Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879342
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
18 KB
Subscribers
None
View Options
diff --git a/MatrixElement/Hadron/MEPP2VV.cc b/MatrixElement/Hadron/MEPP2VV.cc
--- a/MatrixElement/Hadron/MEPP2VV.cc
+++ b/MatrixElement/Hadron/MEPP2VV.cc
@@ -1,539 +1,540 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEPP2VV class.
//
#include "MEPP2VV.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/MatrixElement/Tree2toNDiagram.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "Herwig++/Models/StandardModel/StandardModel.h"
#include "Herwig++/MatrixElement/HardVertex.h"
using namespace Herwig;
MEPP2VV::MEPP2VV() : process_(0), maxflavour_(5), massOption_(2)
{}
unsigned int MEPP2VV::orderInAlphaS() const {
return 0;
}
unsigned int MEPP2VV::orderInAlphaEW() const {
return 2;
}
ClassDescription<MEPP2VV> MEPP2VV::initMEPP2VV;
// Definition of the static class description member.
void MEPP2VV::Init() {
static ClassDocumentation<MEPP2VV> documentation
("The MEPP2VV class simulates the production of W+W-, "
"W+/-Z0 and Z0Z0 in hadron-hadron collisions using the 2->2"
" matrix elements");
static Switch<MEPP2VV,unsigned int> interfaceProcess
("Process",
"Which processes to include",
&MEPP2VV::process_, 0, false, false);
static SwitchOption interfaceProcessAll
(interfaceProcess,
"All",
"Include all the processes",
0);
static SwitchOption interfaceProcessWW
(interfaceProcess,
"WW",
"Only include W+W-",
1);
static SwitchOption interfaceProcessWZ
(interfaceProcess,
"WZ",
"Only include W+/-Z",
2);
static SwitchOption interfaceProcessZZ
(interfaceProcess,
"ZZ",
"Only include ZZ",
3);
static SwitchOption interfaceProcessWpZ
(interfaceProcess,
"WpZ",
"Only include W+ Z",
4);
static SwitchOption interfaceProcessWmZ
(interfaceProcess,
"WmZ",
"Only include W- Z",
5);
static Parameter<MEPP2VV,int> interfaceMaximumFlavour
("MaximumFlavour",
"The maximum flavour allowed for the incoming quarks",
&MEPP2VV::maxflavour_, 5, 2, 5,
false, false, Interface::limited);
static Switch<MEPP2VV,unsigned int> interfaceMassOption
("MassOption",
"Option for the treatment of the boson masses",
&MEPP2VV::massOption_, 1, false, false);
static SwitchOption interfaceMassOptionOnMassShell
(interfaceMassOption,
"OnMassShell",
"The boson is produced on its mass shell",
1);
static SwitchOption interfaceMassOption2
(interfaceMassOption,
"OffShell",
"The bosons are generated off-shell using the mass and width generator.",
2);
}
void MEPP2VV::persistentOutput(PersistentOStream & os) const {
os << FFPvertex_ << FFWvertex_ << FFZvertex_ << WWWvertex_
<< process_ << massOption_ << maxflavour_;
}
void MEPP2VV::persistentInput(PersistentIStream & is, int) {
is >> FFPvertex_ >> FFWvertex_ >> FFZvertex_ >> WWWvertex_
>> process_ >> massOption_ >> maxflavour_;
}
Energy2 MEPP2VV::scale() const {
return sHat();
}
IBPtr MEPP2VV::clone() const {
return new_ptr(*this);
}
IBPtr MEPP2VV::fullclone() const {
return new_ptr(*this);
}
void MEPP2VV::doinit() {
HwMEBase::doinit();
// mass option
massOption(vector<unsigned int>(2,massOption_));
rescalingOption(2);
// get the vertices we need
// get a pointer to the standard model object in the run
static const tcHwSMPtr hwsm
= dynamic_ptr_cast<tcHwSMPtr>(standardModel());
if (!hwsm) throw InitException() << "hwsm pointer is null in"
<< " MEPP2VV::doinit()"
<< Exception::abortnow;
// get pointers to all required Vertex objects
FFZvertex_ = hwsm->vertexFFZ();
FFPvertex_ = hwsm->vertexFFP();
WWWvertex_ = hwsm->vertexWWW();
FFWvertex_ = hwsm->vertexFFW();
}
double MEPP2VV::getCosTheta(double ctmin, double ctmax, const double * r) {
double rand = *r;
Energy2 m12 = sqr(meMomenta()[2].mass());
Energy2 m22 = sqr(meMomenta()[3].mass());
Energy2 D1 = sHat()-m12-m22;
Energy4 lambda = sqr(D1) - 4*m12*m22;
double D = D1 / sqrt(lambda);
if(mePartonData()[2]->id()==ParticleID::Z0&&
mePartonData()[3]->id()==ParticleID::Z0) {
double prob = 0.5;
double costh;
double fraction1 = (D-ctmax)/(D-ctmin);
double fraction2 = (D+ctmin)/(D+ctmax);
if(rand<=prob) {
rand /=prob;
costh = D - (D - ctmin) * pow(fraction1, rand);
}
else {
rand = (rand-prob)/(1.-prob);
costh =-D + (D + ctmax) * pow(fraction2, rand);
}
jacobian(1./(prob /((costh - D) * log(fraction1))-
(1.-prob)/((costh + D) * log(fraction2))));
return costh;
}
else {
double fraction = (D-ctmax)/(D-ctmin);
double costh = D - (D - ctmin) * pow(fraction, rand);
jacobian((costh - D) * log(fraction));
return costh;
}
}
Selector<const ColourLines *>
MEPP2VV::colourGeometries(tcDiagPtr diag) const {
static ColourLines cs("1 -2");
static ColourLines ct("1 2 -3");
Selector<const ColourLines *> sel;
if(abs(diag->partons()[2]->id())==24&&abs(diag->partons()[3]->id())==24) {
if(diag->id()<=-4) sel.insert(1.0, &cs);
else sel.insert(1.0, &ct);
}
else if(abs(diag->partons()[2]->id())==24&&diag->partons()[3]->id()==23) {
if(diag->id()==-3) sel.insert(1.0, &cs);
else sel.insert(1.0, &ct);
}
else {
sel.insert(1.0, &ct);
}
return sel;
}
void MEPP2VV::getDiagrams() const {
typedef std::vector<pair<tcPDPtr,tcPDPtr> > Pairvector;
tcPDPtr wPlus = getParticleData(ParticleID::Wplus );
tcPDPtr wMinus = getParticleData(ParticleID::Wminus);
tcPDPtr z0 = getParticleData(ParticleID::Z0 );
tcPDPtr gamma = getParticleData(ParticleID::gamma);
// W+ W-
if(process_==0||process_==1) {
for(int ix=1;ix<=maxflavour_;++ix) {
tcPDPtr qk = getParticleData(ix);
tcPDPtr w1 = ix%2==0 ? wPlus : wMinus;
tcPDPtr w2 = ix%2!=0 ? wPlus : wMinus;
for(int iy=1;iy<=maxflavour_;++iy) {
if(abs(ix-iy)%2!=0) continue;
tcPDPtr qb = getParticleData(-iy);
// s channel photon
add(new_ptr((Tree2toNDiagram(2), qk, qb, 1, gamma, 3, w1, 3, w2, -4)));
// s-channel Z
add(new_ptr((Tree2toNDiagram(2), qk, qb, 1, z0, 3, w1, 3, w2, -5)));
// t-channel
if(ix%2==0) {
int idiag=0;
for(int iz=1;iz<=5;iz+=2) {
--idiag;
tcPDPtr tc = getParticleData(iz);
add(new_ptr((Tree2toNDiagram(3), qk, tc, qb, 1, w1, 2, w2, idiag)));
}
}
else {
int idiag=0;
for(int iz=2;iz<=6;iz+=2) {
--idiag;
tcPDPtr tc = getParticleData(iz);
add(new_ptr((Tree2toNDiagram(3), qk, tc, qb, 1, w1, 2, w2, idiag)));
}
}
}
}
}
// W+/- Z
if(process_==0||process_==2||process_==4||process_==5) {
// possible parents
Pairvector parentpair;
parentpair.reserve(6);
// don't even think of putting 'break' in here!
switch(maxflavour_) {
case 5:
parentpair.push_back(make_pair(getParticleData(ParticleID::b),
getParticleData(ParticleID::cbar)));
parentpair.push_back(make_pair(getParticleData(ParticleID::b),
getParticleData(ParticleID::ubar)));
case 4:
parentpair.push_back(make_pair(getParticleData(ParticleID::s),
getParticleData(ParticleID::cbar)));
parentpair.push_back(make_pair(getParticleData(ParticleID::d),
getParticleData(ParticleID::cbar)));
case 3:
parentpair.push_back(make_pair(getParticleData(ParticleID::s),
getParticleData(ParticleID::ubar)));
case 2:
parentpair.push_back(make_pair(getParticleData(ParticleID::d),
getParticleData(ParticleID::ubar)));
default:
;
}
// W+ Z
if(process_==0||process_==2||process_==4) {
for(unsigned int ix=0;ix<parentpair.size();++ix) {
add(new_ptr((Tree2toNDiagram(3), parentpair[ix].second->CC(),
parentpair[ix].first, parentpair[ix].first->CC(),
1, wPlus, 2, z0, -1)));
add(new_ptr((Tree2toNDiagram(3), parentpair[ix].second->CC(),
parentpair[ix].second->CC() , parentpair[ix].first->CC(),
2, wPlus, 1, z0, -2)));
add(new_ptr((Tree2toNDiagram(2), parentpair[ix].second->CC(),
parentpair[ix].first->CC(), 1, wPlus, 3, wPlus, 3, z0, -3)));
}
}
// W- Z
if(process_==0||process_==2||process_==5) {
for(unsigned int ix=0;ix<parentpair.size();++ix) {
add(new_ptr((Tree2toNDiagram(3), parentpair[ix].first,
parentpair[ix].second->CC(),
parentpair[ix].second, 1, wMinus, 2, z0, -1)));
add(new_ptr((Tree2toNDiagram(3), parentpair[ix].first,
parentpair[ix].first , parentpair[ix].second, 2, wMinus, 1, z0, -2)));
add(new_ptr((Tree2toNDiagram(2), parentpair[ix].first,
parentpair[ix].second, 1, wMinus, 3, wMinus, 3, z0, -3)));
}
}
}
// Z Z
if(process_==0||process_==3) {
for(int ix=1;ix<=maxflavour_;++ix) {
tcPDPtr qk = getParticleData(ix);
tcPDPtr qb = qk->CC();
add(new_ptr((Tree2toNDiagram(3), qk, qk, qb, 1, z0, 2, z0, -1)));
add(new_ptr((Tree2toNDiagram(3), qk, qk, qb, 2, z0, 1, z0, -2)));
}
}
}
Selector<MEBase::DiagramIndex>
MEPP2VV::diagrams(const DiagramVector & diags) const {
Selector<DiagramIndex> sel;
for ( DiagramIndex i = 0; i < diags.size(); ++i )
sel.insert(meInfo()[abs(diags[i]->id())-1], i);
return sel;
}
double MEPP2VV::me2() const {
// setup momenta and particle data for the external wavefunctions
// incoming
SpinorWaveFunction em_in( meMomenta()[0],mePartonData()[0],incoming);
SpinorBarWaveFunction ep_in( meMomenta()[1],mePartonData()[1],incoming);
// outgoing
VectorWaveFunction v1_out(meMomenta()[2],mePartonData()[2],outgoing);
VectorWaveFunction v2_out(meMomenta()[3],mePartonData()[3],outgoing);
vector<SpinorWaveFunction> f1;
vector<SpinorBarWaveFunction> a1;
vector<VectorWaveFunction> v1,v2;
// calculate the wavefunctions
for(unsigned int ix=0;ix<3;++ix) {
if(ix<2) {
em_in.reset(ix);
f1.push_back(em_in);
ep_in.reset(ix);
a1.push_back(ep_in);
}
v1_out.reset(ix);
v1.push_back(v1_out);
v2_out.reset(ix);
v2.push_back(v2_out);
}
if(mePartonData()[2]->id()==ParticleID::Z0&&
mePartonData()[3]->id()==ParticleID::Z0) {
return ZZME(f1,a1,v1,v2,false);
}
else if(abs(mePartonData()[2]->id())==ParticleID::Wplus&&
abs(mePartonData()[3]->id())==ParticleID::Wplus) {
return WWME(f1,a1,v1,v2,false);
}
else {
return WZME(f1,a1,v1,v2,false);
}
}
double MEPP2VV::WWME(vector<SpinorWaveFunction> & f1,
vector<SpinorBarWaveFunction> & a1,
vector<VectorWaveFunction> & v1,
vector<VectorWaveFunction> & v2,
bool calc) const {
double output(0.);
vector<double> me(5,0.0);
if(calc) me_.reset(ProductionMatrixElement(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1,PDT::Spin1));
// particle data for the t-channel intermediate
tcPDPtr tc[3];
if(f1[0].particle()->id()%2==0) {
for (int ix=0;ix<3;++ix) tc[ix] = getParticleData(1+2*ix);
}
else {
for (int ix=0;ix<3;++ix) tc[ix] = getParticleData(2+2*ix);
}
tcPDPtr gamma = getParticleData(ParticleID::gamma);
tcPDPtr z0 = getParticleData(ParticleID::Z0);
vector<Complex> diag(5,0.0);
VectorWaveFunction interP,interZ;
bool sChannel =
f1[0].particle()->id() == -a1[0].particle()->id();
for(unsigned int ihel1=0;ihel1<2;++ihel1) {
for(unsigned int ihel2=0;ihel2<2;++ihel2) {
if(sChannel) {
interP = FFPvertex_->evaluate(scale(),3,gamma,f1[ihel1],a1[ihel2]);
interZ = FFZvertex_->evaluate(scale(),3,z0 ,f1[ihel1],a1[ihel2]);
}
for(unsigned int ohel1=0;ohel1<3;++ohel1) {
for(unsigned int ohel2=0;ohel2<3;++ohel2) {
// s-channel photon
diag[3] = sChannel ?
WWWvertex_->evaluate(scale(),interP,v2[ohel2],v1[ohel1]) : 0.;
// s-channel Z0
diag[4] = sChannel ?
WWWvertex_->evaluate(scale(),interZ,v2[ohel2],v1[ohel1]) : 0.;
// t-channel
for(unsigned int ix=0;ix<3;++ix) {
SpinorWaveFunction inter =
- FFWvertex_->evaluate(scale(),5,tc[ix],f1[ihel1],v1[ohel1]);
+ FFWvertex_->evaluate(scale(),(abs(tc[ix]->id())!=6 ? 5 : 1),
+ tc[ix],f1[ihel1],v1[ohel1]);
diag[ix] =
FFWvertex_->evaluate(scale(),inter,a1[ihel2],v2[ohel2]);
}
// individual diagrams
for (size_t ii=0; ii<5; ++ii) me[ii] += std::norm(diag[ii]);
// full matrix element
diag[0] += diag[1]+diag[2]+diag[3]+diag[4];
output += std::norm(diag[0]);
// storage of the matrix element for spin correlations
if(calc) me_(ihel1,ihel2,ohel1,ohel2) = diag[0];
}
}
}
}
DVector save(5);
for (size_t i = 0; i < 5; ++i) {
save[i] = 0.25 * me[i];
}
meInfo(save);
return 0.25*output/3.;
}
double MEPP2VV::WZME(vector<SpinorWaveFunction> & f1,
vector<SpinorBarWaveFunction> & a1,
vector<VectorWaveFunction> & v1,
vector<VectorWaveFunction> & v2,
bool calc) const {
double output(0.);
vector<double> me(5,0.0);
if(calc) me_.reset(ProductionMatrixElement(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1,PDT::Spin1));
vector<Complex> diag(3,0.0);
SpinorWaveFunction inter;
for(unsigned int ihel1=0;ihel1<2;++ihel1) {
for(unsigned int ihel2=0;ihel2<2;++ihel2) {
VectorWaveFunction interW =
FFWvertex_->evaluate(scale(),3,v1[0].particle(),
f1[ihel1],a1[ihel2]);
for(unsigned int ohel1=0;ohel1<3;++ohel1) {
for(unsigned int ohel2=0;ohel2<3;++ohel2) {
// t-channel diagrams
inter = FFWvertex_->evaluate(scale(),5,a1[ihel1].particle(),
f1[ihel1],v1[ohel1]);
diag[0] = FFZvertex_->evaluate(scale(),inter,a1[ihel2],v2[ohel2]);
inter = FFZvertex_->evaluate(scale(),5,f1[ihel1].particle(),
f1[ihel1] ,v2[ohel2]);
diag[1] = FFWvertex_->evaluate(scale(),inter,a1[ihel2],v1[ohel1]);
// s-channel diagram
diag[2] = WWWvertex_->evaluate(scale(),interW,v1[ohel1],v2[ohel2]);
// individual diagrams
for (size_t ii=0; ii<3; ++ii) me[ii] += std::norm(diag[ii]);
// full matrix element
diag[0] += diag[1]+diag[2];
output += std::norm(diag[0]);
// storage of the matrix element for spin correlations
if(calc) me_(ihel1,ihel2,ohel1,ohel2) = diag[0];
}
}
}
}
DVector save(5);
for (size_t i = 0; i < 5; ++i) {
save[i] = 0.25 * me[i];
}
meInfo(save);
return 0.25*output/3.;
}
double MEPP2VV::ZZME(vector<SpinorWaveFunction> & f1,
vector<SpinorBarWaveFunction> & a1,
vector<VectorWaveFunction> & v1,
vector<VectorWaveFunction> & v2,
bool calc) const {
double output(0.);
vector<double> me(5,0.0);
if(calc) me_.reset(ProductionMatrixElement(PDT::Spin1Half,PDT::Spin1Half,
PDT::Spin1,PDT::Spin1));
vector<Complex> diag(2,0.0);
SpinorWaveFunction inter;
for(unsigned int ihel1=0;ihel1<2;++ihel1) {
for(unsigned int ihel2=0;ihel2<2;++ihel2) {
for(unsigned int ohel1=0;ohel1<3;++ohel1) {
for(unsigned int ohel2=0;ohel2<3;++ohel2) {
inter = FFZvertex_->evaluate(scale(),5,f1[ihel1].particle(),
f1[ihel1],v1[ohel1]);
diag[0] = FFZvertex_->evaluate(scale(),inter,a1[ihel2],v2[ohel2]);
inter = FFZvertex_->evaluate(scale(),5,f1[ihel1].particle(),
f1[ihel1] ,v2[ohel2]);
diag[1] = FFZvertex_->evaluate(scale(),inter,a1[ihel2],v1[ohel1]);
// individual diagrams
for (size_t ii=0; ii<2; ++ii) me[ii] += std::norm(diag[ii]);
// full matrix element
diag[0] += diag[1];
output += std::norm(diag[0]);
// storage of the matrix element for spin correlations
if(calc) me_(ihel1,ihel2,ohel1,ohel2) = diag[0];
}
}
}
}
// identical particle factor
output /= 2.;
DVector save(5);
for (size_t i = 0; i < 5; ++i) {
save[i] = 0.25 * me[i];
}
meInfo(save);
return 0.25*output/3.;
}
void MEPP2VV::constructVertex(tSubProPtr sub) {
// extract the particles in the hard process
ParticleVector hard;
hard.push_back(sub->incoming().first);
hard.push_back(sub->incoming().second);
hard.push_back(sub->outgoing()[0]);
hard.push_back(sub->outgoing()[1]);
// order of particles
unsigned int order[4]={0,1,2,3};
if(hard[order[0]]->id()<0) swap(order[0],order[1]);
vector<SpinorWaveFunction> q;
vector<SpinorBarWaveFunction> qb;
SpinorWaveFunction (q ,hard[order[0]],incoming,false);
SpinorBarWaveFunction(qb,hard[order[1]],incoming,false);
vector<VectorWaveFunction> w1,w2;
// q qbar -> Z Z
if(hard[order[2]]->id()==ParticleID::Z0&&
hard[order[3]]->id()==ParticleID::Z0) {
VectorWaveFunction (w1,hard[order[2]],outgoing,true ,false);
VectorWaveFunction (w2,hard[order[3]],outgoing,true ,false);
ZZME(q,qb,w1,w2,true);
}
// q qbar -> W W
else if(abs(hard[order[2]]->id())==ParticleID::Wplus&&
abs(hard[order[3]]->id())==ParticleID::Wplus) {
if((hard[order[0]]->id()%2==1&&hard[order[2]]->id()==ParticleID::Wplus)||
(hard[order[0]]->id()%2==0&&hard[order[2]]->id()==ParticleID::Wminus))
swap(order[2],order[3]);
VectorWaveFunction (w1,hard[order[2]],outgoing,true ,false);
VectorWaveFunction (w2,hard[order[3]],outgoing,true ,false);
WWME(q,qb,w1,w2,true);
}
// q qbar -> W Z
else {
if(abs(hard[order[2]]->id())!=ParticleID::Wplus)
swap(order[2],order[3]);
VectorWaveFunction (w1,hard[order[2]],outgoing,true ,false);
VectorWaveFunction (w2,hard[order[3]],outgoing,true ,false);
WZME(q,qb,w1,w2,true);
}
// construct the vertex
HardVertexPtr hardvertex=new_ptr(HardVertex());
// set the matrix element for the vertex
hardvertex->ME(me_);
// set the pointers and to and from the vertex
for(unsigned int ix=0;ix<4;++ix)
hard[order[ix]]->spinInfo()->productionVertex(hardvertex);
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:01 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3797368
Default Alt Text
(18 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment