Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
--- a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
+++ b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
@@ -1,1707 +1,1707 @@
// -*- C++ -*-
//
// MatchboxMEBase.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxMEBase class.
//
#include "MatchboxMEBase.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDF/PDF.h"
#include "ThePEG/PDT/PDT.h"
#include "ThePEG/StandardModel/StandardModelBase.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/StdXCombGroup.h"
#include "ThePEG/EventRecord/SubProcess.h"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/DiagramDrawer.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.h"
#include "Herwig++/Utilities/RunDirectories.h"
#include "Herwig++/MatrixElement/ProductionMatrixElement.h"
#include "Herwig++/MatrixElement/HardVertex.h"
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
MatchboxMEBase::MatchboxMEBase()
: MEBase(),
theOneLoop(false),
theOneLoopNoBorn(false),
theNoCorrelations(false),
theHavePDFs(false,false), checkedPDFs(false),
theDiagramWeightVerboseDown(10000000000000.),
theDiagramWeightVerboseUp(0.) {}
MatchboxMEBase::~MatchboxMEBase() {}
Ptr<MatchboxFactory>::tptr MatchboxMEBase::factory() const { return theFactory; }
void MatchboxMEBase::factory(Ptr<MatchboxFactory>::tptr f) { theFactory = f; }
Ptr<Tree2toNGenerator>::tptr MatchboxMEBase::diagramGenerator() const { return factory()->diagramGenerator(); }
Ptr<ProcessData>::tptr MatchboxMEBase::processData() const { return factory()->processData(); }
unsigned int MatchboxMEBase::getNLight() const { return factory()->nLight(); }
vector<int> MatchboxMEBase::getNLightJetVec() const { return factory()->nLightJetVec(); }
vector<int> MatchboxMEBase::getNHeavyJetVec() const { return factory()->nHeavyJetVec(); }
vector<int> MatchboxMEBase::getNLightProtonVec() const { return factory()->nLightProtonVec(); }
double MatchboxMEBase::factorizationScaleFactor() const { return factory()->factorizationScaleFactor(); }
double MatchboxMEBase::renormalizationScaleFactor() const { return factory()->renormalizationScaleFactor(); }
bool MatchboxMEBase::fixedCouplings() const { return factory()->fixedCouplings(); }
bool MatchboxMEBase::fixedQEDCouplings() const { return factory()->fixedQEDCouplings(); }
bool MatchboxMEBase::checkPoles() const { return factory()->checkPoles(); }
bool MatchboxMEBase::verbose() const { return factory()->verbose(); }
bool MatchboxMEBase::initVerbose() const { return factory()->initVerbose(); }
void MatchboxMEBase::getDiagrams() const {
if ( diagramGenerator() && processData() ) {
vector<Ptr<Tree2toNDiagram>::ptr> diags;
vector<Ptr<Tree2toNDiagram>::ptr>& res =
processData()->diagramMap()[subProcess().legs];
if ( res.empty() ) {
res = diagramGenerator()->generate(subProcess().legs,orderInAlphaS(),orderInAlphaEW());
}
copy(res.begin(),res.end(),back_inserter(diags));
processData()->fillMassGenerators(subProcess().legs);
if ( diags.empty() )
return;
for ( vector<Ptr<Tree2toNDiagram>::ptr>::iterator d = diags.begin();
d != diags.end(); ++d ) {
add(*d);
}
return;
}
throw Exception()
<< "MatchboxMEBase::getDiagrams() expects a Tree2toNGenerator and ProcessData object.\n"
<< "Please check your setup." << Exception::abortnow;
}
Selector<MEBase::DiagramIndex>
MatchboxMEBase::diagrams(const DiagramVector & diags) const {
if ( phasespace() ) {
return phasespace()->selectDiagrams(diags);
}
throw Exception()
<< "MatchboxMEBase::diagrams() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return Selector<MEBase::DiagramIndex>();
}
Selector<const ColourLines *>
MatchboxMEBase::colourGeometries(tcDiagPtr diag) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->haveColourFlows() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
return matchboxAmplitude()->colourGeometries(diag);
}
}
Ptr<Tree2toNDiagram>::tcptr tdiag =
dynamic_ptr_cast<Ptr<Tree2toNDiagram>::tcptr>(diag);
assert(diag && processData());
vector<ColourLines*>& flows = processData()->colourFlowMap()[tdiag];
if ( flows.empty() ) {
list<list<list<pair<int,bool> > > > cflows =
ColourBasis::colourFlows(tdiag);
for ( list<list<list<pair<int,bool> > > >::const_iterator fit =
cflows.begin(); fit != cflows.end(); ++fit ) {
flows.push_back(new ColourLines(ColourBasis::cfstring(*fit)));
}
}
Selector<const ColourLines *> res;
for ( vector<ColourLines*>::const_iterator f = flows.begin();
f != flows.end(); ++f )
res.insert(1.0,*f);
return res;
}
void MatchboxMEBase::constructVertex(tSubProPtr sub, const ColourLines* cl) {
if ( !canFillRhoMatrix() || !factory()->spinCorrelations() )
return;
assert(matchboxAmplitude());
assert(matchboxAmplitude()->colourBasis());
// get the colour structure for the selected colour flow
size_t cStructure =
matchboxAmplitude()->colourBasis()->tensorIdFromFlow(lastXComb().lastDiagram(),cl);
// hard process for processing the spin info
tPVector hard;
hard.push_back(sub->incoming().first);
hard.push_back(sub->incoming().second);
vector<PDT::Spin> out;
for ( size_t k = 0; k < sub->outgoing().size(); ++k ) {
out.push_back(sub->outgoing()[k]->data().iSpin());
hard.push_back(sub->outgoing()[k]);
}
// calculate dummy wave functions to fill the spin info
static vector<VectorWaveFunction> dummyPolarizations;
static vector<SpinorWaveFunction> dummySpinors;
static vector<SpinorBarWaveFunction> dummyBarSpinors;
for ( size_t k = 0; k < hard.size(); ++k ) {
if ( hard[k]->data().iSpin() == PDT::Spin1Half ) {
if ( hard[k]->id() > 0 && k > 1 ) {
SpinorBarWaveFunction(dummyBarSpinors,hard[k],
outgoing, true);
} else if ( hard[k]->id() < 0 && k > 1 ) {
SpinorWaveFunction(dummySpinors,hard[k],
outgoing, true);
} else if ( hard[k]->id() > 0 && k < 2 ) {
SpinorWaveFunction(dummySpinors,hard[k],
incoming, false);
} else if ( hard[k]->id() < 0 && k < 2 ) {
SpinorBarWaveFunction(dummyBarSpinors,hard[k],
incoming, false);
}
} else if ( hard[k]->data().iSpin() == PDT::Spin1 ) {
VectorWaveFunction(dummyPolarizations,hard[k],
k > 1 ? outgoing : incoming,
k > 1 ? true : false,
hard[k]->data().mass() == ZERO);
} else assert(false);
}
// fill the production matrix element
ProductionMatrixElement pMe(mePartonData()[0]->iSpin(),
mePartonData()[1]->iSpin(),
out);
for ( map<vector<int>,CVector>::const_iterator lamp = lastLargeNAmplitudes().begin();
lamp != lastLargeNAmplitudes().end(); ++lamp ) {
vector<unsigned int> pMeHelicities(lamp->first.size(),0);
vector<int>::const_iterator h = lamp->first.begin();
vector<unsigned int>::iterator hx = pMeHelicities.begin();
cPDVector::const_iterator p = mePartonData().begin();
// map Matchbox conventions to Helicity conventions
for ( ; h != lamp->first.end(); ++h, ++hx, ++p ) {
if ( (**p).iSpin() == PDT::Spin1Half )
- *hx = *h == -1 ? 0 : 1;
+ *hx = (*h == -1 ? 0 : 1);
else if ( (**p).iSpin() == PDT::Spin1 )
*hx = (unsigned int)(*h + 1);
else assert(false);
}
pMe(pMeHelicities) = lamp->second[cStructure];
}
// set the spin information
HardVertexPtr hardvertex = new_ptr(HardVertex());
hardvertex->ME(pMe);
if ( sub->incoming().first->spinInfo() )
sub->incoming().first->spinInfo()->productionVertex(hardvertex);
if ( sub->incoming().second->spinInfo() )
sub->incoming().second->spinInfo()->productionVertex(hardvertex);
for ( ParticleVector::const_iterator p = sub->outgoing().begin();
p != sub->outgoing().end(); ++p ) {
if ( (**p).spinInfo() )
(**p).spinInfo()->productionVertex(hardvertex);
}
}
unsigned int MatchboxMEBase::orderInAlphaS() const {
return subProcess().orderInAlphaS;
}
unsigned int MatchboxMEBase::orderInAlphaEW() const {
return subProcess().orderInAlphaEW;
}
void MatchboxMEBase::setXComb(tStdXCombPtr xc) {
MEBase::setXComb(xc);
lastMatchboxXComb(xc);
if ( phasespace() )
phasespace()->setXComb(xc);
if ( scaleChoice() )
scaleChoice()->setXComb(xc);
if ( matchboxAmplitude() )
matchboxAmplitude()->setXComb(xc);
}
double MatchboxMEBase::generateIncomingPartons(const double* r1, const double* r2) {
// shamelessly stolen from PartonExtractor.cc
Energy2 shmax = lastCuts().sHatMax();
Energy2 shmin = lastCuts().sHatMin();
Energy2 sh = shmin*pow(shmax/shmin, *r1);
double ymax = lastCuts().yHatMax();
double ymin = lastCuts().yHatMin();
double km = log(shmax/shmin);
ymax = min(ymax, log(lastCuts().x1Max()*sqrt(lastS()/sh)));
ymin = max(ymin, -log(lastCuts().x2Max()*sqrt(lastS()/sh)));
double y = ymin + (*r2)*(ymax - ymin);
double x1 = exp(-0.5*log(lastS()/sh) + y);
double x2 = exp(-0.5*log(lastS()/sh) - y);
Lorentz5Momentum P1 = lastParticles().first->momentum();
LorentzMomentum p1 = lightCone((P1.rho() + P1.e())*x1, Energy());
p1.rotateY(P1.theta());
p1.rotateZ(P1.phi());
meMomenta()[0] = p1;
Lorentz5Momentum P2 = lastParticles().second->momentum();
LorentzMomentum p2 = lightCone((P2.rho() + P2.e())*x2, Energy());
p2.rotateY(P2.theta());
p2.rotateZ(P2.phi());
meMomenta()[1] = p2;
lastXCombPtr()->lastX1X2(make_pair(x1,x2));
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
return km*(ymax - ymin);
}
bool MatchboxMEBase::generateKinematics(const double * r) {
if ( phasespace() ) {
jacobian(phasespace()->generateKinematics(r,meMomenta()));
if ( jacobian() == 0.0 )
return false;
setScale();
logGenerateKinematics(r);
assert(lastMatchboxXComb());
if ( nDimAmplitude() > 0 ) {
amplitudeRandomNumbers().resize(nDimAmplitude());
copy(r + nDimPhasespace(),
r + nDimPhasespace() + nDimAmplitude(),
amplitudeRandomNumbers().begin());
}
if ( nDimInsertions() > 0 ) {
insertionRandomNumbers().resize(nDimInsertions());
copy(r + nDimPhasespace() + nDimAmplitude(),
r + nDimPhasespace() + nDimAmplitude() + nDimInsertions(),
insertionRandomNumbers().begin());
}
return true;
}
throw Exception()
<< "MatchboxMEBase::generateKinematics() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return false;
}
int MatchboxMEBase::nDim() const {
if ( lastMatchboxXComb() )
return nDimPhasespace() + nDimAmplitude() + nDimInsertions();
int ampAdd = 0;
if ( matchboxAmplitude() ) {
ampAdd = matchboxAmplitude()->nDimAdditional();
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
return nDimBorn() + ampAdd + insertionAdd;
}
int MatchboxMEBase::nDimBorn() const {
if ( lastMatchboxXComb() )
return nDimPhasespace();
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
int n = phasespace()->nDim(nout);
if ( phasespace()->useMassGenerators() ) {
for ( cPDVector::const_iterator pd =
diagrams().front()->partons().begin();
pd != diagrams().front()->partons().end(); ++pd ) {
if ( processData()->massGenerator(*pd) ||
(**pd).width() != ZERO ) {
++n;
}
}
}
return n;
}
throw Exception()
<< "MatchboxMEBase::nDim() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0;
}
void MatchboxMEBase::setScale() const {
if ( haveX1X2() ) {
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
}
Energy2 fcscale = factorizationScale();
Energy2 fscale = fcscale*sqr(factorizationScaleFactor());
Energy2 rscale = renormalizationScale()*sqr(renormalizationScaleFactor());
Energy2 ewrscale = renormalizationScaleQED();
lastXCombPtr()->lastScale(fscale);
lastXCombPtr()->lastCentralScale(fcscale);
if ( !fixedCouplings() ) {
if ( rscale > lastCuts().scaleMin() )
lastXCombPtr()->lastAlphaS(SM().alphaS(rscale));
else
lastXCombPtr()->lastAlphaS(SM().alphaS(lastCuts().scaleMin()));
} else {
lastXCombPtr()->lastAlphaS(SM().alphaS());
}
if ( !fixedQEDCouplings() ) {
lastXCombPtr()->lastAlphaEM(SM().alphaEMME(ewrscale));
} else {
lastXCombPtr()->lastAlphaEM(SM().alphaEMMZ());
}
logSetScale();
}
Energy2 MatchboxMEBase::factorizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->factorizationScale();
}
throw Exception()
<< "MatchboxMEBase::factorizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScale();
}
throw Exception()
<< "MatchboxMEBase::renormalizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScaleQED() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScaleQED();
}
return renormalizationScale();
}
void MatchboxMEBase::setVetoScales(tSubProPtr) const {}
bool MatchboxMEBase::havePDFWeight1() const {
if ( checkedPDFs )
return theHavePDFs.first;
theHavePDFs.first =
factory()->isIncoming(mePartonData()[0]) &&
lastXCombPtr()->partonBins().first->pdf();
theHavePDFs.second =
factory()->isIncoming(mePartonData()[1]) &&
lastXCombPtr()->partonBins().second->pdf();
checkedPDFs = true;
return theHavePDFs.first;
}
bool MatchboxMEBase::havePDFWeight2() const {
if ( checkedPDFs )
return theHavePDFs.second;
theHavePDFs.first =
factory()->isIncoming(mePartonData()[0]) &&
lastXCombPtr()->partonBins().first->pdf();
theHavePDFs.second =
factory()->isIncoming(mePartonData()[1]) &&
lastXCombPtr()->partonBins().second->pdf();
checkedPDFs = true;
return theHavePDFs.second;
}
void MatchboxMEBase::getPDFWeight(Energy2 factorizationScale) const {
if ( !havePDFWeight1() && !havePDFWeight2() ) {
lastMEPDFWeight(1.0);
logPDFWeight();
return;
}
double w = 1.;
if ( havePDFWeight1() )
w *= pdf1(factorizationScale);
if ( havePDFWeight2() )
w *= pdf2(factorizationScale);
lastMEPDFWeight(w);
logPDFWeight();
}
double MatchboxMEBase::pdf1(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().first->pdf());
if ( xEx < 1. && lastX1() >= xEx ) {
return
( ( 1. - lastX1() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX1())/lastX1();
}
double MatchboxMEBase::pdf2(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().second->pdf());
if ( xEx < 1. && lastX2() >= xEx ) {
return
( ( 1. - lastX2() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX2())/lastX2();
}
double MatchboxMEBase::me2() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->me2()*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::me2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::largeNME2(Ptr<ColourBasis>::tptr largeNBasis) const {
if ( matchboxAmplitude() ) {
largeNBasis->prepare(mePartonData(),false);
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->largeNME2(largeNBasis)*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::largeNME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::finalStateSymmetry() const {
if ( symmetryFactor() > 0.0 )
return symmetryFactor();
double sFactor = 1.;
map<long,int> counts;
cPDVector checkData;
copy(mePartonData().begin()+2,mePartonData().end(),back_inserter(checkData));
cPDVector::iterator p = checkData.begin();
while ( !checkData.empty() ) {
if ( counts.find((**p).id()) != counts.end() ) {
counts[(**p).id()] += 1;
} else {
counts[(**p).id()] = 1;
}
checkData.erase(p);
p = checkData.begin();
continue;
}
for ( map<long,int>::const_iterator c = counts.begin();
c != counts.end(); ++c ) {
if ( c->second == 1 )
continue;
if ( c->second == 2 )
sFactor /= 2.;
else if ( c->second == 3 )
sFactor /= 6.;
else if ( c->second == 4 )
sFactor /= 24.;
}
symmetryFactor(sFactor);
return symmetryFactor();
}
double MatchboxMEBase::me2Norm(unsigned int addAlphaS) const {
// assume that we always have incoming
// spin-1/2 or massless spin-1 particles
double fac = 1./4.;
if ( hasInitialAverage() )
fac = 1.;
double couplings = 1.0;
if ( orderInAlphaS() > 0 || addAlphaS != 0 ) {
fac *= pow(lastAlphaS()/SM().alphaS(),double(orderInAlphaS()+addAlphaS));
couplings *= pow(lastAlphaS(),double(orderInAlphaS()+addAlphaS));
}
if ( orderInAlphaEW() > 0 ) {
fac *= pow(lastAlphaEM()/SM().alphaEMMZ(),double(orderInAlphaEW()));
couplings *= pow(lastAlphaEM(),double(orderInAlphaEW()));
}
lastMECouplings(couplings);
if ( !hasInitialAverage() ) {
if ( mePartonData()[0]->iColour() == PDT::Colour3 ||
mePartonData()[0]->iColour() == PDT::Colour3bar )
fac /= SM().Nc();
else if ( mePartonData()[0]->iColour() == PDT::Colour8 )
fac /= (SM().Nc()*SM().Nc()-1.);
if ( mePartonData()[1]->iColour() == PDT::Colour3 ||
mePartonData()[1]->iColour() == PDT::Colour3bar )
fac /= SM().Nc();
else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
fac /= (SM().Nc()*SM().Nc()-1.);
}
return !hasFinalStateSymmetry() ? finalStateSymmetry()*fac : fac;
}
CrossSection MatchboxMEBase::dSigHatDR() const {
getPDFWeight();
if ( !lastXCombPtr()->willPassCuts() ) {
lastME2(0.0);
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double xme2 = me2();
lastME2(xme2);
if (factory()->verboseDia()){
double diagweightsum = 0.0;
for ( vector<Ptr<DiagramBase>::ptr>::const_iterator d = diagrams().begin();
d != diagrams().end(); ++d ) {
diagweightsum += phasespace()->diagramWeight(dynamic_cast<const Tree2toNDiagram&>(**d));
}
double piWeight = pow(2.*Constants::pi,(int)(3*(meMomenta().size()-2)-4));
double units = pow(lastSHat() / GeV2, mePartonData().size() - 4.);
bookMEoverDiaWeight(log(xme2/(diagweightsum*piWeight*units)));//
}
if ( xme2 == 0. && !oneLoopNoBorn() ) {
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double vme2 = 0.;
if ( oneLoop() )
vme2 = oneLoopInterference();
CrossSection res = ZERO;
if ( !oneLoopNoBorn() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * xme2;
if ( oneLoop() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * vme2;
if ( !onlyOneLoop() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).setXComb(lastXCombPtr());
res += (**v).dSigHatDR();
}
if ( checkPoles() )
logPoles();
}
double weight = 0.0;
bool applied = false;
for ( vector<Ptr<MatchboxReweightBase>::ptr>::const_iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).setXComb(lastXCombPtr());
if ( !(**rw).apply() )
continue;
weight += (**rw).evaluate();
applied = true;
}
if ( applied )
res *= weight;
lastMECrossSection(res);
return lastMECrossSection();
}
double MatchboxMEBase::oneLoopInterference() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->oneLoopAmplitudes() )
matchboxAmplitude()->prepareOneLoopAmplitudes(this);
double res =
matchboxAmplitude()->oneLoopInterference()*
me2Norm(1);
return res;
}
throw Exception()
<< "MatchboxMEBase::oneLoopInterference() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
MatchboxMEBase::AccuracyHistogram::AccuracyHistogram(double low,
double up,
unsigned int nbins)
: lower(low), upper(up),
sameSign(0), oppositeSign(0), nans(0),
overflow(0), underflow(0) {
double step = (up-low)/nbins;
for ( unsigned int k = 1; k <= nbins; ++k )
bins[lower + k*step] = 0.0;
}
void MatchboxMEBase::AccuracyHistogram::book(double a, double b) {
if ( isnan(a) || isnan(b) ||
isinf(a) || isinf(b) ) {
++nans;
return;
}
if ( a*b >= 0. )
++sameSign;
if ( a*b < 0. )
++oppositeSign;
double r = 1.;
if ( abs(a) != 0.0 )
r = abs(1.-abs(b/a));
else if ( abs(b) != 0.0 )
r = abs(b);
if ( log10(r) < lower || r == 0.0 ) {
++underflow;
return;
}
if ( log10(r) > upper ) {
++overflow;
return;
}
map<double,double>::iterator bin =
bins.upper_bound(log10(r));
if ( bin == bins.end() )
return;
bin->second += 1.;
}
void MatchboxMEBase::AccuracyHistogram::dump(const std::string& folder, const std::string& prefix,
const cPDVector& proc) const {
ostringstream fname("");
for ( cPDVector::const_iterator p = proc.begin();
p != proc.end(); ++p )
fname << (**p).PDGName();
ofstream out((folder+"/"+prefix+fname.str()+".dat").c_str());
out << "# same sign : " << sameSign << " opposite sign : "
<< oppositeSign << " nans : " << nans
<< " overflow : " << overflow
<< " underflow : " << underflow << "\n";
for ( map<double,double>::const_iterator b = bins.begin();
b != bins.end(); ++b ) {
map<double,double>::const_iterator bp = b; --bp;
if ( b->second != 0. ) {
if ( b != bins.begin() )
out << bp->first;
else
out << lower;
out << " " << b->first
<< " " << b->second
<< "\n" << flush;
}
}
ofstream gpout((folder+"/"+prefix+fname.str()+".gp").c_str());
gpout << "set terminal png\n"
<< "set xlabel 'accuracy of pole cancellation [decimal places]'\n"
<< "set ylabel 'counts\n"
<< "set xrange [-20:0]\n"
<< "set output '" << prefix << fname.str() << ".png'\n"
<< "plot '" << prefix << fname.str() << ".dat' using (0.5*($1+$2)):3 with linespoints pt 7 ps 1 not";
}
void MatchboxMEBase::AccuracyHistogram::persistentOutput(PersistentOStream& os) const {
os << lower << upper << bins
<< sameSign << oppositeSign << nans
<< overflow << underflow;
}
void MatchboxMEBase::AccuracyHistogram::persistentInput(PersistentIStream& is) {
is >> lower >> upper >> bins
>> sameSign >> oppositeSign >> nans
>> overflow >> underflow;
}
void MatchboxMEBase::logPoles() const {
double res2me = oneLoopDoublePole();
double res1me = oneLoopSinglePole();
double res2i = 0.;
double res1i = 0.;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
res2i += (**v).oneLoopDoublePole();
res1i += (**v).oneLoopSinglePole();
}
if (res2me != 0.0 || res2i != 0.0) epsilonSquarePoleHistograms[mePartonData()].book(res2me,res2i);
if (res1me != 0.0 || res1i != 0.0) epsilonPoleHistograms[mePartonData()].book(res1me,res1i);
}
bool MatchboxMEBase::haveOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->haveOneLoop();
return false;
}
bool MatchboxMEBase::onlyOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->onlyOneLoop();
return false;
}
bool MatchboxMEBase::isDRbar() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isDRbar();
return false;
}
bool MatchboxMEBase::isDR() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isDR();
return false;
}
bool MatchboxMEBase::isCS() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isCS();
return false;
}
bool MatchboxMEBase::isBDK() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isBDK();
return false;
}
bool MatchboxMEBase::isExpanded() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isExpanded();
return false;
}
Energy2 MatchboxMEBase::mu2() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->mu2();
return 0*GeV2;
}
double MatchboxMEBase::oneLoopDoublePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopDoublePole()*
me2Norm(1);
}
return 0.;
}
double MatchboxMEBase::oneLoopSinglePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopSinglePole()*
me2Norm(1);
}
return 0.;
}
vector<Ptr<SubtractionDipole>::ptr>
MatchboxMEBase::getDipoles(const vector<Ptr<SubtractionDipole>::ptr>& dipoles,
const vector<Ptr<MatchboxMEBase>::ptr>& borns) const {
vector<Ptr<SubtractionDipole>::ptr> res;
// keep track of the dipoles we already did set up
set<pair<pair<pair<int,int>,int>,pair<Ptr<MatchboxMEBase>::tptr,Ptr<SubtractionDipole>::tptr> > > done;
cPDVector rep = diagrams().front()->partons();
int nreal = rep.size();
// now loop over configs
for ( int emitter = 0; emitter < nreal; ++emitter ) {
list<Ptr<SubtractionDipole>::ptr> matchDipoles;
for ( vector<Ptr<SubtractionDipole>::ptr>::const_iterator d =
dipoles.begin(); d != dipoles.end(); ++d ) {
if ( !(**d).canHandleEmitter(rep,emitter) )
continue;
matchDipoles.push_back(*d);
}
if ( matchDipoles.empty() )
continue;
for ( int emission = 2; emission < nreal; ++emission ) {
if ( emission == emitter )
continue;
list<Ptr<SubtractionDipole>::ptr> matchDipoles2;
for ( list<Ptr<SubtractionDipole>::ptr>::const_iterator d =
matchDipoles.begin(); d != matchDipoles.end(); ++d ) {
if ( !(**d).canHandleSplitting(rep,emitter,emission) )
continue;
matchDipoles2.push_back(*d);
}
if ( matchDipoles2.empty() )
continue;
map<Ptr<DiagramBase>::ptr,SubtractionDipole::MergeInfo> mergeInfo;
for ( DiagramVector::const_iterator d = diagrams().begin(); d != diagrams().end(); ++d ) {
Ptr<Tree2toNDiagram>::ptr check(new Tree2toNDiagram(*dynamic_ptr_cast<Ptr<Tree2toNDiagram>::ptr>(*d)));
map<int,int> theMergeLegs;
for ( unsigned int i = 0; i < check->external().size(); ++i )
theMergeLegs[i] = -1;
int theEmitter = check->mergeEmission(emitter,emission,theMergeLegs);
// no underlying Born
if ( theEmitter == -1 )
continue;
SubtractionDipole::MergeInfo info;
info.diagram = check;
info.emitter = theEmitter;
info.mergeLegs = theMergeLegs;
mergeInfo[*d] = info;
}
if ( mergeInfo.empty() )
continue;
for ( int spectator = 0; spectator < nreal; ++spectator ) {
if ( spectator == emitter || spectator == emission )
continue;
list<Ptr<SubtractionDipole>::ptr> matchDipoles3;
for ( list<Ptr<SubtractionDipole>::ptr>::const_iterator d =
matchDipoles2.begin(); d != matchDipoles2.end(); ++d ) {
if ( !(**d).canHandleSpectator(rep,spectator) )
continue;
matchDipoles3.push_back(*d);
}
if ( matchDipoles3.empty() )
continue;
if ( noDipole(emitter,emission,spectator) )
continue;
for ( list<Ptr<SubtractionDipole>::ptr>::const_iterator d =
matchDipoles3.begin(); d != matchDipoles3.end(); ++d ) {
if ( !(**d).canHandle(rep,emitter,emission,spectator) )
continue;
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator b =
borns.begin(); b != borns.end(); ++b ) {
if ( (**b).onlyOneLoop() )
continue;
if ( done.find(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)))
!= done.end() )
continue;
// now get to work
(**d).clearBookkeeping();
(**d).factory(factory());
(**d).realEmitter(emitter);
(**d).realEmission(emission);
(**d).realSpectator(spectator);
(**d).realEmissionME(const_cast<MatchboxMEBase*>(this));
(**d).underlyingBornME(*b);
(**d).setupBookkeeping(mergeInfo);
if ( !((**d).empty()) ) {
Ptr<SubtractionDipole>::ptr nDipole = (**d).cloneMe();
res.push_back(nDipole);
done.insert(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)));
if ( nDipole->isSymmetric() )
done.insert(make_pair(make_pair(make_pair(emission,emitter),spectator),make_pair(*b,*d)));
ostringstream dname;
dname << fullName() << "." << (**b).name() << "."
<< (**d).name() << ".[("
<< emitter << "," << emission << ")," << spectator << "]";
if ( ! (generator()->preinitRegister(nDipole,dname.str()) ) )
throw InitException() << "Dipole " << dname.str() << " already existing.";
if ( !factory()->reweighters().empty() ) {
for ( vector<ReweightPtr>::const_iterator rw = factory()->reweighters().begin();
rw != factory()->reweighters().end(); ++rw )
nDipole->addReweighter(*rw);
}
if ( !factory()->preweighters().empty() ) {
for ( vector<ReweightPtr>::const_iterator rw = factory()->preweighters().begin();
rw != factory()->preweighters().end(); ++rw )
nDipole->addPreweighter(*rw);
}
nDipole->cloneDependencies(dname.str());
}
}
}
}
}
}
for ( vector<Ptr<SubtractionDipole>::ptr>::iterator d = res.begin();
d != res.end(); ++d )
(**d).partnerDipoles(res);
return res;
}
double MatchboxMEBase::colourCorrelatedME2(pair<int,int> ij) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->colourCorrelatedME2(ij)*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::colourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const {
if ( matchboxAmplitude() ) {
largeNBasis->prepare(mePartonData(),false);
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->largeNColourCorrelatedME2(ij,largeNBasis)*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::largeNColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::spinColourCorrelatedME2(pair<int,int> ij,
const SpinCorrelationTensor& c) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->spinColourCorrelatedME2(ij,c)*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::spinColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::spinCorrelatedME2(pair<int,int> ij,
const SpinCorrelationTensor& c) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
double res =
matchboxAmplitude()->spinCorrelatedME2(ij,c)*
me2Norm();
return res;
}
throw Exception()
<< "MatchboxMEBase::spinCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
void MatchboxMEBase::flushCaches() {
MEBase::flushCaches();
if ( matchboxAmplitude() )
matchboxAmplitude()->flushCaches();
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator r =
reweights().begin(); r != reweights().end(); ++r ) {
(**r).flushCaches();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).flushCaches();
}
}
void MatchboxMEBase::print(ostream& os) const {
os << "--- MatchboxMEBase setup -------------------------------------------------------\n";
os << " '" << name() << "' for subprocess:\n";
os << " ";
for ( PDVector::const_iterator pp = subProcess().legs.begin();
pp != subProcess().legs.end(); ++pp ) {
os << (**pp).PDGName() << " ";
if ( pp == subProcess().legs.begin() + 1 )
os << "-> ";
}
os << "\n";
os << " including " << (oneLoop() ? "" : "no ") << "virtual corrections";
if ( oneLoopNoBorn() )
os << " without Born contributions";
os << "\n";
if ( oneLoop() && !onlyOneLoop() ) {
os << " using insertion operators\n";
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
os << " '" << (**v).name() << "' with "
<< ((**v).isDR() ? "" : "C") << "DR/";
if ( (**v).isCS() )
os << "CS";
if ( (**v).isBDK() )
os << "BDK";
if ( (**v).isExpanded() )
os << "expanded";
os << " conventions\n";
}
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::printLastEvent(ostream& os) const {
os << "--- MatchboxMEBase last event information --------------------------------------\n";
os << " for matrix element '" << name() << "'\n";
os << " process considered:\n ";
int in = 0;
for ( cPDVector::const_iterator p = mePartonData().begin();
p != mePartonData().end(); ++p ) {
os << (**p).PDGName() << " ";
if ( ++in == 2 )
os << " -> ";
}
os << " kinematic environment as set by the XComb " << lastXCombPtr() << ":\n"
<< " sqrt(shat)/GeV = " << sqrt(lastSHat()/GeV2)
<< " x1 = " << lastX1() << " x2 = " << lastX2()
<< " alphaS = " << lastAlphaS() << "\n";
os << " momenta/GeV generated from random numbers\n ";
copy(lastXComb().lastRandomNumbers().begin(),
lastXComb().lastRandomNumbers().end(),ostream_iterator<double>(os," "));
os << ":\n ";
for ( vector<Lorentz5Momentum>::const_iterator p = meMomenta().begin();
p != meMomenta().end(); ++p ) {
os << (*p/GeV) << "\n ";
}
os << "last cross section/nb calculated was:\n "
<< (lastMECrossSection()/nanobarn) << " (pdf weight " << lastMEPDFWeight() << ")\n";
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::logGenerateKinematics(const double * r) const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' generated kinematics\nfrom "
<< nDim() << " random numbers:\n";
copy(r,r+nDim(),ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "storing phase space information in XComb "
<< lastXCombPtr() << "\n";
generator()->log() << "generated phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "and Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << "\n" << flush;
}
void MatchboxMEBase::logSetScale() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' set scales using XComb " << lastXCombPtr() << ":\n"
<< "scale/GeV2 = " << (scale()/GeV2) << " xi_R = "
<< renormalizationScaleFactor() << " xi_F = "
<< factorizationScaleFactor() << "\n"
<< "alpha_s = " << lastAlphaS() << "\n" << flush;
}
void MatchboxMEBase::logPDFWeight() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' calculated pdf weight = "
<< lastMEPDFWeight() << " from XComb "
<< lastXCombPtr() << "\n"
<< "x1 = " << lastX1() << " (" << (mePartonData()[0]->coloured() ? "" : "not ") << "used) "
<< "x2 = " << lastX2() << " (" << (mePartonData()[1]->coloured() ? "" : "not ") << "used)\n"
<< flush;
}
void MatchboxMEBase::logME2() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated me2 using XComb "
<< lastXCombPtr() << "\n"
<< "and phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "sHat/GeV2 = " << (lastSHat()/GeV2)
<< " me2 = " << lastME2() << "\n" << flush;
}
void MatchboxMEBase::logDSigHatDR() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated cross section using XComb "
<< lastXCombPtr() << "\n"
<< "Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << " dsig/nb = "
<< (lastMECrossSection()/nanobarn) << "\n" << flush;
}
void MatchboxMEBase::cloneDependencies(const std::string& prefix) {
if ( phasespace() ) {
Ptr<MatchboxPhasespace>::ptr myPhasespace = phasespace()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myPhasespace->name();
if ( ! (generator()->preinitRegister(myPhasespace,pname.str()) ) )
throw InitException() << "Phasespace generator " << pname.str() << " already existing.";
myPhasespace->cloneDependencies(pname.str());
phasespace(myPhasespace);
}
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
if ( matchboxAmplitude() ) {
Ptr<MatchboxAmplitude>::ptr myAmplitude = matchboxAmplitude()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myAmplitude->name();
if ( ! (generator()->preinitRegister(myAmplitude,pname.str()) ) )
throw InitException() << "Amplitude " << pname.str() << " already existing.";
myAmplitude->cloneDependencies(pname.str());
matchboxAmplitude(myAmplitude);
amplitude(myAmplitude);
matchboxAmplitude()->orderInGs(orderInAlphaS());
matchboxAmplitude()->orderInGem(orderInAlphaEW());
}
if ( scaleChoice() ) {
Ptr<MatchboxScaleChoice>::ptr myScaleChoice = scaleChoice()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myScaleChoice->name();
if ( ! (generator()->preinitRegister(myScaleChoice,pname.str()) ) )
throw InitException() << "Scale choice " << pname.str() << " already existing.";
scaleChoice(myScaleChoice);
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
Ptr<MatchboxReweightBase>::ptr myReweight = (**rw).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**rw).name();
if ( ! (generator()->preinitRegister(myReweight,pname.str()) ) )
throw InitException() << "Reweight " << pname.str() << " already existing.";
myReweight->cloneDependencies(pname.str());
*rw = myReweight;
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
Ptr<MatchboxInsertionOperator>::ptr myIOP = (**v).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**v).name();
if ( ! (generator()->preinitRegister(myIOP,pname.str()) ) )
throw InitException() << "Insertion operator " << pname.str() << " already existing.";
*v = myIOP;
}
}
void MatchboxMEBase::prepareXComb(MatchboxXCombData& xc) const {
// fixme We need to pass on the partons from the xcmob here, not
// assuming one subprocess per matrix element
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
xc.nDimPhasespace(phasespace()->nDim(nout));
}
if ( matchboxAmplitude() ) {
xc.nDimAmplitude(matchboxAmplitude()->nDimAdditional());
if ( matchboxAmplitude()->colourBasis() ) {
size_t cdim =
matchboxAmplitude()->colourBasis()->prepare(diagrams(),noCorrelations());
xc.colourBasisDim(cdim);
}
if ( matchboxAmplitude()->isExternal() ) {
xc.externalId(matchboxAmplitude()->externalId(diagrams().front()->partons()));
}
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
xc.nDimInsertions(insertionAdd);
xc.nLight(getNLight());
for (size_t inlv=0; inlv<getNLightJetVec().size(); ++inlv)
xc.nLightJetVec(getNLightJetVec()[inlv]);
for (size_t inhv=0; inhv<getNHeavyJetVec().size(); ++inhv)
xc.nHeavyJetVec(getNHeavyJetVec()[inhv]);
for (size_t inlpv=0; inlpv<getNLightProtonVec().size(); ++inlpv)
xc.nLightProtonVec(getNLightProtonVec()[inlpv]);
xc.olpId(olpProcess());
if ( initVerbose() ) {
string fname = name() + ".diagrams";
ifstream test(fname.c_str());
if ( !test ) {
test.close();
ofstream out(fname.c_str());
for ( vector<Ptr<DiagramBase>::ptr>::const_iterator d = diagrams().begin();
d != diagrams().end(); ++d ) {
DiagramDrawer::drawDiag(out,dynamic_cast<const Tree2toNDiagram&>(**d));
out << "\n";
}
}
}
}
StdXCombPtr MatchboxMEBase::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec&,
tStdXCombPtr newHead,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts, newME,
newDiagrams, mir,
newHead));
prepareXComb(*xc);
return xc;
}
StdXCombPtr MatchboxMEBase::makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newHead, newPartonBins, newME, newDiagrams));
prepareXComb(*xc);
return xc;
}
void MatchboxMEBase::persistentOutput(PersistentOStream & os) const {
os << theLastXComb << theFactory << thePhasespace
<< theAmplitude << theScaleChoice << theVirtuals
<< theReweights << theSubprocess << theOneLoop
<< theOneLoopNoBorn
<< epsilonSquarePoleHistograms << epsilonPoleHistograms
<< theOLPProcess << theNoCorrelations
<< theHavePDFs << checkedPDFs<<theDiagramWeightVerboseDown<<theDiagramWeightVerboseUp;
}
void MatchboxMEBase::persistentInput(PersistentIStream & is, int) {
is >> theLastXComb >> theFactory >> thePhasespace
>> theAmplitude >> theScaleChoice >> theVirtuals
>> theReweights >> theSubprocess >> theOneLoop
>> theOneLoopNoBorn
>> epsilonSquarePoleHistograms >> epsilonPoleHistograms
>> theOLPProcess >> theNoCorrelations
>> theHavePDFs >> checkedPDFs>>theDiagramWeightVerboseDown>>theDiagramWeightVerboseUp;
lastMatchboxXComb(theLastXComb);
}
void MatchboxMEBase::Init() {
static ClassDocumentation<MatchboxMEBase> documentation
("MatchboxMEBase is the base class for matrix elements "
"in the context of the matchbox NLO interface.");
}
IBPtr MatchboxMEBase::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxMEBase::fullclone() const {
return new_ptr(*this);
}
void MatchboxMEBase::doinit() {
MEBase::doinit();
if ( !theAmplitude )
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
if ( matchboxAmplitude() )
matchboxAmplitude()->init();
if ( phasespace() ) {
phasespace()->init();
}
if ( scaleChoice() ) {
scaleChoice()->init();
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).init();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).init();
}
}
void MatchboxMEBase::bookMEoverDiaWeight(double x) const {
if (MEoverDiaWeight.size()==0){
theDiagramWeightVerboseDown=min(theDiagramWeightVerboseDown,x*0.9);
theDiagramWeightVerboseUp=max(theDiagramWeightVerboseUp,x*1.1);
}
map<double,double>::iterator bx =MEoverDiaWeight.upper_bound(x);
if ( bx == MEoverDiaWeight.end() ) {
return;
}
bx->second += 1.;
Nevents++;
if (int(Nevents)%1000==0){
ofstream out((RunDirectories::runStorage()+"/"+name()+"-MeoDiaW.dat").c_str());
int i=0;
double m=0.;
for ( map<double,double>::const_iterator bx = MEoverDiaWeight.begin();bx != MEoverDiaWeight.end(); ++bx,i++ ) {
out << " " << bx->first<<" "<<( bx->second/double(Nevents))<<"\n ";
m=max(m,bx->second/double(Nevents));
}
out.close();
ofstream gpout((RunDirectories::runStorage()+"/"+name()+"-MeoDiaW.gp").c_str());
gpout << "set terminal epslatex color solid\n"
<< "set output '" << name()<<"-MeoDiaW"<< "-plot.tex'\n"
<< "#set logscale x\n"
<< "set xrange [" << theDiagramWeightVerboseDown << ":" << theDiagramWeightVerboseUp << "]\n"
<< "set yrange [0.:"<<(m*0.95)<<"]\n"
<< "set xlabel '$log(ME/\\sum DiaW)$'\n"
<< "set size 0.7,0.7\n"
<< "plot 1 w lines lc rgbcolor \"#DDDDDD\" notitle, '" << name()<<"-MeoDiaW"
<< ".dat' with histeps lc rgbcolor \"#00AACC\" t '$"<<name()<<"$'";
gpout.close();
}
}
void MatchboxMEBase::doinitrun() {
MEBase::doinitrun();
if ( matchboxAmplitude() )
matchboxAmplitude()->initrun();
if ( phasespace() ) {
phasespace()->initrun();
}
if ( scaleChoice() ) {
scaleChoice()->initrun();
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).initrun();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).initrun();
}
if ( factory()->verboseDia() ) {
for ( int k = 0; k < factory()->diagramWeightVerboseNBins() ; ++k ) {
MEoverDiaWeight[theDiagramWeightVerboseDown+
double(k)*(theDiagramWeightVerboseUp-
theDiagramWeightVerboseDown)
/double(factory()->diagramWeightVerboseNBins()) ] = 0.;
}
Nevents=0.;
ofstream out("DiagramWeights.sh");
out<<"P=$(pwd)"
<<"\ncd "<<RunDirectories::runStorage()
<<"\nrm -f DiagramWeights.tex"
<<"\n echo \"\\documentclass{article}\" >> DiagramWeights.tex"
<<"\n echo \"\\usepackage{amsmath,amsfonts,amssymb,graphicx,color}\" >> DiagramWeights.tex"
<<"\n echo \"\\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}\" >> DiagramWeights.tex"
<<"\n echo \"\\begin{document}\" >> DiagramWeights.tex"
<<"\n echo \"\\setlength{\\parindent}{0cm}\" >> DiagramWeights.tex"
<<"\n\n for i in $(ls *.gp | sed s/'\\.gp'//g) ; "
<<"\n do"
<<"\n echo \"\\input{\"\"$i\"-plot\"}\" >> DiagramWeights.tex"
<<"\n done"
<<"\n echo \"\\end{document}\" >> DiagramWeights.tex "
<<"\n for i in *.gp ; do "
<<"\n gnuplot $i "
<<"\n done "
<<"\n pdflatex DiagramWeights.tex \ncp DiagramWeights.pdf $P";
out.close();
}
}
void MatchboxMEBase::dofinish() {
MEBase::dofinish();
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonSquarePoleHistograms.begin();
b != epsilonSquarePoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData(),"epsilonSquarePoles-",b->first);
}
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonPoleHistograms.begin();
b != epsilonPoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData(),"epsilonPoles-",b->first);
}
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxMEBase,MEBase>
describeHerwigMatchboxMEBase("Herwig::MatchboxMEBase", "Herwig.so");
diff --git a/Sampling/GeneralSampler.cc b/Sampling/GeneralSampler.cc
--- a/Sampling/GeneralSampler.cc
+++ b/Sampling/GeneralSampler.cc
@@ -1,891 +1,893 @@
// -*- C++ -*-
//
// GeneralSampler.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the GeneralSampler class.
//
#include "GeneralSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Utilities/LoopGuard.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "Herwig++/Utilities/RunDirectories.h"
#include "Herwig++/Utilities/XML/ElementIO.h"
#include <boost/progress.hpp>
#include <cstdlib>
using namespace Herwig;
GeneralSampler::GeneralSampler()
: theVerbose(false),
theIntegratedXSec(ZERO), theIntegratedXSecErr(ZERO),
theUpdateAfter(1), crossSectionCalls(0), gotCrossSections(false),
theSumWeights(0.), theSumWeights2(0.),
theAttempts(0), theAccepts(0),
theMaxWeight(0.0), theAddUpSamplers(false),
theGlobalMaximumWeight(true), theFlatSubprocesses(false),
isSampling(false), theMinSelection(0.01), runCombinationData(false),
theAlmostUnweighted(false), maximumExceeds(0),
maximumExceededBy(0.), didReadGrids(false),
theParallelIntegration(false),
theIntegratePerJob(0), theIntegrationJobs(0),
justAfterIntegrate(false) {}
GeneralSampler::~GeneralSampler() {}
IBPtr GeneralSampler::clone() const {
return new_ptr(*this);
}
IBPtr GeneralSampler::fullclone() const {
return new_ptr(*this);
}
double sign(double x) {
return x >= 0. ? 1. : -1.;
}
void GeneralSampler::initialize() {
if ( theParallelIntegration &&
runLevel() == ReadMode )
throw Exception()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Parallel integration is only supported in the build/integrate/run mode\n\n"
<< "--------------------------------------------------------------------------------\n"
<< Exception::abortnow;
if ( runLevel() == ReadMode ||
runLevel() == IntegrationMode ) {
assert(theSamplers.empty());
if ( !theGrids.children().empty() )
Repository::clog()
<< "--------------------------------------------------------------------------------\n\n"
<< "Using an existing grid. Please consider re-running the grid adaption\n"
<< "when there have been significant changes to parameters, cuts, etc.\n\n"
<< "--------------------------------------------------------------------------------\n"
<< flush;
}
if ( theParallelIntegration ) {
if ( !theIntegratePerJob && !theIntegrationJobs )
throw Exception()
<< "Please specify the number of subprocesses per integration job or the "
<< "number of integration jobs to be created."
<< Exception::abortnow;
if ( theIntegrationJobs ) {
unsigned int nintegrate = eventHandler()->nBins()/theIntegrationJobs;
if ( eventHandler()->nBins() % theIntegrationJobs != 0 )
++nintegrate;
theIntegratePerJob = max(theIntegratePerJob,nintegrate);
}
unsigned int jobCount = 0;
ofstream* jobList = 0;
generator()->log()
<< "--------------------------------------------------------------------------------\n"
<< "preparing integration jobs ...\n" << flush;
vector<int> randomized;
vector<int> pickfrom;
for ( int b = 0; b < eventHandler()->nBins(); ++b )
pickfrom.push_back(b);
//set<int> check;
while ( !pickfrom.empty() ) {
size_t idx = UseRandom::irnd(pickfrom.size());
randomized.push_back(pickfrom[idx]);
pickfrom.erase(pickfrom.begin() + idx);
}
int b = 0;
for ( vector<int>::const_iterator bx = randomized.begin();
bx != randomized.end(); ++bx, ++b ) {
if ( b == 0 || b % theIntegratePerJob == 0 ) {
if ( jobList ) {
jobList->close();
jobList = 0;
}
ostringstream name;
string prefix = RunDirectories::buildStorage();
if ( prefix.empty() )
prefix = "./";
else if ( *prefix.rbegin() != '/' )
prefix += "/";
name << prefix << "integrationJob" << jobCount;
++jobCount;
string fname = name.str();
jobList = new ofstream(fname.c_str());
if ( !*jobList )
throw Exception() << "Failed to write integration job list"
<< Exception::abortnow;
}
*jobList << *bx << " ";
}
generator()->log()
<< "--------------------------------------------------------------------------------\n\n"
<< "Wrote " << jobCount << " integration jobs\n"
<< "Please submit integration jobs with the\nintegrate --jobid=x\ncommand for job ids "
<< "from 0 to " << (jobCount-1) << "\n\n"
<< "--------------------------------------------------------------------------------\n"
<< flush;
if ( jobList ) {
jobList->close();
jobList = 0;
}
theParallelIntegration = false;
return;
}
if ( runLevel() == BuildMode )
return;
if ( !samplers().empty() )
return;
if ( binSampler()->adaptsOnTheFly() ) {
if ( !theAddUpSamplers ) {
Repository::clog() << "Warning: On-the-fly adapting samplers require cross section calculation from "
<< "adding up individual samplers. The AddUpSamplers flag will be switched on.";
}
theAddUpSamplers = true;
}
if ( !weighted() && !binSampler()->canUnweight() )
throw Exception() << "Unweighted events requested from weighted bin sampler object.";
if ( theFlatSubprocesses && !theGlobalMaximumWeight ) {
Repository::clog() << "Warning: Can only use a global maximum weight when selecting subprocesses "
<< "uniformly. The GlobalMaximumWeight flag will be switched on.";
theGlobalMaximumWeight = true;
}
set<int> binsToIntegrate;
if ( integrationList() != "" ) {
string prefix = RunDirectories::buildStorage();
if ( prefix.empty() )
prefix = "./";
else if ( *prefix.rbegin() != '/' )
prefix += "/";
string fname = prefix + integrationList();
ifstream jobList(fname.c_str());
if ( jobList ) {
int b = 0;
while ( jobList >> b )
binsToIntegrate.insert(b);
} else {
Repository::clog()
<< "Job list '"
<< integrationList() << "' not found.\n"
<< "Assuming empty integration job\n" << flush;
return;
}
}
if ( binsToIntegrate.empty() ) {
for ( int b = 0; b < eventHandler()->nBins(); ++b )
binsToIntegrate.insert(b);
}
boost::progress_display* progressBar = 0;
if ( !theVerbose && !justAfterIntegrate ) {
Repository::clog() << "integrating subprocesses";
progressBar = new boost::progress_display(binsToIntegrate.size(),Repository::clog());
}
for ( set<int>::const_iterator bit = binsToIntegrate.begin(); bit != binsToIntegrate.end(); ++bit ) {
Ptr<BinSampler>::ptr s = theBinSampler->cloneMe();
s->eventHandler(eventHandler());
s->sampler(this);
s->bin(*bit);
lastSampler(s);
s->doWeighted(eventHandler()->weighted());
s->setupRemappers(theVerbose);
if ( justAfterIntegrate )
s->readIntegrationData();
s->initialize(theVerbose);
samplers()[*bit] = s;
if ( !theVerbose && !justAfterIntegrate )
++(*progressBar);
if ( s->nanPoints() && theVerbose ) {
Repository::clog() << "warning: "
<< s->nanPoints() << " of "
<< s->allPoints() << " points with nan or inf weight.\n"
<< flush;
}
}
if ( progressBar ) {
delete progressBar;
progressBar = 0;
}
if ( runLevel() == IntegrationMode ) {
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
s->second->saveIntegrationData();
}
writeGrids();
return;
}
if ( theVerbose ) {
bool oldAdd = theAddUpSamplers;
theAddUpSamplers = true;
try {
Repository::clog() << "estimated total cross section is ( "
<< integratedXSec()/nanobarn << " +/- "
<< integratedXSecErr()/nanobarn << " ) nb\n" << flush;
} catch (...) {
theAddUpSamplers = oldAdd;
throw;
}
theAddUpSamplers = oldAdd;
}
updateSamplers();
if ( samplers().empty() ) {
throw Exception() << "No processes with non-zero cross section present."
<< Exception::abortnow;
}
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
if ( justAfterIntegrate )
s->second->saveIntegrationData();
}
if ( !justAfterIntegrate )
writeGrids();
}
double GeneralSampler::generate() {
long excptTries = 0;
gotCrossSections = false;
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
double weight = 0.;
while ( true ) {
try {
weight = 1.0;
double p = lastSampler()->referenceWeight()/lastSampler()->bias()/theMaxWeight;
if ( weighted() )
weight *= p;
else if ( p < UseRandom::rnd() )
weight = 0.0;
if ( weight != 0.0 )
weight *= lastSampler()->generate()/lastSampler()->referenceWeight();
} catch(BinSampler::NextIteration) {
updateSamplers();
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
} catch (...) {
throw;
}
if ( isnan(lastSampler()->lastWeight()) || isinf(lastSampler()->lastWeight()) ) {
lastSampler() = samplers().upper_bound(UseRandom::rnd())->second;
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
}
theAttempts += 1;
if ( abs(weight) == 0.0 ) {
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
}
if ( !eventHandler()->weighted() && !theAlmostUnweighted ) {
if ( abs(weight) > 1. ) {
++maximumExceeds;
maximumExceededBy += abs(weight)-1.;
}
if ( weight > 0.0 )
weight = 1.;
else
weight = -1.;
}
break;
}
theAccepts += 1;
if ( excptTries == eventHandler()->maxLoop() )
throw Exception()
<< "GeneralSampler::generate() : Maximum number of tries to re-run event "
<< "selection reached. Aborting now." << Exception::runerror;
lastPoint() = lastSampler()->lastPoint();
lastSampler()->accept();
theSumWeights += weight;
theSumWeights2 += sqr(weight);
return weight;
}
void GeneralSampler::rejectLast() {
if ( !lastSampler() )
return;
double w = 0.0;
if ( weighted() )
w = lastSampler()->lastWeight()/lastSampler()->bias()/theMaxWeight;
else
w = lastSampler()->lastWeight()/lastSampler()->referenceWeight();
lastSampler()->reject();
theSumWeights -= w;
theSumWeights2 -= sqr(w);
theAttempts -= 1;
theAccepts -= 1;
}
void GeneralSampler::updateSamplers() {
map<double,Ptr<BinSampler>::ptr> checkedSamplers;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
if ( s->second->averageAbsWeight() == 0.0 ) {
generator()->log() << "Warning: no phase space points with non-zero cross section\n"
<< "could be obtained for the process: "
<< s->second->process() << "\n"
<< "This process will not be considered. Try increasing InitialPoints.\n"
<< flush;
if ( s->second->nanPoints() ) {
generator()->log() << "Warning: "
<< s->second->nanPoints() << " of "
<< s->second->allPoints() << " points with nan or inf weight\n"
<< "in " << s->second->process() << "\n" << flush;
}
continue;
}
checkedSamplers.insert(*s);
}
theSamplers = checkedSamplers;
if ( samplers().empty() )
return;
double allMax = 0.0;
double sumbias = 0.;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
double bias = 1.;
if ( !theFlatSubprocesses )
bias *= s->second->averageAbsWeight();
s->second->bias(bias);
sumbias += bias;
allMax = max(allMax,s->second->maxWeight());
}
double nsumbias = 0.0;
bool needAdjust = false;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
needAdjust |= s->second->bias()/sumbias < theMinSelection;
s->second->bias(max(s->second->bias()/sumbias,theMinSelection));
nsumbias += s->second->bias();
}
if ( nsumbias == 0.0 ) {
samplers().clear();
return;
}
if ( needAdjust ) {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->bias(s->second->bias()/nsumbias);
}
}
theMaxWeight = 0.0;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
double wref = theGlobalMaximumWeight ? allMax : s->second->maxWeight();
s->second->referenceWeight(wref);
theMaxWeight = max(theMaxWeight,wref/s->second->bias());
if ( (isSampling && s->second == lastSampler()) ||
!isSampling )
s->second->nextIteration();
}
map<double,Ptr<BinSampler>::ptr> newSamplers;
double current = 0.;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
if ( s->second->bias() == 0.0 )
continue;
current += s->second->bias();
newSamplers[current] = s->second;
}
samplers() = newSamplers;
}
void GeneralSampler::currentCrossSections() const {
if ( !theAddUpSamplers ) {
double n = attempts();
if ( n > 1 ) {
theIntegratedXSec = sumWeights()*maxXSec()/attempts();
double sw = sumWeights(); double sw2 = sumWeights2();
theIntegratedXSecErr = maxXSec()*sqrt(abs(sw2/n-sqr(sw/n))/(n-1));
} else {
theIntegratedXSec = ZERO;
theIntegratedXSecErr = ZERO;
}
return;
}
if ( gotCrossSections )
return;
if ( crossSectionCalls > 0 ) {
if ( ++crossSectionCalls == theUpdateAfter ) {
crossSectionCalls = 0;
} else return;
}
++crossSectionCalls;
gotCrossSections = true;
theIntegratedXSec = ZERO;
double var = 0.0;
for ( map<double,Ptr<BinSampler>::ptr>::const_iterator s = samplers().begin();
s != samplers().end(); ++s ) {
theIntegratedXSec += s->second->integratedXSec();
var += sqr(s->second->integratedXSecErr()/nanobarn);
}
theIntegratedXSecErr = sqrt(var)*nanobarn;
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void GeneralSampler::doinit() {
+ if ( RunDirectories::empty() )
+ RunDirectories::pushRunId(generator()->runName());
if ( integratePerJob() || integrationJobs() ) {
theParallelIntegration = true;
theIntegratePerJob = integratePerJob();
theIntegrationJobs = integrationJobs();
}
readGrids();
if ( theGrids.children().empty() && runLevel() == RunMode )
generator()->log()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Warning: No grid file could be found at the start of this run.\n\n"
<< "* For a read/run setup intented to be used with --setupfile please consider\n"
<< " using the build/integrate/run setup.\n"
<< "* For a build/integrate/run setup to be used with --setupfile please ensure\n"
<< " that the same setupfile is provided to both, the integrate and run steps.\n\n"
<< "--------------------------------------------------------------------------------\n";
if ( samplers().empty() && runLevel() == RunMode )
justAfterIntegrate = true;
SamplerBase::doinit();
}
void GeneralSampler::dofinish() {
set<string> compensating;
for ( map<double,Ptr<BinSampler>::ptr>::const_iterator s =
samplers().begin(); s != samplers().end(); ++s ) {
if ( s->second->compensating() ) {
compensating.insert(s->second->process());
}
if ( s->second->nanPoints() ) {
generator()->log() << "warning: "
<< s->second->nanPoints() << " of "
<< s->second->allPoints() << " points with nan or inf weight\n"
<< "in " << s->second->process() << "\n" << flush;
}
s->second->finalize(theVerbose);
}
if ( theVerbose ) {
if ( !compensating.empty() ) {
generator()->log() << "warning: sampling for the following processes is still compensating:\n";
for ( set<string>::const_iterator c = compensating.begin();
c != compensating.end(); ++c )
generator()->log() << *c << "\n";
}
generator()->log() << "final integrated cross section is ( "
<< integratedXSec()/nanobarn << " +/- "
<< integratedXSecErr()/nanobarn << " ) nb\n" << flush;
}
if ( !compensating.empty() ) {
generator()->log() << "Warning: Some samplers are still in compensating mode.\n" << flush;
}
if ( maximumExceeds != 0 ) {
generator()->log() << maximumExceeds << " of " << theAttempts
<< " attempted points exceeded the guessed maximum weight\n"
<< "with an average relative deviation of "
<< maximumExceededBy/maximumExceeds << "\n" << flush;
}
if ( runCombinationData ) {
string dataName = RunDirectories::runStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
dataName += "HerwigSampling.dat";
ofstream data(dataName.c_str());
double runXSec =
theMaxWeight*theSumWeights/theAttempts;
double runXSecErr =
sqr(theMaxWeight)*(1./theAttempts)*(1./(theAttempts-1.))*
abs(theSumWeights2 - sqr(theSumWeights)/theAttempts);
data << setprecision(20);
data << "CrossSectionCombined "
<< (integratedXSec()/nanobarn) << " +/- "
<< (integratedXSecErr()/nanobarn) << "\n"
<< "CrossSectionRun "
<< runXSec << " +/- " << sqrt(runXSecErr) << "\n"
<< "PointsAttempted " << theAttempts << "\n"
<< "PointsAccepted " << theAccepts << "\n"
<< "SumWeights " << theSumWeights << "\n"
<< "SumWeights2 " << theSumWeights2 << "\n"
<< flush;
}
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
if ( justAfterIntegrate )
s->second->saveIntegrationData();
}
writeGrids();
SamplerBase::dofinish();
}
void GeneralSampler::doinitrun() {
readGrids();
if ( theGrids.children().empty() )
generator()->log()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Warning:No grid file could be found at the start of this run.\n\n"
<< "* For a read/run setup intented to be used with --setupfile please consider\n"
<< " using the build/integrate/run setup.\n"
<< "* For a build/integrate/run setup to be used with --setupfile please ensure\n"
<< " that the same setupfile is provided to both, the integrate and run steps.\n\n"
<< "--------------------------------------------------------------------------------\n";
eventHandler()->initrun();
if ( samplers().empty() ) {
justAfterIntegrate = true;
if ( !hasSetupFile() )
initialize();
} else {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->setupRemappers(theVerbose);
if ( justAfterIntegrate )
s->second->readIntegrationData();
s->second->initialize(theVerbose);
}
}
isSampling = true;
SamplerBase::doinitrun();
}
void GeneralSampler::rebind(const TranslationMap & trans) {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s =
samplers().begin(); s != samplers().end(); ++s )
s->second = trans.translate(s->second);
SamplerBase::rebind(trans);
}
IVector GeneralSampler::getReferences() {
IVector ret = SamplerBase::getReferences();
for ( map<double,Ptr<BinSampler>::ptr>::iterator s =
samplers().begin(); s != samplers().end(); ++s )
ret.push_back(s->second);
return ret;
}
void GeneralSampler::writeGrids() const {
if ( theGrids.children().empty() )
return;
string dataName = RunDirectories::runStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
dataName += "HerwigGrids.xml";
ofstream out(dataName.c_str());
XML::ElementIO::put(theGrids,out);
}
void GeneralSampler::readGrids() {
if ( didReadGrids )
return;
RunDirectories directories;
while ( directories && !didReadGrids ) {
string dataName = directories.nextRunStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
dataName += "HerwigGrids.xml";
ifstream in(dataName.c_str());
if ( in ) {
theGrids = XML::ElementIO::get(in);
didReadGrids = true;
}
}
if ( !didReadGrids )
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
}
void GeneralSampler::persistentOutput(PersistentOStream & os) const {
os << theVerbose << theBinSampler << theSamplers << theLastSampler
<< theUpdateAfter << crossSectionCalls << gotCrossSections
<< ounit(theIntegratedXSec,nanobarn)
<< ounit(theIntegratedXSecErr,nanobarn)
<< theSumWeights << theSumWeights2
<< theAttempts << theAccepts << theMaxWeight
<< theAddUpSamplers << theGlobalMaximumWeight
<< theFlatSubprocesses << isSampling << theMinSelection
<< runCombinationData << theAlmostUnweighted << maximumExceeds
<< maximumExceededBy << theParallelIntegration
<< theIntegratePerJob << theIntegrationJobs;
}
void GeneralSampler::persistentInput(PersistentIStream & is, int) {
is >> theVerbose >> theBinSampler >> theSamplers >> theLastSampler
>> theUpdateAfter >> crossSectionCalls >> gotCrossSections
>> iunit(theIntegratedXSec,nanobarn)
>> iunit(theIntegratedXSecErr,nanobarn)
>> theSumWeights >> theSumWeights2
>> theAttempts >> theAccepts >> theMaxWeight
>> theAddUpSamplers >> theGlobalMaximumWeight
>> theFlatSubprocesses >> isSampling >> theMinSelection
>> runCombinationData >> theAlmostUnweighted >> maximumExceeds
>> maximumExceededBy >> theParallelIntegration
>> theIntegratePerJob >> theIntegrationJobs;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<GeneralSampler,SamplerBase>
describeHerwigGeneralSampler("Herwig::GeneralSampler", "HwSampling.so");
void GeneralSampler::Init() {
static ClassDocumentation<GeneralSampler> documentation
("A GeneralSampler class");
static Reference<GeneralSampler,BinSampler> interfaceBinSampler
("BinSampler",
"The bin sampler to be used.",
&GeneralSampler::theBinSampler, false, false, true, false, false);
static Parameter<GeneralSampler,size_t> interfaceUpdateAfter
("UpdateAfter",
"Update cross sections every number of events.",
&GeneralSampler::theUpdateAfter, 1, 1, 0,
false, false, Interface::lowerlim);
static Switch<GeneralSampler,bool> interfaceVerbose
("Verbose",
"",
&GeneralSampler::theVerbose, false, false, false);
static SwitchOption interfaceVerboseOn
(interfaceVerbose,
"On",
"",
true);
static SwitchOption interfaceVerboseOff
(interfaceVerbose,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceAddUpSamplers
("AddUpSamplers",
"Calculate cross sections from adding up individual samplers.",
&GeneralSampler::theAddUpSamplers, false, false, false);
static SwitchOption interfaceAddUpSamplersOn
(interfaceAddUpSamplers,
"On",
"",
true);
static SwitchOption interfaceAddUpSamplersOff
(interfaceAddUpSamplers,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceGlobalMaximumWeight
("GlobalMaximumWeight",
"Use a global maximum weight instead of partial unweighting.",
&GeneralSampler::theGlobalMaximumWeight, true, false, false);
static SwitchOption interfaceGlobalMaximumWeightOn
(interfaceGlobalMaximumWeight,
"On",
"",
true);
static SwitchOption interfaceGlobalMaximumWeightOff
(interfaceGlobalMaximumWeight,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceFlatSubprocesses
("FlatSubprocesses",
"[debug] Perform a flat subprocess selection.",
&GeneralSampler::theFlatSubprocesses, false, false, false);
static SwitchOption interfaceFlatSubprocessesOn
(interfaceFlatSubprocesses,
"On",
"",
true);
static SwitchOption interfaceFlatSubprocessesOff
(interfaceFlatSubprocesses,
"Off",
"",
false);
static Parameter<GeneralSampler,double> interfaceMinSelection
("MinSelection",
"A minimum subprocess selection probability.",
&GeneralSampler::theMinSelection, 0.01, 0.0, 1.0,
false, false, Interface::limited);
static Switch<GeneralSampler,bool> interfaceRunCombinationData
("RunCombinationData",
"",
&GeneralSampler::runCombinationData, false, false, false);
static SwitchOption interfaceRunCombinationDataOn
(interfaceRunCombinationData,
"On",
"",
true);
static SwitchOption interfaceRunCombinationDataOff
(interfaceRunCombinationData,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceAlmostUnweighted
("AlmostUnweighted",
"",
&GeneralSampler::theAlmostUnweighted, false, false, false);
static SwitchOption interfaceAlmostUnweightedOn
(interfaceAlmostUnweighted,
"On",
"",
true);
static SwitchOption interfaceAlmostUnweightedOff
(interfaceAlmostUnweighted,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceParallelIntegration
("ParallelIntegration",
"Prepare parallel jobs for integration.",
&GeneralSampler::theParallelIntegration, false, false, false);
static SwitchOption interfaceParallelIntegrationYes
(interfaceParallelIntegration,
"Yes",
"",
true);
static SwitchOption interfaceParallelIntegrationNo
(interfaceParallelIntegration,
"No",
"",
false);
static Parameter<GeneralSampler,unsigned int> interfaceIntegratePerJob
("IntegratePerJob",
"The number of subprocesses to integrate per job.",
&GeneralSampler::theIntegratePerJob, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<GeneralSampler,unsigned int> interfaceIntegrationJobs
("IntegrationJobs",
"The maximum number of integration jobs to create.",
&GeneralSampler::theIntegrationJobs, 0, 0, 0,
false, false, Interface::lowerlim);
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 9:12 PM (1 d, 27 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3806214
Default Alt Text
(79 KB)

Event Timeline