Page MenuHomeHEPForge

No OneTemporary

Index: docs/paper/angular-formulae.tex
===================================================================
--- docs/paper/angular-formulae.tex (revision 429)
+++ docs/paper/angular-formulae.tex (revision 430)
@@ -1,141 +1,165 @@
\section{Formulae for available angular distributions}
\label{sec:angular-formulae}
The angular distributions and Blatt--Weisskopf form factors set out in Sec.~\ref{sec:angular} are the default settings in \laura.
However, other formalisms to describe the angular distributions are also implemented in the package and it is straightforward to switch between them.
This appendix details these alternative formalisms and illustrates the few additional lines of code required to use them.
The four spin-factor formalisms are defined in the enumeration
\texttt{LauAbsResonance::LauSpinType}, which can take the values
\texttt{Zemach\_P} (the default setting), \texttt{Zemach\_Pstar},
\texttt{Covariant}, and \texttt{Legendre}.
The simplest description of the spin factors is that of the \texttt{Legendre}
formalism, where the spin factors are simply the Legendre polynomials
(with some additional numerical constants in order to maintain consistency of
the phase conventions among the various formalisms)
\begin{eqnarray}
\label{eq:Legendre-TFactors}
L = 0 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,1\,,\\
L = 1 \ : \ T(\vec{p},\vec{q}) & = & -\,2\,\cos{\theta}\,,\\
L = 2 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,\frac{4}{3} \left[3\cos^2{\theta} - 1\right]\,,\\
L = 3 \ : \ T(\vec{p},\vec{q}) & = & -\,\frac{24}{15} \left[5\cos^3{\theta} - 3\cos{\theta}\right]\,,\\
L = 4 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,\frac{16}{35} \left[35\cos^4{\theta} - 30\cos^2{\theta} + 3\right]\,,\\
L = 5 \ : \ T(\vec{p},\vec{q}) & = & -\,\frac{32}{63} \left[63\cos^5{\theta} - 70\cos^3{\theta} + 15\cos{\theta}\right]\,.
\label{eq:Legendre-TFactors-end}
\end{eqnarray}
The spin factors for \texttt{Zemach\_P} are those given in Equations~(\ref{eq:ZTFactors})--(\ref{eq:ZTFactors-end}), which differ from the expressions of Equations~(\ref{eq:Legendre-TFactors})--(\ref{eq:Legendre-TFactors-end}) by extra factors of $-2\,p\,q$.
Similarly, those for \texttt{Zemach\_Pstar} are the same as those for
\texttt{Zemach\_P} but with the bachelor momentum evaluated in the rest frame
of the parent particle~($p^{\ast}$), rather than that of the resonance~($p$).
The angular distributions have been implemented in \laura\ up to $L=5$, which is two units larger than the maximum spin of any resonance observed to be produced in any Dalitz plot to date~\cite{Aaij:2014xza,Aaij:2014baa,Aaij:2015sqa}.
The angular distributions discussed above are based on a non-relativistic assumption.
For certain channels, this may not be sufficiently precise, and therefore the \texttt{Covariant} formalism is also made available.
This is given by
\begin{eqnarray}
\label{eq:Covariant-TFactors}
L = 0 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,1\,,\\
L = 1 \ : \ T(\vec{p},\vec{q}) & = & -\,2\,(p^{\ast}q)\sqrt{1+\frac{p^2}{m^2_P}}\,\cos{\theta}\,,\\
L = 2 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,\frac{4}{3}\,(p^{\ast}q)^2\left(\frac{3}{2}+\frac{p^2}{m^2_P}\right)\left[3\cos^2{\theta} - 1\right]\,,\\
L = 3 \ : \ T(\vec{p},\vec{q}) & = & -\,\frac{24}{15}\,(p^{\ast}q)^3\sqrt{1+\frac{p^2}{m^2_P}}\left(\frac{5}{2}+\frac{p^2}{m^2_P}\right)\left[5\cos^3{\theta} - 3\cos{\theta}\right]\,,\\
L = 4 \ : \ T(\vec{p},\vec{q}) & = & \phantom{-}\,\frac{16}{35}\,(p^{\ast}q)^4\left(\frac{8p^4}{m^4_P}+\frac{40p^2}{m^2_P}+35\right)\left[35\cos^4{\theta} - 30\cos^2{\theta} + 3\right]\,.
\label{eq:Covariant-TFactors-end}
\end{eqnarray}
The first three of these expressions are derived in
Ref.~\cite{Filippini:1995yc} and, based on that work, the last two were
derived in Ref.~\cite{Aaij:2015sqa}.
-{\bf ideally we should add the expression for $L=5$.}
+{\bf Ideally we should add the expression for $L=5$. Wenbin is looking into it.}
As can be seen from the expressions, the differences between formalisms are more significant for higher spin resonances, and particularly affect tails of the distributions.
To give an idea of the effect, the lineshapes for the $f_2(1270)$ and $\rho_3(1690)^0$ resonances decaying to $\pip\pim$ are shown in Fig.~\ref{fig:angular-formulae}.
\begin{figure}[!htb]
\centering
+\includegraphics[width=0.49\textwidth]{figures/f2_noNumeratorBWfactors-comp-log}
+\includegraphics[width=0.49\textwidth]{figures/rho3_noNumeratorBWfactors-comp-log}
\caption{
- Lineshapes for the (left) $f_2(1270)$ and (right) $\rho_3(1690)^0$ resonances decaying to $\pip\pim$ with the
- {\bf add colour code} \texttt{Legendre}, \texttt{Zemach\_P}, \texttt{Zemach\_Pstar} and \texttt{Covariant} spin formalisms.
- In all cases the relativistic Breit--Wigner description with mass and width parameters as given in App.~\ref{sec:resNames} is used.
+ Lineshapes for the (left) $f_2(1270)$ and (right) $\rho_3(1690)^0$
+ resonances decaying to $\pip\pim$ (in the $\Bp\to\Kp\pip\pim$ Dalitz
+ plot) with the (blue) \texttt{Legendre}, (red) \texttt{Zemach\_P},
+ (green) \texttt{Zemach\_Pstar} and (magenta) \texttt{Covariant} spin
+ formalisms.
+ In all cases the relativistic Breit--Wigner description is used, with
+ mass and width parameters as given in App.~\ref{sec:resNames} and the
+ two Blatt--Weisskopf factors set to unity.
}
\label{fig:angular-formulae}
\end{figure}
It is possible to switch between these different formalisms via a function of
the \texttt{LauResonanceMaker} factory object.
For example, to use the \texttt{Covariant} formalism one would do:
\begin{lstlisting}
LauResonanceMaker& resMaker = LauResonanceMaker::get();
resMaker.setSpinFormalism( LauAbsResonance::Covariant );
\end{lstlisting}
It is important to note that any such operation must be performed prior to
constructing any resonances, \ie before calling
\texttt{LauIsobarDynamics::addResonance} or
\texttt{LauIsobarDynamics::addIncoherentResonance} for the first time.
As the angular and Blatt--Weisskopf factors are strongly coupled, it is also
possible to straightforwardly modify the form of the Blatt--Weisskopf factors.
In particular, the momentum value used for the factor that is related to the
decay of the parent particle into the resonance and the bachelor can be
selected from the following options (defined in the
\texttt{LauBlattWeisskopfFactor::RestFrame} enumeration):
\begin{itemize}
\item
\texttt{LauBlattWeisskopfFactor::ResonanceFrame}, the momentum of the bachelor in the rest frame of the resonance, $p$ (the default setting),
\item
\texttt{LauBlattWeisskopfFactor::ParentFrame}, the momentum of the bachelor in the rest frame of the parent, $p^{\ast}$,
\item
\texttt{LauBlattWeisskopfFactor::Covariant}, the product of the momentum of the bachelor in the rest frame of the parent, $p^{\ast}$,
-and the ratio of the energy and mass of the resonance in the rest frame of the parent, $\sqrt{1 + p^2/m^2_P}$.
-{\bf TODO - this needs to be fixed following commit 419.}
+and a function of the ratio of the energy and mass of the resonance in the
+rest frame of the parent, $\sqrt{1 + p^2/m^2_P}$. More precisely, this
+function is the expression in the middle term in
+Eqs.~(\ref{eq:Covariant-TFactors}) to~(\ref{eq:Covariant-TFactors-end})
+raised to the power of $1/L$.
\end{itemize}
This setting is changed as follows:
\begin{lstlisting}
LauResonanceMaker& resMaker = LauResonanceMaker::get();
resMaker.setBWBachelorRestFrame( LauBlattWeisskopfFactor::ParentFrame );
\end{lstlisting}
where in this example the momentum of the bachelor in the rest frame of the parent ($p^{\ast}$) is to be used.
Again, this operation must be performed before constructing any resonances.
In addition, it is possible to change the form of the Blatt--Weisskopf factors,
with the different types being defined by the \texttt{LauBlattWeisskopfFactor::BarrierType} enumeration.
The default setting, corresponding to Equations~(\ref{eq:BWFormFactors})--(\ref{eq:BWFormFactors-end}),
is given by \texttt{LauBlattWeisskopfFactor::BWPrimeBarrier} and is recommended when the angular terms contain momentum factors.
One possible alternative is to use the \texttt{LauAbsResonance::Legendre} angular terms and the \texttt{LauBlattWeisskopfFactor::BWBarrier} form for the Blatt--Weisskopf factors:
\begin{eqnarray}
\label{eq:BWFormFactors-NonPrimed}
L = 0 \ : \ X(z) & = & 1\,, \\
L = 1 \ : \ X(z) & = & \sqrt{\frac{2z^2}{1 + z^2}}\,, \\
L = 2 \ : \ X(z) & = & \sqrt{\frac{13z^4}{z^4 + 3z^2 + 9}}\,,\\
L = 3 \ : \ X(z) & = & \sqrt{\frac{277z^6}{z^6 + 6z^4 + 45z^2 + 225}}\,,\\
L = 4 \ : \ X(z) & = & \sqrt{\frac{12746z^8}{z^8 + 10z^6 + 135z^4 + 1575z^2 + 11025}}\,,\\
L = 5 \ : \ X(z) & = & \sqrt{\frac{998881z^{10}}{z^{10} + 15z^8 + 315z^6 + 6300z^4 + 99225z^2 + 893025}}\,.
\label{eq:BWFormFactors-NonPrimed-end}
\end{eqnarray}
An exponential form for these factors,
\texttt{LauBlattWeisskopfFactor::ExpBarrier},
which has been used in some analyses for virtual contributions has also been implemented,
\begin{equation}
X(z) = e^{-z^L}\,.
\end{equation}
-
+%
To change the form of the barrier factors for all resonances, the following lines are required
\begin{lstlisting}
LauResonanceMaker& resMaker = LauResonanceMaker::get();
resMaker.setBWType( LauBlattWeisskopfFactor::BWBarrier );
\end{lstlisting}
where in this example the forms in Equations~(\ref{eq:BWFormFactors-NonPrimed})--(\ref{eq:BWFormFactors-NonPrimed-end})
are to be used.
Again, this operation should be performed before constructing any resonances.
+
As for the $T(\vec{p},\vec{q})$ terms, the differences between Blatt--Weisskopf form factor formalisms are more significant for higher spin resonances, and far from the peak of the resonance.
An illustrative comparison of the shapes is given in Fig.~\ref{fig:BWFF-formulae}.
\begin{figure}[!htb]
\centering
+\includegraphics[width=0.49\textwidth]{figures/f2_Zemach_P-comp-log}
+\includegraphics[width=0.49\textwidth]{figures/rho3_Zemach_P-comp-log}
\caption{
- {\bf to be added ....}
+ Lineshapes for the (left) $f_2(1270)$ and (right) $\rho_3(1690)^0$
+ resonances decaying to $\pip\pim$ (in the $\Bp\to\Kp\pip\pim$ Dalitz
+ plot) with (blue) no Blatt--Weisskopf factors, and with the (red)
+ \texttt{ResonanceFrame}, (green) \texttt{ParentFrame} and (magenta)
+ \texttt{Covariant} settings for evaluating the momentum that enters the
+ Blatt--Weisskopf factor associated with the decay of the parent particle.
+ In all cases the relativistic Breit--Wigner description is used, with
+ mass and width parameters as given in App.~\ref{sec:resNames} and the
+ \texttt{Zemach\_P} formalism for the spin factors.
}
\label{fig:BWFF-formulae}
\end{figure}
-It is possible to make all of the changes discussed in this Appendix at the level of individual resonances, using the functions \texttt{LauAbsResonance::setSpinType}, \texttt{LauAbsResonance::setBarrierRadii},
+It is possible to make all of the changes discussed in this Appendix at the
+level of individual resonances, using the functions
+\texttt{LauAbsResonance::setSpinType},
+\texttt{LauAbsResonance::setBarrierRadii},
but this requires much care to be taken and is not generally recommended.
Index: docs/paper/figures/f2_Zemach_P-comp-log.pdf
===================================================================
Binary files docs/paper/figures/f2_Zemach_P-comp-log.pdf (revision 0) and docs/paper/figures/f2_Zemach_P-comp-log.pdf (revision 430) differ
Index: docs/paper/figures/rho3_Zemach_P-comp-log.pdf
===================================================================
Binary files docs/paper/figures/rho3_Zemach_P-comp-log.pdf (revision 0) and docs/paper/figures/rho3_Zemach_P-comp-log.pdf (revision 430) differ
Index: docs/paper/figures/f2_noNumeratorBWfactors-comp-log.pdf
===================================================================
Binary files docs/paper/figures/f2_noNumeratorBWfactors-comp-log.pdf (revision 0) and docs/paper/figures/f2_noNumeratorBWfactors-comp-log.pdf (revision 430) differ
Index: docs/paper/figures/rho3_noNumeratorBWfactors-comp-log.pdf
===================================================================
Binary files docs/paper/figures/rho3_noNumeratorBWfactors-comp-log.pdf (revision 0) and docs/paper/figures/rho3_noNumeratorBWfactors-comp-log.pdf (revision 430) differ
Index: docs/paper/res-names.tex
===================================================================
--- docs/paper/res-names.tex (revision 429)
+++ docs/paper/res-names.tex (revision 430)
@@ -1,148 +1,169 @@
\section{Standard resonances}
\label{sec:resNames}
+
This section provides the complete set of available resonances, indicating the
name, mass $m_0$, width $\Gamma_0$, spin, charge and Blatt--Weisskopf barrier radius $r_{\rm BW}$.
Table~\ref{tab:resNames1} contains information for light meson resonances,
Table~\ref{tab:resNames2} for charm, charmonium, strange-charm, beauty and strange--beauty resonances,
Table~\ref{tab:resNames3} for $K^*$ resonances and
Table~\ref{tab:resNames4} for non-resonant terms.
Most data are taken from Ref.~\cite{PDG2016}.
The tables list the information contained in the information records for both neutral and positively-charged resonances.
Negatively-charged resonance records are implemented as charge-conjugates of
the positively charged ones; the plus sign in the name is replaced with a minus sign.
In case a user wishes to modify the values of the parameters from those given in the tables, the {\tt LauAbsResonance::changeResonance} function, which takes the mass, width and spin as arguments, can be used.
The Blatt--Weisskopf barrier radius can be changed with the {\tt LauAbsResonance::changeBWBarrierRadii} function, and other parameters specific to particular lineshapes can be changed with the {\tt LauAbsResonance::setResonanceParameter} function.
The same approach can be used to include a resonance that is not available in these tables, by using any of the existing states of appropriate charge and redefining its properties.
-%
\begin{table}[!htb]
\caption{Standard light meson resonances defined in \laura.}
\label{tab:resNames1}
\centering
\begin{tabular}{llllll}
\hline \\ [-2.5ex]
Name & $m_0$ (\nbspgevcc) & $\Gamma_0$ (\nbspgevcc) & spin & charge & $r_{\rm BW}$ ($\nbspgev^{-1}$) \\ [0.1ex]
\hline
-rho0(770) & 0.77526 & 0.1478 & 1 & 0 & 5.3 \\
-rho+(770) & 0.77511 & 0.1491 & 1 & 1 & 5.3 \\
-rho0(1450) & 1.465 & 0.400 & 1 & 0 & 4.0 \\
-rho+(1450) & 1.465 & 0.400 & 1 & 1 & 4.0 \\
-rho0(1700) & 1.720 & 0.250 & 1 & 0 & 4.0 \\
-rho+(1700) & 1.720 & 0.250 & 1 & 1 & 4.0 \\
-phi(1020) & 1.019461 & 0.004266 & 1 & 0 & 4.0 \\
-phi(1680) & 1.680 & 0.150 & 1 & 0 & 4.0 \\
-f\_0(980) & 0.990 & 0.070 & 0 & 0 & 4.0 \\
-f\_2(1270) & 1.2751 & 0.1851 & 2 & 0 & 4.0 \\
-f\_0(1370) & 1.370 & 0.350 & 0 & 0 & 4.0 \\
-f'\_0(1300) & 1.449 & 0.126 & 0 & 0 & 4.0 \\
-f\_0(1500) & 1.505 & 0.109 & 0 & 0 & 4.0 \\
-f'\_2(1525) & 1.525 & 0.073 & 2 & 0 & 4.0 \\
-f\_0(1710) & 1.722 & 0.135 & 0 & 0 & 4.0 \\
-f\_2(2010) & 2.011 & 0.202 & 2 & 0 & 4.0 \\
-omega(782) & 0.78265 & 0.00849 & 1 & 0 & 4.0 \\
-a0\_0(980) & 0.980 & 0.092 & 0 & 0 & 4.0 \\
-a+\_0(980) & 0.980 & 0.092 & 0 & 1 & 4.0 \\
-a0\_0(1450) & 1.474 & 0.265 & 0 & 0 & 4.0 \\
-a+\_0(1450) & 1.474 & 0.265 & 0 & 1 & 4.0 \\
-a0\_2(1320) & 1.3190 & 0.1050 & 2 & 0 & 4.0 \\
-a+\_2(1320) & 1.3190 & 0.1050 & 2 & 1 & 4.0 \\
-sigma0 & 0.475 & 0.550 & 0 & 0 & 4.0 \\
-sigma+ & 0.475 & 0.550 & 0 & 1 & 4.0 \\
+rho0(770) & 0.77526 & 0.1478 & 1 & 0 & 5.3 \\
+rho+(770) & 0.77511 & 0.1491 & 1 & 1 & 5.3 \\
+rho0(1450) & 1.465 & 0.400 & 1 & 0 & 4.0 \\
+rho+(1450) & 1.465 & 0.400 & 1 & 1 & 4.0 \\
+rho0(1700) & 1.720 & 0.250 & 1 & 0 & 4.0 \\
+rho+(1700) & 1.720 & 0.250 & 1 & 1 & 4.0 \\
+rho0(1900) & 1.909 & 0.130 & 1 & 0 & 4.0 \\
+rho+(1900) & 1.909 & 0.130 & 1 & 1 & 4.0 \\
+rho0\_3(1690) & 1.686 & 0.186 & 3 & 0 & 4.0 \\
+rho+\_3(1690) & 1.686 & 0.186 & 3 & 0 & 4.0 \\
+rho0\_3(1990) & 1.982 & 0.188 & 3 & 0 & 4.0 \\
+rho+\_3(1990) & 1.982 & 0.188 & 3 & 0 & 4.0 \\
+phi(1020) & 1.019461 & 0.004266 & 1 & 0 & 4.0 \\
+phi(1680) & 1.680 & 0.150 & 1 & 0 & 4.0 \\
+f\_0(980) & 0.990 & 0.070 & 0 & 0 & 4.0 \\
+f\_2(1270) & 1.2751 & 0.1851 & 2 & 0 & 4.0 \\
+f\_0(1370) & 1.370 & 0.350 & 0 & 0 & 4.0 \\
+f'\_0(1300) & 1.449 & 0.126 & 0 & 0 & 4.0 \\
+f\_2(1430) & 1.430 & 0.150 & 2 & 0 & 4.0 \\
+f\_0(1500) & 1.505 & 0.109 & 0 & 0 & 4.0 \\
+f'\_2(1525) & 1.525 & 0.073 & 2 & 0 & 4.0 \\
+f\_2(1565) & 1.562 & 0.134 & 2 & 0 & 4.0 \\
+f\_2(1640) & 1.639 & 0.099 & 2 & 0 & 4.0 \\
+f\_0(1710) & 1.722 & 0.135 & 0 & 0 & 4.0 \\
+f\_2(1810) & 1.816 & 0.197 & 2 & 0 & 4.0 \\
+f\_2(1910) & 1.903 & 0.196 & 2 & 0 & 4.0 \\
+f\_2(1950) & 1.944 & 0.472 & 2 & 0 & 4.0 \\
+f\_2(2010) & 2.011 & 0.202 & 2 & 0 & 4.0 \\
+f\_0(2020) & 1.992 & 0.442 & 0 & 0 & 4.0 \\
+f\_4(2050) & 2.018 & 0.237 & 4 & 0 & 4.0 \\
+f\_0(2100) & 2.101 & 0.224 & 0 & 0 & 4.0 \\
+omega(782) & 0.78265 & 0.00849 & 1 & 0 & 4.0 \\
+a0\_0(980) & 0.980 & 0.092 & 0 & 0 & 4.0 \\
+a+\_0(980) & 0.980 & 0.092 & 0 & 1 & 4.0 \\
+a0\_0(1450) & 1.474 & 0.265 & 0 & 0 & 4.0 \\
+a+\_0(1450) & 1.474 & 0.265 & 0 & 1 & 4.0 \\
+a0\_2(1320) & 1.3190 & 0.1050 & 2 & 0 & 4.0 \\
+a+\_2(1320) & 1.3190 & 0.1050 & 2 & 1 & 4.0 \\
+sigma0 & 0.475 & 0.550 & 0 & 0 & 4.0 \\
+sigma+ & 0.475 & 0.550 & 0 & 1 & 4.0 \\
\hline
\end{tabular}
\end{table}
-%
+
\begin{table}[!htb]
\caption{Standard charm, charmonium, strange-charm, beauty and strange-beauty resonances defined in \laura.}
\label{tab:resNames2}
\centering
\begin{tabular}{llllll}
\hline \\ [-2.5ex]
Name & $m_0$ (\nbspgevcc) & $\Gamma_0$ (\nbspgevcc) & spin & charge & $r_{\rm BW}$ ($\nbspgev^{-1}$) \\ [0.1ex]
\hline
-chi\_c0 & 3.41475 & 0.0105 & 0 & 0 & 4.0 \\
-chi\_c1 & 3.51066 & 0.00084 & 0 & 0 & 4.0 \\
-chi\_c2 & 3.55620 & 0.00193 & 2 & 0 & 4.0 \\
-X(3872) & 3.87169 & 0.0012 & 1 & 0 & 4.0 \\
-dabba0 & 2.098 & 0.520 & 0 & 0 & 4.0 \\
-dabba+ & 2.098 & 0.520 & 0 & 1 & 4.0 \\
-D*0 & 2.00696 & 0.0021 & 1 & 0 & 4.0 \\
-D*+ & 2.01026 & $83.4\times10^{-6}$ & 1 & 1 & 4.0 \\
-D*0\_0 & 2.318 & 0.267 & 0 & 0 & 4.0 \\
-D*+\_0 & 2.403 & 0.283 & 0 & 1 & 4.0 \\
-D*0\_2 & 2.4626 & 0.049 & 2 & 0 & 4.0 \\
-D*+\_2 & 2.4643 & 0.037 & 2 & 1 & 4.0 \\
-D0\_1(2420) & 2.4214 & 0.0274 & 1 & 0 & 4.0 \\
-D+\_1(2420) & 2.4232 & 0.025 & 1 & 1 & 4.0 \\
-D0(2600) & 2.612 & 0.093 & 0 & 0 & 4.0 \\
-D+(2600) & 2.612 & 0.093 & 0 & 1 & 4.0 \\
-D0(2760) & 2.761 & 0.063 & 1 & 0 & 4.0 \\
-D+(2760) & 2.761 & 0.063 & 1 & 1 & 4.0 \\
-D0(3000) & 3.0 & 0.15 & 0 & 0 & 4.0 \\
-D0(3400) & 3.4 & 0.15 & 0 & 0 & 4.0 \\
-Ds*+ & 2.1121 & 0.0019 & 1 & 1 & 4.0 \\
-Ds*+\_0(2317) & 2.3177 & 0.0038 & 0 & 1 & 4.0 \\
-Ds*+\_2(2573) & 2.5719 & 0.017 & 2 & 1 & 4.0 \\
-Ds*+\_1(2700) & 2.709 & 0.117 & 1 & 1 & 4.0 \\
-B*0 & 5.3252 & 0.00 & 1 & 0 & 6.0 \\
-B*+ & 5.3252 & 0.00 & 1 & 1 & 6.0 \\
-Bs*0 & 5.4154 & 0.00 & 1 & 0 & 6.0 \\
+chi\_c0 & 3.41475 & 0.0105 & 0 & 0 & 4.0 \\
+chi\_c1 & 3.51066 & 0.00084 & 0 & 0 & 4.0 \\
+chi\_c2 & 3.55620 & 0.00193 & 2 & 0 & 4.0 \\
+X(3872) & 3.87169 & 0.0012 & 1 & 0 & 4.0 \\
+dabba0 & 2.098 & 0.520 & 0 & 0 & 4.0 \\
+dabba+ & 2.098 & 0.520 & 0 & 1 & 4.0 \\
+D*0 & 2.00696 & 0.0021 & 1 & 0 & 4.0 \\
+D*+ & 2.01026 & $83.4\times10^{-6}$ & 1 & 1 & 4.0 \\
+D*0\_0 & 2.318 & 0.267 & 0 & 0 & 4.0 \\
+D*+\_0 & 2.403 & 0.283 & 0 & 1 & 4.0 \\
+D*0\_2 & 2.4626 & 0.049 & 2 & 0 & 4.0 \\
+D*+\_2 & 2.4643 & 0.037 & 2 & 1 & 4.0 \\
+D0\_1(2420) & 2.4214 & 0.0274 & 1 & 0 & 4.0 \\
+D+\_1(2420) & 2.4232 & 0.025 & 1 & 1 & 4.0 \\
+D0(2600) & 2.612 & 0.093 & 0 & 0 & 4.0 \\
+D+(2600) & 2.612 & 0.093 & 0 & 1 & 4.0 \\
+D0(2760) & 2.761 & 0.063 & 1 & 0 & 4.0 \\
+D+(2760) & 2.761 & 0.063 & 1 & 1 & 4.0 \\
+D0(3000) & 3.0 & 0.15 & 0 & 0 & 4.0 \\
+D0(3400) & 3.4 & 0.15 & 0 & 0 & 4.0 \\
+Ds*+ & 2.1121 & 0.0019 & 1 & 1 & 4.0 \\
+Ds*+\_0(2317) & 2.3177 & 0.0038 & 0 & 1 & 4.0 \\
+Ds*+\_2(2573) & 2.5719 & 0.017 & 2 & 1 & 4.0 \\
+Ds*+\_1(2700) & 2.709 & 0.117 & 1 & 1 & 4.0 \\
+Ds*+\_1(2860) & 2.862 & 0.180 & 1 & 1 & 4.0 \\
+Ds*+\_3(2860) & 2.862 & 0.058 & 3 & 1 & 4.0 \\
+B*0 & 5.3252 & 0.00 & 1 & 0 & 6.0 \\
+B*+ & 5.3252 & 0.00 & 1 & 1 & 6.0 \\
+Bs*0 & 5.4154 & 0.00 & 1 & 0 & 6.0 \\
\hline
\end{tabular}
\end{table}
-%
+
\begin{table}[!htb]
\caption{Standard $K^*$ resonances defined in \laura.}
\label{tab:resNames3}
\centering
\begin{tabular}{llllll}
\hline \\ [-2.5ex]
Name & $m_0$ (\nbspgevcc) & $\Gamma_0$ (\nbspgevcc) & spin & charge & $r_{\rm BW}$ ($\nbspgev^{-1}$) \\ [0.1ex]
\hline
-K*0(892) & 0.89581 & 0.0474 & 1 & 0 & 3.0 \\
-K*+(892) & 0.89166 & 0.0508 & 1 & 1 & 3.0 \\
-K*0(1410) & 1.414 & 0.232 & 1 & 0 & 4.0 \\
-K*+(1410) & 1.414 & 0.232 & 1 & 1 & 4.0 \\
-K*0\_0(1430) & 1.425 & 0.270 & 0 & 0 & 4.0 \\
-K*+\_0(1430) & 1.425 & 0.270 & 0 & 1 & 4.0 \\
-K*0\_2(1430) & 1.4324 & 0.109 & 2 & 0 & 4.0 \\
-K*+\_2(1430) & 1.4256 & 0.0985 & 2 & 1 & 4.0 \\
-K*0(1680) & 1.717 & 0.322 & 1 & 0 & 4.0 \\
-K*+(1680) & 1.717 & 0.322 & 1 & 1 & 4.0 \\
-kappa0 & 0.682 & 0.547 & 0 & 0 & 4.0 \\
-kappa+ & 0.682 & 0.547 & 0 & 1 & 4.0 \\
+K*0(892) & 0.89581 & 0.0474 & 1 & 0 & 3.0 \\
+K*+(892) & 0.89166 & 0.0508 & 1 & 1 & 3.0 \\
+K*0(1410) & 1.414 & 0.232 & 1 & 0 & 4.0 \\
+K*+(1410) & 1.414 & 0.232 & 1 & 1 & 4.0 \\
+K*0\_0(1430) & 1.425 & 0.270 & 0 & 0 & 4.0 \\
+K*+\_0(1430) & 1.425 & 0.270 & 0 & 1 & 4.0 \\
+K*0\_2(1430) & 1.4324 & 0.109 & 2 & 0 & 4.0 \\
+K*+\_2(1430) & 1.4256 & 0.0985 & 2 & 1 & 4.0 \\
+K*0(1680) & 1.717 & 0.322 & 1 & 0 & 4.0 \\
+K*+(1680) & 1.717 & 0.322 & 1 & 1 & 4.0 \\
+K*0\_0(1950) & 1.945 & 0.201 & 0 & 0 & 4.0 \\
+K*+\_0(1950) & 1.945 & 0.201 & 0 & 1 & 4.0 \\
+kappa0 & 0.682 & 0.547 & 0 & 0 & 4.0 \\
+kappa+ & 0.682 & 0.547 & 0 & 1 & 4.0 \\
\hline
\end{tabular}
\end{table}
-%
+
\begin{table}[!hbt]
\caption{Standard non-resonant terms defined in \laura.}
\label{tab:resNames4}
\centering
\begin{tabular}{llllll}
\hline \\ [-2.5ex]
Name & $m_0$ (\nbspgevcc) & $\Gamma_0$ (\nbspgevcc) & spin & charge & $r_{\rm BW}$ ($\nbspgev^{-1}$) \\ [0.1ex]
\hline
-NonReson & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-NRModel & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-BelleSymNR & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-BelleNR & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-BelleNR+ & 0.0 & 0.0 & 0 & 1 & 4.0 \\
-BelleNR\_Swave & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-BelleNR\_Swave+ & 0.0 & 0.0 & 0 & 1 & 4.0 \\
-BelleNR\_Pwave & 0.0 & 0.0 & 1 & 0 & 4.0 \\
-BelleNR\_Pwave+ & 0.0 & 0.0 & 1 & 1 & 4.0 \\
-BelleNR\_Dwave & 0.0 & 0.0 & 2 & 0 & 4.0 \\
-BelleNR\_Dwave+ & 0.0 & 0.0 & 2 & 1 & 4.0 \\
-NRTaylor & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-PolNR\_S0 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-PolNR\_S1 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-PolNR\_S2 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
-PolNR\_P0 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
-PolNR\_P1 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
-PolNR\_P2 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
+NonReson & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+NRModel & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+BelleSymNR & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+BelleNR & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+BelleNR+ & 0.0 & 0.0 & 0 & 1 & 4.0 \\
+BelleNR\_Swave & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+BelleNR\_Swave+ & 0.0 & 0.0 & 0 & 1 & 4.0 \\
+BelleNR\_Pwave & 0.0 & 0.0 & 1 & 0 & 4.0 \\
+BelleNR\_Pwave+ & 0.0 & 0.0 & 1 & 1 & 4.0 \\
+BelleNR\_Dwave & 0.0 & 0.0 & 2 & 0 & 4.0 \\
+BelleNR\_Dwave+ & 0.0 & 0.0 & 2 & 1 & 4.0 \\
+BelleNR\_Fwave & 0.0 & 0.0 & 3 & 0 & 4.0 \\
+BelleNR\_Fwave+ & 0.0 & 0.0 & 3 & 1 & 4.0 \\
+NRTaylor & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+PolNR\_S0 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+PolNR\_S1 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+PolNR\_S2 & 0.0 & 0.0 & 0 & 0 & 4.0 \\
+PolNR\_P0 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
+PolNR\_P1 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
+PolNR\_P2 & 0.0 & 0.0 & 1 & 0 & 4.0 \\
\hline
\end{tabular}
\end{table}
-%
+

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 5:25 PM (15 h, 35 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023626
Default Alt Text
(25 KB)

Event Timeline