Page MenuHomeHEPForge

No OneTemporary

diff --git a/Hadronization/ColourReconnector.cc b/Hadronization/ColourReconnector.cc
--- a/Hadronization/ColourReconnector.cc
+++ b/Hadronization/ColourReconnector.cc
@@ -1,407 +1,426 @@
// -*- C++ -*-
//
// ColourReconnector.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ColourReconnector class.
//
#include "ColourReconnector.h"
#include "Cluster.h"
#include "Herwig++/Utilities/Maths.h"
-
#include <ThePEG/Interface/Switch.h>
#include "ThePEG/Interface/Parameter.h"
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/Repository/UseRandom.h>
#include <algorithm>
#include <ThePEG/Utilities/DescribeClass.h>
+#include <ThePEG/Repository/EventGenerator.h>
using namespace Herwig;
typedef ClusterVector::iterator CluVecIt;
DescribeClass<ColourReconnector,Interfaced>
describeColourReconnector("Herwig::ColourReconnector","");
IBPtr ColourReconnector::clone() const {
return new_ptr(*this);
}
IBPtr ColourReconnector::fullclone() const {
return new_ptr(*this);
}
void ColourReconnector::rearrange(ClusterVector & clusters) {
if (_clreco == 0) return;
// need at least two clusters
if (clusters.size() < 2) return;
// do the colour reconnection
switch (_algorithm) {
case 0: _doRecoPlain(clusters);
break;
case 1: _doRecoStatistical(clusters);
break;
}
return;
}
Energy2 ColourReconnector::_clusterMassSum(const PVector & q,
const PVector & aq) const {
const size_t nclusters = q.size();
assert (aq.size() == nclusters);
Energy2 sum = ZERO;
for (size_t i = 0; i < nclusters; i++)
sum += ( q[i]->momentum() + aq[i]->momentum() ).m2();
return sum;
}
bool ColourReconnector::_containsColour8(const ClusterVector & cv,
const vector<size_t> & P) const {
assert (P.size() == cv.size());
for (size_t i = 0; i < cv.size(); i++) {
tcPPtr p = cv[i]->colParticle();
tcPPtr q = cv[P[i]]->antiColParticle();
if (isColour8(p, q)) return true;
}
return false;
}
void ColourReconnector::_doRecoStatistical(ClusterVector & cv) const {
const size_t nclusters = cv.size();
// initially, enumerate (anti)quarks as given in the cluster vector
ParticleVector q, aq;
for (size_t i = 0; i < nclusters; i++) {
q.push_back( cv[i]->colParticle() );
aq.push_back( cv[i]->antiColParticle() );
}
// annealing scheme
Energy2 t, delta;
Energy2 lambda = _clusterMassSum(q,aq);
const unsigned _ntries = _triesPerStepFactor * nclusters;
// find appropriate starting temperature by measuring the largest lambda
// difference in some dry-run random rearrangements
{
vector<Energy2> typical;
for (int i = 0; i < 10; i++) {
const pair <int,int> toswap = _shuffle(q,aq,5);
ParticleVector newaq = aq;
swap (newaq[toswap.first], newaq[toswap.second]);
Energy2 newlambda = _clusterMassSum(q,newaq);
typical.push_back( abs(newlambda - lambda) );
}
t = _initTemp * Math::median(typical);
}
// anneal in up to _annealingSteps temperature steps
for (unsigned step = 0; step < _annealingSteps; step++) {
// For this temperature step, try to reconnect _ntries times. Stop the
// algorithm if no successful reconnection happens.
unsigned nSuccess = 0;
for (unsigned it = 0; it < _ntries; it++) {
// make a random rearrangement
const unsigned maxtries = 10;
const pair <int,int> toswap = _shuffle(q,aq,maxtries);
const int i = toswap.first;
const int j = toswap.second;
// stop here if we cannot find any allowed reconfiguration
if (i == -1) break;
// create a new antiquark vector with the two partons swapped
ParticleVector newaq = aq;
swap (newaq[i], newaq[j]);
// Check if lambda would decrease. If yes, accept the reconnection. If no,
// accept it only with a probability given by the current Boltzmann
// factor. In the latter case we set p = 0 if the temperature is close to
// 0, to avoid division by 0.
Energy2 newlambda = _clusterMassSum(q,newaq);
delta = newlambda - lambda;
double prob = 1.0;
if (delta > ZERO) prob = ( abs(t) < 1e-8*MeV2 ) ? 0.0 : exp(-delta/t);
if (UseRandom::rnd() < prob) {
lambda = newlambda;
swap (newaq, aq);
nSuccess++;
}
}
if (nSuccess == 0) break;
// reduce temperature
t *= _annealingFactor;
}
// construct the new cluster vector
ClusterVector newclusters;
for (size_t i = 0; i < nclusters; i++) {
ClusterPtr cl = new_ptr( Cluster( q[i], aq[i] ) );
newclusters.push_back(cl);
}
swap(newclusters,cv);
return;
}
void ColourReconnector::_doRecoPlain(ClusterVector & cv) const {
ClusterVector newcv = cv;
// try to avoid systematic errors by randomising the reconnection order
long (*p_irnd)(long) = UseRandom::irnd;
random_shuffle( newcv.begin(), newcv.end(), p_irnd );
// iterate over all clusters
for (CluVecIt cit = newcv.begin(); cit != newcv.end(); cit++) {
// find the cluster which, if reconnected with *cit, would result in the
// smallest sum of cluster masses
// NB this method returns *cit if no reconnection partner can be found
CluVecIt candidate = _findRecoPartner(cit, newcv);
// skip this cluster if no possible reshuffling partner can be found
if (candidate == cit) continue;
// accept the reconnection with probability _preco.
if (UseRandom::rnd() < _preco) {
pair <ClusterPtr,ClusterPtr> reconnected = _reconnect(*cit, *candidate);
// Replace the clusters in the ClusterVector. The order of the
// colour-triplet partons in the cluster vector is retained here.
// replace *cit by reconnected.first
*cit = reconnected.first;
// replace candidate by reconnected.second
*candidate = reconnected.second;
}
}
swap(cv,newcv);
return;
}
CluVecIt ColourReconnector::_findRecoPartner(CluVecIt cl,
ClusterVector & cv) const {
CluVecIt candidate = cl;
Energy minMass = 1*TeV;
for (CluVecIt cit=cv.begin(); cit != cv.end(); ++cit) {
// don't even look at original cluster
if(cit==cl) continue;
// don't allow colour octet clusters
if ( isColour8( (*cl)->colParticle(),
(*cit)->antiColParticle() ) ||
isColour8( (*cit)->colParticle(),
(*cl)->antiColParticle() ) ) {
continue;
}
// stop it putting beam remnants together
if((*cl)->isBeamCluster() && (*cit)->isBeamCluster()) continue;
+ // stop it putting far apart clusters together
+ if(((**cl).vertex()-(**cit).vertex()).m()>_maxDistance) continue;
+
// momenta of the old clusters
Lorentz5Momentum p1 = (*cl)->colParticle()->momentum() +
(*cl)->antiColParticle()->momentum();
Lorentz5Momentum p2 = (*cit)->colParticle()->momentum() +
(*cit)->antiColParticle()->momentum();
// momenta of the new clusters
Lorentz5Momentum p3 = (*cl)->colParticle()->momentum() +
(*cit)->antiColParticle()->momentum();
Lorentz5Momentum p4 = (*cit)->colParticle()->momentum() +
(*cl)->antiColParticle()->momentum();
Energy oldMass = abs( p1.m() ) + abs( p2.m() );
Energy newMass = abs( p3.m() ) + abs( p4.m() );
if ( newMass < oldMass && newMass < minMass ) {
minMass = newMass;
candidate = cit;
}
}
return candidate;
}
pair <ClusterPtr,ClusterPtr>
ColourReconnector::_reconnect(ClusterPtr c1, ClusterPtr c2) const {
// choose the other possibility to form two clusters from the given
// constituents
assert(c1->numComponents()==2);
assert(c2->numComponents()==2);
int c1_col(-1),c1_anti(-1),c2_col(-1),c2_anti(-1);
for(unsigned int ix=0;ix<2;++ix) {
if (c1->particle(ix)->hasColour(false)) c1_col = ix;
else if(c1->particle(ix)->hasColour(true )) c1_anti = ix;
if (c2->particle(ix)->hasColour(false)) c2_col = ix;
else if(c2->particle(ix)->hasColour(true )) c2_anti = ix;
}
assert(c1_col>=0&&c2_col>=0&&c1_anti>=0&&c2_anti>=0);
ClusterPtr newCluster1
= new_ptr( Cluster( c1->colParticle(), c2->antiColParticle() ) );
+
+ newCluster1->setVertex(0.5*( c1->colParticle()->vertex() +
+ c2->antiColParticle()->vertex() ));
+
if(c1->isBeamRemnant(c1_col )) newCluster1->setBeamRemnant(0,true);
if(c2->isBeamRemnant(c2_anti)) newCluster1->setBeamRemnant(1,true);
ClusterPtr newCluster2
= new_ptr( Cluster( c2->colParticle(), c1->antiColParticle() ) );
+
+ newCluster2->setVertex(0.5*( c2->colParticle()->vertex() +
+ c1->antiColParticle()->vertex() ));
+
if(c2->isBeamRemnant(c2_col )) newCluster2->setBeamRemnant(0,true);
if(c1->isBeamRemnant(c1_anti)) newCluster2->setBeamRemnant(1,true);
return pair <ClusterPtr,ClusterPtr> (newCluster1, newCluster2);
}
pair <int,int> ColourReconnector::_shuffle
(const PVector & q, const PVector & aq, unsigned maxtries) const {
const size_t nclusters = q.size();
assert (nclusters > 1);
assert (aq.size() == nclusters);
int i, j;
unsigned tries = 0;
bool octet;
do {
// find two different random integers in the range [0, nclusters)
i = UseRandom::irnd( nclusters );
do { j = UseRandom::irnd( nclusters ); } while (i == j);
// check if one of the two potential clusters would be a colour octet state
octet = isColour8( q[i], aq[j] ) || isColour8( q[j], aq[i] ) ;
tries++;
} while (octet && tries < maxtries);
if (octet) i = j = -1;
return make_pair(i,j);
}
bool ColourReconnector::isColour8(cPPtr p, cPPtr q) {
bool octet = false;
// make sure we have a triplet and an anti-triplet
if ( ( p->hasColour() && q->hasAntiColour() ) ||
( p->hasAntiColour() && q->hasColour() ) ) {
if ( !p->parents().empty() && !q->parents().empty() ) {
// true if p and q are originated from a colour octet
octet = ( p->parents()[0] == q->parents()[0] ) &&
( p->parents()[0]->data().iColour() == PDT::Colour8 );
}
}
return octet;
}
void ColourReconnector::persistentOutput(PersistentOStream & os) const {
os << _clreco << _preco << _algorithm << _initTemp << _annealingFactor
- << _annealingSteps << _triesPerStepFactor;
+ << _annealingSteps << _triesPerStepFactor << ounit(_maxDistance,femtometer);
}
void ColourReconnector::persistentInput(PersistentIStream & is, int) {
is >> _clreco >> _preco >> _algorithm >> _initTemp >> _annealingFactor
- >> _annealingSteps >> _triesPerStepFactor;
+ >> _annealingSteps >> _triesPerStepFactor >> iunit(_maxDistance,femtometer);
}
void ColourReconnector::Init() {
static ClassDocumentation<ColourReconnector> documentation
("This class is responsible of the colour reconnection.");
static Switch<ColourReconnector,int> interfaceColourReconnection
("ColourReconnection",
"Colour reconnections",
&ColourReconnector::_clreco, 0, true, false);
static SwitchOption interfaceColourReconnectionOff
(interfaceColourReconnection,
"No",
"Colour reconnections off",
0);
static SwitchOption interfaceColourReconnectionOn
(interfaceColourReconnection,
"Yes",
"Colour reconnections on",
1);
static Parameter<ColourReconnector,double> interfaceMtrpAnnealingFactor
("AnnealingFactor",
"The annealing factor is the ratio of the temperatures in two successive "
"temperature steps.",
&ColourReconnector::_annealingFactor, 0.9, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,unsigned> interfaceMtrpAnnealingSteps
("AnnealingSteps",
"Number of temperature steps in the statistical annealing algorithm",
&ColourReconnector::_annealingSteps, 50, 1, 10000,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceMtrpTriesPerStepFactor
("TriesPerStepFactor",
"The number of reconnection tries per temperature steps is the number of "
"clusters times this factor.",
&ColourReconnector::_triesPerStepFactor, 5.0, 0.0, 100.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceMtrpInitialTemp
("InitialTemperature",
"Factor used to determine the initial temperature from the median of the "
"energy change in a few random rearrangements.",
&ColourReconnector::_initTemp, 0.1, 0.00001, 100.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceRecoProb
("ReconnectionProbability",
"Probability that a found reconnection possibility is actually accepted",
&ColourReconnector::_preco, 0.5, 0.0, 1.0,
false, false, Interface::limited);
static Switch<ColourReconnector,int> interfaceAlgorithm
("Algorithm",
"Specifies the colour reconnection algorithm",
&ColourReconnector::_algorithm, 0, true, false);
static SwitchOption interfaceAlgorithmPlain
(interfaceAlgorithm,
"Plain",
"Plain colour reconnection as in Herwig++ 2.5.0",
0);
static SwitchOption interfaceAlgorithmStatistical
(interfaceAlgorithm,
"Statistical",
"Statistical colour reconnection using simulated annealing",
1);
+
+ static Parameter<ColourReconnector,Length> interfaceMaxDistance
+ ("MaxDistance",
+ "Maximum distance between the clusters at which to consider rearrangement"
+ " to avoid colour reconneections of displaced vertices",
+ &ColourReconnector::_maxDistance, femtometer, 1000.*femtometer, 0.0*femtometer, 1e100*femtometer,
+ false, false, Interface::limited);
+
}
diff --git a/Hadronization/ColourReconnector.h b/Hadronization/ColourReconnector.h
--- a/Hadronization/ColourReconnector.h
+++ b/Hadronization/ColourReconnector.h
@@ -1,235 +1,241 @@
// -*- C++ -*-
//
// ColourReconnector.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_ColourReconnector_H
#define HERWIG_ColourReconnector_H
#include <ThePEG/Interface/Interfaced.h>
#include "CluHadConfig.h"
#include "ColourReconnector.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Hadronization
* \class ColourReconnector
* \brief Class for changing colour reconnections of partons.
* \author Alberto Ribon, Christian Roehr
*
* This class does the nonperturbative colour rearrangement, after the
* nonperturbative gluon splitting and the "normal" cluster formation.
* It uses the list of particles in the event record, and the collections of
* "usual" clusters which is passed to the main method. If the colour
* reconnection is actually accepted, then the previous collections of "usual"
* clusters is first deleted and then the new one is created.
*
* * @see \ref ColourReconnectorInterfaces "The interfaces"
* defined for ColourReconnector.
*/
class ColourReconnector: public Interfaced {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
ColourReconnector() :
_algorithm(0),
_annealingFactor(0.9),
_annealingSteps(50),
_clreco(0),
_initTemp(0.1),
_preco(0.5),
- _triesPerStepFactor(5.0)
+ _triesPerStepFactor(5.0),
+ _maxDistance(1000.*femtometer)
{}
//@}
/**
* Does the colour rearrangement, starting out from the list of particles in
* the event record and the collection of "usual" clusters passed as
* arguments. If the actual rearrangement is accepted, the initial collection of
* clusters is overridden by the old ones.
*/
void rearrange(ClusterVector & clusters);
private:
/** PRIVATE MEMBER FUNCTIONS */
/**
* @brief Calculates the sum of the squared cluster masses.
* @arguments q, aq vectors containing the quarks and antiquarks respectively
* @return Sum of cluster squared masses M^2_{q[i],aq[i]}.
*/
Energy2 _clusterMassSum(const PVector & q, const PVector & aq) const;
/**
* @brief Examines whether the cluster vector (under the given permutation of
* the antiquarks) contains colour-octet clusters
* @param cv Cluster vector
* @param P Permutation, a vector of permutated indices from 0 to
* cv.size()-1
*/
bool _containsColour8(const ClusterVector & cv, const vector<size_t> & P) const;
/**
* @brief A Metropolis-type algorithm which finds a local minimum in the
* total sum of cluster masses
* @arguments cv cluster vector
*/
void _doRecoStatistical(ClusterVector & cv) const;
/**
* @brief Plain colour reconnection as used in Herwig++ 2.5.0
* @arguments cv cluster vector
*/
void _doRecoPlain(ClusterVector & cv) const;
/**
* @brief Finds the cluster in cv which, if reconnected with the given
* cluster cl, would result in the smallest sum of cluster masses.
* If no reconnection partner can be found, a pointer to the
* original Cluster cl is returned.
* @arguments cv cluster vector
* cl cluster iterator (must be from cv) which wants to have a reconnection partner
* @return iterator to the found cluster, or the original cluster pointer if
* no mass-reducing combination can be found
*/
ClusterVector::iterator _findRecoPartner(ClusterVector::iterator cl,
ClusterVector & cv) const;
/**
* @brief Reconnects the constituents of the given clusters to the (only)
* other possible cluster combination.
* @return pair of pointers to the two new clusters
*/
pair <ClusterPtr,ClusterPtr> _reconnect(ClusterPtr c1, ClusterPtr c2) const;
/**
* @brief At random, swap two antiquarks, if not excluded by the
* constraint that there must not be any colour-octet clusters.
* @arguments q, aq vectors containing the quarks and antiquarks respectively
* maxtries maximal number of tries to find a non-colour-octet
* reconfiguration
* @return Pair of ints indicating the indices of the antiquarks to be
* swapped. Returns (-1,-1) if no valid reconfiguration could be
* found after maxtries trials
*/
pair <int,int>
_shuffle(const PVector & q, const PVector & aq, unsigned maxtries = 10) const;
/** DATA MEMBERS */
/**
* Specifies the colour reconnection algorithm to be used.
*/
int _algorithm;
/**
* The annealing factor is the ratio of two successive temperature steps:
* T_n = _annealingFactor * T_(n-1)
*/
double _annealingFactor;
/**
* Number of temperature steps in the statistical annealing algorithm
*/
unsigned _annealingSteps;
/**
* Do we do colour reconnections?
*/
int _clreco;
/**
* Factor used to determine the initial temperature according to
* InitialTemperature = _initTemp * median {energy changes in a few random
* rearrangements}
*/
double _initTemp;
/**
* Probability that a found reconnection possibility is actually accepted.
*/
double _preco;
/**
* The number of tries per temperature steps is the number of clusters times
* this factor.
*/
double _triesPerStepFactor;
/**
+ * Maximium distance for reconnections
+ */
+ Length _maxDistance;
+
+ /**
* @return true, if the two partons are splitting products of the same
* gluon
*/
static bool isColour8(cPPtr p, cPPtr q);
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interfaces.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* Private and non-existent assignment operator.
*/
ColourReconnector & operator=(const ColourReconnector &);
};
}
#endif /* HERWIG_ColourReconnector_H */

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 9:04 PM (1 d, 1 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242376
Default Alt Text
(21 KB)

Event Timeline