ const auto firstquark = get_first_anyquark_emission(event);
// find jets at FO corresponding to the quarks
// technically this isn't necessary for LO
- std::vector<int> const born_indices{ event.particle_jet_indices(event.jets()) };
- int const firstjet_idx = born_indices[
- std::distance(born_parton.cbegin(), firstquark) ];
- assert(firstjet_idx>0);
- assert( born_indices[ std::distance(born_parton.cbegin(), firstquark+1) ]
- == firstjet_idx+1 );
+ const auto firstjet_idx = get_back_quark_jet(event, firstquark);
// find corresponding jets after resummation
fastjet::ClusterSequence cs{to_PseudoJet(outgoing_), param_.jet_param.def};
auto const jets = fastjet::sorted_by_rapidity(
cs.inclusive_jets( param_.jet_param.min_pt ));
std::vector<int> const resum_indices{ cs.particle_jet_indices({jets}) };
// assert that jets didn't move
assert(nearby_ep( ( event.jets().cbegin()+firstjet_idx )->rapidity(),
jets[ firstjet_idx ].rapidity(), 1e-2) );
assert(nearby_ep( ( event.jets().cbegin()+firstjet_idx+1 )->rapidity(),
jets[ firstjet_idx+1 ].rapidity(), 1e-2) );
// find last partons in first (central) jet
size_t idx_out = 0;
for(size_t i=resum_indices.size()-2; i>0; --i)
if(resum_indices[i] == firstjet_idx){
idx_out = i;
break;
}
assert(idx_out != 0);
// check that there is sufficient pt in jets from the quarks
const double minpartonjetpt = 1. - param_.max_ext_soft_pt_fraction;
if (outgoing_[idx_out].p.pt()<minpartonjetpt*( event.jets().cbegin()+firstjet_idx )->pt()){
weight_=0.;
status_ = StatusCode::wrong_jets;
return;
}
if (outgoing_[idx_out+1].p.pt()<minpartonjetpt*( event.jets().cbegin()+firstjet_idx+1 )->pt()){
weight_=0.;
status_ = StatusCode::wrong_jets;
return;
}
// check that no additional emission between jets
// such configurations are possible if we have an gluon gets generated
// inside the rapidities of the qqx chain, but clusted to a
// differnet/outside jet. Changing this is non trivial
if(resum_indices[idx_out+1] != resum_indices[idx_out]+1){
weight_=0.;
status_ = StatusCode::gluon_in_qqx;
return;
}
outgoing_[idx_out].type = firstquark->type;
- outgoing_[idx_out+1].type = (firstquark+1)->type;
+ outgoing_[idx_out+1].type = std::next(firstquark)->type;
}
void PhaseSpacePoint::label_quarks(Event const & ev){
const auto WEmit = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & s){ return abs(s.type) == pid::Wp; }
);
if (WEmit != end(ev.outgoing())){
- if(!qqxb_)
- outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type;
- if(!qqxf_)
- outgoing_.rbegin()[unof_].type
- = filter_partons(ev.outgoing()).rbegin()[unof_].type;
+ if(!qqxb_) {
+ const size_t backward_FKL_idx = unob_?1:0;
+ const auto backward_FKL = std::next(ev.begin_partons(), backward_FKL_idx);
+ outgoing_[backward_FKL_idx].type = backward_FKL->type;
+ }
+ if(!qqxf_) {
+ const size_t forward_FKL_idx = unof_?1:0;
+ const auto forward_FKL = std::prev(ev.end_partons(), 1+forward_FKL_idx);
+ outgoing_.rbegin()[unof_].type = forward_FKL->type;
+ }
} else {
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
}
if(qqxmid_||qqxb_||qqxf_){
label_qqx(ev);
}
}
PhaseSpacePoint::PhaseSpacePoint(
Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran
):
unob_{ev.type() == event_type::unob},
unof_{ev.type() == event_type::unof},
qqxb_{ev.type() == event_type::qqxexb},
qqxf_{ev.type() == event_type::qqxexf},
qqxmid_{ev.type() == event_type::qqxmid},
param_{std::move(conf)},
ran_{ran},
status_{unspecified}
{
weight_ = 1;
const auto & Born_jets = ev.jets();
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
ng - ng_jets, CMINPT, param_.jet_param.min_pt
);
int qqxbackjet(-1);
if(qqxmid_){
qqxbackjet = getBackQuarkJet(ev);
}
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
if(weight_ == 0.) {
status_ = failed_reshuffle;
return;
}
if(! pass_resummation_cuts(jets)){
status_ = failed_resummation_cuts;
weight_ = 0.;
return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets, qqxbackjet);
if(weight_ == 0.) {
status_ = StatusCode::failed_split;
return;
}
if(qqxmid_){
rescale_qqx_rapidities(
out_partons, jets,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity(),
qqxbackjet
);
}
else{
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
}
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
status_ = StatusCode::empty_jets;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
status_ = StatusCode::wrong_jets;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}});
}
assert(!outgoing_.empty());
label_quarks(ev);
if(weight_ == 0.) {
//! @TODO optimise s.t. this is not possible
// status is handled internally
return;
}
copy_AWZH_boson_from(ev);
reconstruct_incoming(ev.incoming());
status_ = StatusCode::good;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.get().flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.get().flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.get().flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return sorted_by_rapidity(partons);
}
void PhaseSpacePoint::rescale_qqx_rapidities(
std::vector<fastjet::PseudoJet> & out_partons,
std::vector<fastjet::PseudoJet> const & jets,
const double ymin1, const double ymax2,
const int qqxbackjet
){
const double ymax1 = jets[qqxbackjet].rapidity();
const double ymin2 = jets[qqxbackjet+1].rapidity();
constexpr double ep = 1e-7;
const double tot_y = ymax1 - ymin1 + ymax2 - ymin2;
std::vector<std::reference_wrapper<fastjet::PseudoJet>> refpart(
out_partons.begin(), out_partons.end());
double ratio = (ymax1 - ymin1)/tot_y;
const auto gap{ std::find_if(refpart.begin(), refpart.end(),
[ratio](fastjet::PseudoJet p){
return (p.rapidity()>=ratio);} ) };
double ymin = ymin1;
double ymax = ymax1;
double dy = ymax - ymin - 2*ep;
double offset = 0.;
for(auto it_part=refpart.begin(); it_part<refpart.end(); ++it_part){
if(it_part == gap){
ymin = ymin2;
ymax = ymax2;
dy = ymax - ymin - 2*ep;
offset = ratio;
ratio = 1-ratio;
}
fastjet::PseudoJet & part = *it_part;
assert(offset <= part.rapidity() && part.rapidity() < ratio+offset);
const double y = ymin + ep + dy*((part.rapidity()-offset)/ratio);
part.reset_momentum_PtYPhiM(part.pt(), y, part.phi());
weight_ *= tot_y-4.*ep;
assert(ymin <= part.rapidity() && part.rapidity() <= ymax);
}
assert(is_sorted(begin(out_partons), end(out_partons), rapidity_less{}));
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param_.jet_param.def.R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(ran_.get());
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
const auto jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// additional Jacobian to ensure Born integration over delta gives 1
weight_ *= resummation_jet_weight(Born_jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param_.jet_param.def.R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if((unob_||qqxb_) && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if((unof_||qqxf_) && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.get().flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets,
size_t qqxbackjet
){
return split(jets, distribute_jet_partons(ng_jets, jets), qqxbackjet);
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param_.min_extparton_pt) return false;
return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np,
size_t qqxbackjet
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_ + qqxb_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_ - qqxf_;
const auto & jet = param_.jet_param;
const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_};
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
auto split_res = jet_splitter.split(jets[i], np[i]);
weight_ *= split_res.weight;
if(weight_ == 0) return {};
assert(
std::all_of(
begin(split_res.constituents), end(split_res.constituents),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(split_res.constituents), end(split_res.constituents)
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
// also mark qqxmid partons, and apply appropriate pt cut.
auto extremal = end(jet_partons);
if (i == most_backward_FKL_idx){ //FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(backward_FKL_idx);
}
else if(((unob_ || qqxb_) && i == 0)){
// unordered/qqxb
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unob_)?unob_idx:qqxb_idx);
}
else if (i == most_forward_FKL_idx){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(forward_FKL_idx);
}
else if(((unof_ || qqxf_) && i == jets.size() - 1)){
// unordered/qqxf
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unof_)?unof_idx:qqxf_idx);
}
else if((qqxmid_ && i == qqxbackjet)){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(qqxmid1_idx);
}
else if((qqxmid_ && i == qqxbackjet+1)){
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(qqxmid2_idx);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
if(qqxb_ && partons.front().user_index() != qqxb_idx) return false;
if(qqxf_ && partons.back().user_index() != qqxf_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = cluster_jets(jet_partons);
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
bool PhaseSpacePoint::contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
) const {
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
const bool injet = std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
const double minpartonjetpt = 1. - param_.max_ext_soft_pt_fraction;
return ((parton.pt()>minpartonjetpt*jet.pt())&&injet);
}
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(qqxb_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
if(qqxf_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Particle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved());
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved() const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
const double norm = diff.E();
for(auto const & out: outgoing()) diff -= out.p;
return nearby(diff, fastjet::PseudoJet{}, norm);
}
} //namespace HEJ

File Metadata

Mime Type
text/x-diff
Expires
Thu, Apr 3, 8:06 PM (22 h, 9 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4729187
Default Alt Text
(130 KB)

Event Timeline