Page MenuHomeHEPForge

No OneTemporary

diff --git a/Decay/General/GeneralThreeBodyDecayer.cc b/Decay/General/GeneralThreeBodyDecayer.cc
--- a/Decay/General/GeneralThreeBodyDecayer.cc
+++ b/Decay/General/GeneralThreeBodyDecayer.cc
@@ -1,1010 +1,1025 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the GeneralThreeBodyDecayer class.
//
#include "GeneralThreeBodyDecayer.h"
#include "Herwig++/Decay/DecayPhaseSpaceMode.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/PDT/ThreeBodyAllOnCalculator.h"
using namespace Herwig;
void GeneralThreeBodyDecayer::persistentOutput(PersistentOStream & os) const {
os << _incoming << _outgoing << _diagrams << _diagmap << _colour << _colourLargeNC
<< _nflow << _widthopt << _reftag << _reftagcc << _intOpt << _relerr;
}
void GeneralThreeBodyDecayer::persistentInput(PersistentIStream & is, int) {
is >> _incoming >> _outgoing >> _diagrams >> _diagmap >> _colour >> _colourLargeNC
>> _nflow >> _widthopt >> _reftag >> _reftagcc >> _intOpt >> _relerr;
}
AbstractClassDescription<GeneralThreeBodyDecayer>
GeneralThreeBodyDecayer::initGeneralThreeBodyDecayer;
// Definition of the static class description member.
void GeneralThreeBodyDecayer::Init() {
static ClassDocumentation<GeneralThreeBodyDecayer> documentation
("The GeneralThreeBodyDecayer class is the base class for the implementation of"
" all three body decays based on spin structures in Herwig++.");
static Switch<GeneralThreeBodyDecayer,unsigned int> interfaceWidthOption
("WidthOption",
"Option for the treatment of the widths of the intermediates",
&GeneralThreeBodyDecayer::_widthopt, 1, false, false);
static SwitchOption interfaceWidthOptionFixed
(interfaceWidthOption,
"Fixed",
"Use fixed widths",
1);
static SwitchOption interfaceWidthOptionRunning
(interfaceWidthOption,
"Running",
"Use running widths",
2);
static SwitchOption interfaceWidthOptionZero
(interfaceWidthOption,
"Zero",
"Set the widths to zero",
3);
static Switch<GeneralThreeBodyDecayer,unsigned int> interfacePartialWidthIntegration
("PartialWidthIntegration",
"Switch to control the partial width integration",
&GeneralThreeBodyDecayer::_intOpt, 0, false, false);
static SwitchOption interfacePartialWidthIntegrationAllPoles
(interfacePartialWidthIntegration,
"AllPoles",
"Include all potential poles",
0);
static SwitchOption interfacePartialWidthIntegrationShallowestPole
(interfacePartialWidthIntegration,
"ShallowestPole",
"Only include the shallowest pole",
1);
static Parameter<GeneralThreeBodyDecayer,double> interfaceRelativeError
("RelativeError",
"The relative error for the GQ integration of the partial width",
&GeneralThreeBodyDecayer::_relerr, 1e-2, 1e-10, 1.,
false, false, Interface::limited);
}
ParticleVector GeneralThreeBodyDecayer::decay(const Particle & parent,
const tPDVector & children) const {
// return empty vector if products heavier than parent
Energy mout(ZERO);
for(tPDVector::const_iterator it=children.begin();
it!=children.end();++it) mout+=(**it).massMin();
if(mout>parent.mass()) return ParticleVector();
// generate the decay
bool cc;
int imode=modeNumber(cc,parent.dataPtr(),children);
// generate the kinematics
ParticleVector decay=generate(generateIntermediates(),cc,imode,parent);
// make the colour connections
colourConnections(parent, decay);
// return the answer
return decay;
}
int GeneralThreeBodyDecayer::
modeNumber(bool & cc, tcPDPtr in, const tPDVector & outin) const {
assert( !_reftag.empty() && !_reftagcc.empty() );
// check number of outgoing particles
if( outin.size() != 3 || abs(in->id()) != abs(_incoming->id()) ) return -1;
OrderedParticles testmode(outin.begin(), outin.end());
OrderedParticles::const_iterator dit = testmode.begin();
string testtag(in->name() + "->");
for( unsigned int i = 1; dit != testmode.end(); ++dit, ++i) {
testtag += (**dit).name();
if( i != 3 ) testtag += string(",");
}
if( testtag == _reftag ) {
cc = false;
return 0;
}
else if ( testtag == _reftagcc ) {
cc = true;
return 0;
}
else return -1;
}
bool GeneralThreeBodyDecayer::setDecayInfo(PDPtr incoming,
vector<PDPtr> outgoing,
const vector<TBDiagram> & process,
double symfac) {
// set the member variables from the info supplied
_incoming = incoming;
_outgoing = outgoing;
_diagrams = process;
assert( _outgoing.size() == 3 );
// Construct reference tags for testing in modeNumber function
OrderedParticles refmode(_outgoing.begin(), _outgoing.end());
OrderedParticles::const_iterator dit = refmode.begin();
_reftag = _incoming->name() + "->";
for( unsigned int i = 1; dit != refmode.end(); ++dit, ++i) {
_reftag += (**dit).name();
if( i != 3 ) _reftag += string(",");
}
//CC-mode
refmode.clear();
_reftagcc = _incoming->CC() ? _incoming->CC()->name() :
_incoming->name();
_reftagcc += "->";
for( unsigned int i = 0; i < 3; ++i ) {
if( _outgoing[i]->CC() ) refmode.insert( _outgoing[i]->CC() );
else refmode.insert( _outgoing[i] );
}
dit = refmode.begin();
for( unsigned int i = 1; dit != refmode.end(); ++dit , ++i) {
_reftagcc += (**dit).name();
if( i != 3 ) _reftagcc += string(",");
}
// set the colour factors and return the answer
return setColourFactors(symfac);
}
void GeneralThreeBodyDecayer::doinit() {
DecayIntegrator::doinit();
// create the phase space integrator
tPDVector extpart(1,_incoming);
extpart.insert(extpart.end(),_outgoing.begin(),_outgoing.end());
// create the integration channels for the decay
DecayPhaseSpaceModePtr mode(new_ptr(DecayPhaseSpaceMode(extpart,this,true)));
DecayPhaseSpaceChannelPtr newchannel;
// create the phase-space channels for the integration
unsigned int nmode(0);
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
if(_diagrams[ix].channelType==TBDiagram::fourPoint||
_diagrams[ix].channelType==TBDiagram::UNDEFINED) continue;
// create the new channel
newchannel=new_ptr(DecayPhaseSpaceChannel(mode));
int jac = 0;
double power = 0.0;
if ( _diagrams[ix].intermediate->mass() == ZERO ) {
jac = 1;
power = -2.0;
}
if(_diagrams[ix].channelType==TBDiagram::channel23) {
newchannel->addIntermediate(extpart[0],0,0.0,-1,1);
newchannel->addIntermediate(_diagrams[ix].intermediate,jac,power, 2,3);
}
else if(_diagrams[ix].channelType==TBDiagram::channel13) {
newchannel->addIntermediate(extpart[0],0,0.0,-1,2);
newchannel->addIntermediate(_diagrams[ix].intermediate,jac,power, 1,3);
}
else if(_diagrams[ix].channelType==TBDiagram::channel12) {
newchannel->addIntermediate(extpart[0],0,0.0,-1,3);
newchannel->addIntermediate(_diagrams[ix].intermediate,jac,power, 1,2);
}
_diagmap.push_back(ix);
mode->addChannel(newchannel);
++nmode;
}
if(nmode==0) {
string mode = extpart[0]->PDGName() + "->";
for(unsigned int ix=1;ix<extpart.size();++ix) mode += extpart[ix]->PDGName() + " ";
throw Exception() << "No decay channels in GeneralThreeBodyDecayer::"
<< "doinit() for " << mode << "\n" << Exception::runerror;
}
// add the mode
vector<double> wgt(nmode,1./double(nmode));
addMode(mode,1.,wgt);
}
double GeneralThreeBodyDecayer::
threeBodyMatrixElement(const int imode, const Energy2 q2,
const Energy2 s3, const Energy2 s2,
const Energy2 s1, const Energy m1,
const Energy m2, const Energy m3) const {
// calculate the momenta of the outgoing particles
Energy m0=sqrt(q2);
// energies
Energy eout[3] = {0.5*(q2+sqr(m1)-s1)/m0,
0.5*(q2+sqr(m2)-s2)/m0,
0.5*(q2+sqr(m3)-s3)/m0};
// magnitudes of the momenta
Energy pout[3] = {sqrt(sqr(eout[0])-sqr(m1)),
sqrt(sqr(eout[1])-sqr(m2)),
sqrt(sqr(eout[2])-sqr(m3))};
double cos2 = 0.5*(sqr(pout[0])+sqr(pout[1])-sqr(pout[2]))/pout[0]/pout[1];
double cos3 = 0.5*(sqr(pout[0])-sqr(pout[1])+sqr(pout[2]))/pout[0]/pout[2];
double sin2 = sqrt(1.-sqr(cos2)), sin3 = sqrt(1.-sqr(cos3));
Lorentz5Momentum out[3]=
{Lorentz5Momentum( ZERO , ZERO , pout[0] , eout[0] , m1),
Lorentz5Momentum( pout[1]*sin2 , ZERO , -pout[1]*cos2 , eout[1] , m2),
Lorentz5Momentum( -pout[2]*sin3 , ZERO , -pout[2]*cos3 , eout[2] , m3)};
// create the incoming
PPtr inpart=mode(imode)->externalParticles(0)->
produceParticle(Lorentz5Momentum(sqrt(q2)));
// and outgoing particles
ParticleVector decay;
for(unsigned int ix=1;ix<4;++ix)
decay.push_back(mode(imode)->externalParticles(ix)->produceParticle(out[ix-1]));
// return the matrix element
return me2(-1,*inpart,decay,Initialize);
}
double GeneralThreeBodyDecayer::brat(const DecayMode &, const Particle & p,
double oldbrat) const {
ParticleVector children = p.children();
if( children.size() != 3 || !p.data().widthGenerator() )
return oldbrat;
// partial width for this mode
Energy scale = p.mass();
Energy pwidth =
partialWidth( make_pair(p.dataPtr(), scale),
make_pair(children[0]->dataPtr(), children[0]->mass()),
make_pair(children[1]->dataPtr(), children[1]->mass()),
make_pair(children[2]->dataPtr(), children[2]->mass()) );
Energy width = p.data().widthGenerator()->width(p.data(), scale);
return pwidth/width;
}
Energy GeneralThreeBodyDecayer::partialWidth(PMPair inpart, PMPair outa,
PMPair outb, PMPair outc) const {
if(inpart.second<outa.second+outb.second+outc.second) return ZERO;
// create the object to calculate the width if it doesn't all ready exist
if(!_widthcalc) {
string tag = _incoming->name() + "->";
tag += _outgoing[0]->name() + "," + _outgoing[1]->name() + ","
+ _outgoing[2]->name() + ";";
DMPtr dm = generator()->findDecayMode(tag);
_widthcalc = threeBodyMEIntegrator(*dm);
}
return _widthcalc->partialWidth(sqr(inpart.second));
}
void GeneralThreeBodyDecayer::
colourConnections(const Particle & parent,
const ParticleVector & out) const {
// first extract the outgoing particles and intermediate
PPtr inter;
ParticleVector outgoing;
if(!generateIntermediates()) {
outgoing=out;
}
else {
// find the diagram
unsigned int idiag = diagramMap()[mode(imode())->selectedChannel()];
PPtr child;
for(unsigned int ix=0;ix<out.size();++ix) {
if(out[ix]->children().empty()) child = out[ix];
else inter = out[ix];
}
outgoing.resize(3);
switch(_diagrams[idiag].channelType) {
case TBDiagram::channel23:
outgoing[0] = child;
outgoing[1] = inter->children()[0];
outgoing[2] = inter->children()[1];
break;
case TBDiagram::channel13:
outgoing[0] = inter->children()[0];
outgoing[1] = child;
outgoing[2] = inter->children()[1];
break;
case TBDiagram::channel12:
outgoing[0] = inter->children()[0];
outgoing[1] = inter->children()[1];
outgoing[2] = child;
break;
default:
throw Exception() << "unknown diagram type in GeneralThreeBodyDecayer::"
<< "colourConnections()" << Exception::runerror;
}
}
// extract colour of the incoming and outgoing particles
PDT::Colour inColour(parent.data().iColour());
vector<PDT::Colour> outColour;
vector<int> singlet,octet,triplet,antitriplet;
for(unsigned int ix=0;ix<outgoing.size();++ix) {
outColour.push_back(outgoing[ix]->data().iColour());
switch(outColour.back()) {
case PDT::Colour0 :
singlet.push_back(ix);
break;
case PDT::Colour3 :
triplet.push_back(ix);
break;
case PDT::Colour3bar:
antitriplet.push_back(ix);
break;
case PDT::Colour8 :
octet.push_back(ix);
break;
default:
throw Exception() << "Unknown colour for particle in GeneralThreeBodyDecayer::"
<< "colourConnections()" << Exception::runerror;
}
}
// colour neutral decaying particle
if ( inColour == PDT::Colour0) {
// options are all neutral or triplet/antitriplet+ neutral
if(singlet.size()==3) return;
else if(singlet.size()==1&&triplet.size()==1&&antitriplet.size()==1) {
outgoing[triplet[0]]->antiColourNeighbour(outgoing[antitriplet[0]]);
// add intermediate if needed
if(inter&&inter->coloured()) {
if(inter->dataPtr()->iColour()==PDT::Colour3)
outgoing[triplet[0]]->colourLine()->addColoured(inter);
else if(inter->dataPtr()->iColour()==PDT::Colour3bar)
outgoing[triplet[0]]->colourLine()->addAntiColoured(inter);
}
}
else if(octet.size()==1&&triplet.size()==1&&antitriplet.size()==1) {
outgoing[ triplet[0]]->antiColourNeighbour(outgoing[octet[0]]);
outgoing[antitriplet[0]]-> colourNeighbour(outgoing[octet[0]]);
if(inter&&inter->coloured()) {
if(inter->dataPtr()->iColour()==PDT::Colour3)
outgoing[antitriplet[0]]->antiColourLine()->addColoured(inter);
else if(inter->dataPtr()->iColour()==PDT::Colour3bar)
outgoing[ triplet[0]]-> colourLine()->addAntiColoured(inter);
else if(inter->dataPtr()->iColour()==PDT::Colour8) {
outgoing[antitriplet[0]]->antiColourLine()->addAntiColoured(inter);
outgoing[ triplet[0]]-> colourLine()->addColoured(inter);
}
}
}
else if(triplet.size()==3) {
tColinePtr col[3] = {ColourLine::create(outgoing[0]),
ColourLine::create(outgoing[1]),
ColourLine::create(outgoing[2])};
col[0]->setSourceNeighbours(col[1],col[2]);
}
else if(antitriplet.size()==3) {
tColinePtr col[3] = {ColourLine::create(outgoing[0],true),
ColourLine::create(outgoing[1],true),
ColourLine::create(outgoing[2],true)};
col[0]->setSinkNeighbours(col[1],col[2]);
}
else {
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception()
<< "Unknown colour structure in GeneralThreeBodyDecayer::"
<< "colourConnections() for singlet decaying particle "
<< mode << Exception::runerror;
}
}
// colour triplet decaying particle
else if( inColour == PDT::Colour3) {
if(singlet.size()==2&&triplet.size()==1) {
outgoing[triplet[0]]->incomingColour(const_ptr_cast<tPPtr>(&parent));
if(inter&&inter->coloured())
outgoing[triplet[0]]->colourLine()->addColoured(inter);
}
else if(antitriplet.size()==1&&triplet.size()==2) {
if(colourFlow()==0) {
outgoing[triplet[0]]->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[antitriplet[0]]->colourNeighbour(outgoing[triplet[1]]);
if(inter&&inter->coloured()) {
switch (inter->dataPtr()->iColour()) {
case PDT::Colour8:
inter->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[triplet[1]]->colourLine()->addAntiColoured(inter);
break;
default:
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception() << "Unknown colour for intermediate in "
<< "GeneralThreeBodyDecayer::"
<< "colourConnections() for "
<< "decaying colour triplet "
<< mode << Exception::runerror;
}
}
}
else {
outgoing[triplet[1]]->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[antitriplet[0]]->colourNeighbour(outgoing[triplet[0]]);
if(inter&&inter->coloured()) {
switch (inter->dataPtr()->iColour()) {
case PDT::Colour8:
inter->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[triplet[0]]->colourLine()->addAntiColoured(inter);
break;
default:
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception() << "Unknown colour for intermediate in "
<< "GeneralThreeBodyDecayer::"
<< "colourConnections() for "
<< "decaying colour triplet "
<< mode << Exception::runerror;
}
}
}
}
else if (singlet.size()==1&&triplet.size()==1&&octet.size()==1) {
if(inter) {
if(inter->children()[0]->dataPtr()->iColour()==PDT::Colour8 ||
inter->children()[1]->dataPtr()->iColour()==PDT::Colour8) {
inter->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[octet[0]]->incomingColour(inter);
outgoing[octet[0]]->colourNeighbour(outgoing[triplet[0]]);
}
else {
outgoing[octet[0]]->incomingColour(inter);
outgoing[octet[0]]->colourNeighbour(inter);
outgoing[triplet[0]]->incomingColour(inter);
}
}
else {
outgoing[octet[0]]->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[octet[0]]->colourNeighbour(outgoing[triplet[0]]);
}
}
else if (singlet.size()==1&&antitriplet.size()==2) {
tColinePtr col[2] = {ColourLine::create(outgoing[antitriplet[0]],true),
ColourLine::create(outgoing[antitriplet[1]],true)};
parent.colourLine()->setSinkNeighbours(col[0],col[1]);
}
else {
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception()
<< "Unknown colour structure in GeneralThreeBodyDecayer::"
<< "colourConnections() for triplet decaying particle "
<< mode << Exception::runerror;
}
}
else if( inColour == PDT::Colour3bar) {
if(singlet.size()==2&&antitriplet.size()==1) {
outgoing[antitriplet[0]]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
}
else if(antitriplet.size()==2&&triplet.size()==1) {
if(colourFlow()==0) {
outgoing[antitriplet[0]]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
outgoing[triplet[0]]->antiColourNeighbour(outgoing[antitriplet[1]]);
if(inter&&inter->coloured()) {
switch (inter->dataPtr()->iColour()) {
case PDT::Colour8:
inter->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
outgoing[antitriplet[1]]->antiColourLine()->addAntiColoured(inter);
break;
default:
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception() << "Unknown colour for intermediate in"
<< " GeneralThreeBodyDecayer::"
<< "colourConnections() for "
<< "decaying colour antitriplet "
<< mode << Exception::runerror;
}
}
}
else {
outgoing[antitriplet[1]]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
outgoing[triplet[0]]->antiColourNeighbour(outgoing[antitriplet[0]]);
if(inter&&inter->coloured()) {
switch (inter->dataPtr()->iColour()) {
case PDT::Colour8:
inter->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
outgoing[antitriplet[0]]->antiColourLine()->addAntiColoured(inter);
break;
default:
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception() << "Unknown colour for intermediate in "
<< "GeneralThreeBodyDecayer::"
<< "colourConnections() for "
<< "decaying colour antitriplet "
<< mode << Exception::runerror;
}
}
}
}
else if (singlet.size()==1&&antitriplet.size()==1&&octet.size()==1) {
if(inter) {
if(inter->children()[0]->dataPtr()->iColour()==PDT::Colour8 ||
inter->children()[1]->dataPtr()->iColour()==PDT::Colour8) {
inter->incomingColour(const_ptr_cast<tPPtr>(&parent));
outgoing[octet[0]]->incomingAntiColour(inter);
outgoing[octet[0]]->antiColourNeighbour(outgoing[antitriplet[0]]);
}
else {
outgoing[octet[0]]->incomingAntiColour(inter);
outgoing[octet[0]]->antiColourNeighbour(inter);
outgoing[antitriplet[0]]->incomingAntiColour(inter);
}
}
else {
outgoing[octet[0]]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
outgoing[octet[0]]->antiColourNeighbour(outgoing[antitriplet[0]]);
}
}
else if (singlet.size()==1&&triplet.size()==2) {
tColinePtr col[2] = {ColourLine::create(outgoing[triplet[0]]),
ColourLine::create(outgoing[triplet[1]])};
parent.antiColourLine()->setSourceNeighbours(col[0],col[1]);
}
else {
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception()
<< "Unknown colour structure in GeneralThreeBodyDecayer::"
<< "colourConnections() for anti-triplet decaying particle"
<< mode << Exception::runerror;
}
}
else if( inColour == PDT::Colour8) {
if(triplet.size()==1&&antitriplet.size()==1&&singlet.size()==1) {
outgoing[ triplet[0]]->incomingColour (const_ptr_cast<tPPtr>(&parent));
outgoing[antitriplet[0]]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
if(inter&&inter->coloured()) {
switch (inter->dataPtr()->iColour()) {
case PDT::Colour3:
outgoing[triplet[0]]->colourLine()->addColoured(inter);
break;
case PDT::Colour3bar:
outgoing[antitriplet[0]]->antiColourLine()->addAntiColoured(inter);
break;
default:
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception() << "Unknown colour for intermediate"
<< " in GeneralThreeBodyDecayer::"
<< "colourConnections() for "
<< "decaying colour octet "
<< mode << Exception::runerror;
}
}
}
else if(triplet.size()==3) {
tColinePtr col[2];
if(colourFlow()==0) {
outgoing[0]->incomingColour (const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[1]);
col[1] = ColourLine::create(outgoing[2]);
}
else if(colourFlow()==1) {
outgoing[1]->incomingColour (const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[0]);
col[1] = ColourLine::create(outgoing[2]);
}
else if(colourFlow()==2) {
outgoing[2]->incomingColour (const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[0]);
col[1] = ColourLine::create(outgoing[1]);
}
else
assert(false);
parent.antiColourLine()->setSourceNeighbours(col[0],col[1]);
}
else if(antitriplet.size()==3) {
tColinePtr col[2];
if(colourFlow()==0) {
outgoing[0]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[1],true);
col[1] = ColourLine::create(outgoing[2],true);
}
else if(colourFlow()==1) {
outgoing[1]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[0],true);
col[1] = ColourLine::create(outgoing[2],true);
}
else if(colourFlow()==2) {
outgoing[2]->incomingAntiColour(const_ptr_cast<tPPtr>(&parent));
col[0] = ColourLine::create(outgoing[0],true);
col[1] = ColourLine::create(outgoing[1],true);
}
else
assert(false);
parent.colourLine()->setSinkNeighbours(col[0],col[1]);
}
else {
string mode = parent.PDGName() + " -> " + out[0]->PDGName() + " "
+ out[1]->PDGName() + " " + out[2]->PDGName();
throw Exception()
<< "Unknown colour structure in GeneralThreeBodyDecayer::"
<< "colourConnections() for octet decaying particle"
<< mode << Exception::runerror;
}
}
}
void GeneralThreeBodyDecayer::
constructIntegratorChannels(vector<int> & intype, vector<Energy> & inmass,
vector<Energy> & inwidth, vector<double> & inpow,
vector<double> & inweights) const {
Energy min = incoming()->mass();
int nchannel(0);
pair<int,Energy> imin[4]={make_pair(-1,-1.*GeV),make_pair(-1,-1.*GeV),
make_pair(-1,-1.*GeV),make_pair(-1,-1.*GeV)};
Energy absmin = -1e20*GeV;
int minType = -1;
for(unsigned int iy=0;iy<_diagmap.size();++iy) {
unsigned int ix=_diagmap[iy];
if(getProcessInfo()[ix].channelType==TBDiagram::fourPoint) continue;
Energy dm1(min-getProcessInfo()[ix].intermediate->mass());
Energy dm2(getProcessInfo()[ix].intermediate->mass());
int itype(0);
if (getProcessInfo()[ix].channelType==TBDiagram::channel23) {
dm1 -= outgoing()[0]->mass();
dm2 -= outgoing()[1]->mass()+outgoing()[2]->mass();
itype = 3;
}
else if(getProcessInfo()[ix].channelType==TBDiagram::channel13) {
dm1 -= outgoing()[1]->mass();
dm2 -= outgoing()[0]->mass()+outgoing()[2]->mass();
itype = 2;
}
else if(getProcessInfo()[ix].channelType==TBDiagram::channel12) {
dm1 -= outgoing()[2]->mass();
dm2 -= outgoing()[0]->mass()+outgoing()[1]->mass();
itype = 1;
}
if((dm1<ZERO||dm2<ZERO)&&getProcessInfo()[ix].intermediate->id()!=ParticleID::gamma) {
if (imin[itype].first < 0 ||
(dm1<ZERO && imin[itype].second < dm1) ) {
imin[itype] = make_pair(ix,dm1);
if(dm1<ZERO&&absmin<dm1) {
absmin = dm1;
minType = itype;
}
}
continue;
}
if(getProcessInfo()[ix].intermediate->id()!=ParticleID::gamma) {
intype.push_back(itype);
inpow.push_back(0.);
inmass.push_back(getProcessInfo()[ix].intermediate->mass());
inwidth.push_back(widthOption() ==3 ? ZERO : getProcessInfo()[ix].intermediate->width());
++nchannel;
}
else if(getProcessInfo()[ix].intermediate->id()==ParticleID::gamma) {
intype.push_back(itype);
inpow.push_back(-2.);
inmass.push_back(-1.*GeV);
inwidth.push_back(-1.*GeV);
++nchannel;
}
}
// physical poles, use them and return
if(nchannel>0) {
inweights = vector<double>(nchannel,1./double(nchannel));
return;
}
// use shallowest pole
else if(_intOpt==1&&minType>0) {
intype.push_back(minType);
if(getProcessInfo()[imin[minType].first].intermediate->id()!=ParticleID::gamma) {
inpow.push_back(0.);
inmass.push_back(getProcessInfo()[imin[minType].first].intermediate->mass());
inwidth.push_back(widthOption() ==3 ? ZERO : getProcessInfo()[imin[minType].first].intermediate->width());
}
else {
inpow.push_back(-2.);
inmass.push_back(-1.*GeV);
inwidth.push_back(-1.*GeV);
}
inweights = vector<double>(1,1.);
return;
}
for(unsigned int ix=1;ix<4;++ix) {
if(imin[ix].first>=0) {
intype.push_back(ix);
if(getProcessInfo()[imin[ix].first].intermediate->id()!=ParticleID::gamma) {
inpow.push_back(0.);
inmass.push_back(getProcessInfo()[imin[ix].first].intermediate->mass());
inwidth.push_back(widthOption() ==3 ? ZERO : getProcessInfo()[imin[ix].first].intermediate->width());
}
else {
inpow.push_back(-2.);
inmass.push_back(-1.*GeV);
inwidth.push_back(-1.*GeV);
}
++nchannel;
}
}
inweights = vector<double>(nchannel,1./double(nchannel));
}
bool GeneralThreeBodyDecayer::setColourFactors(double symfac) {
string name = _incoming->PDGName() + "->";
vector<int> sng,trip,atrip,oct;
unsigned int iloc(0);
for(vector<PDPtr>::const_iterator it = _outgoing.begin();
it != _outgoing.end();++it) {
name += (**it).PDGName() + " ";
if ((**it).iColour() == PDT::Colour0 ) sng.push_back(iloc) ;
else if((**it).iColour() == PDT::Colour3 ) trip.push_back(iloc) ;
else if((**it).iColour() == PDT::Colour3bar ) atrip.push_back(iloc);
else if((**it).iColour() == PDT::Colour8 ) oct.push_back(iloc) ;
++iloc;
}
// colour neutral decaying particle
if ( _incoming->iColour() == PDT::Colour0) {
// options are all neutral or triplet/antitriplet+ neutral
if(sng.size()==3) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,1.));
_colourLargeNC = vector<DVector>(1,DVector(1,1.));
}
else if(sng.size()==1&&trip.size()==1&&atrip.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,3.));
_colourLargeNC = vector<DVector>(1,DVector(1,3.));
}
else if(trip.size()==1&&atrip.size()==1&&oct.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,4.));
_colourLargeNC = vector<DVector>(1,DVector(1,4.));
}
else if( trip.size() == 3 || atrip.size() == 3 ) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,6.));
_colourLargeNC = vector<DVector>(1,DVector(1,6.));
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
tPDPtr inter = _diagrams[ix].intermediate;
if(inter->CC()) inter = inter->CC();
unsigned int io[2]={1,2};
double sign = _diagrams[ix].channelType == TBDiagram::channel13 ? -1. : 1.;
for(unsigned int iy=0;iy<3;++iy) {
if (iy==1) io[0]=0;
else if(iy==2) io[1]=1;
tPDVector decaylist = _diagrams[ix].vertices.second->search(iy, inter);
if(decaylist.empty()) continue;
bool found=false;
for(unsigned int iz=0;iz<decaylist.size();iz+=3) {
if(decaylist[iz+io[0]]->id()==_diagrams[ix].outgoingPair.first &&
decaylist[iz+io[1]]->id()==_diagrams[ix].outgoingPair.second) {
sign *= 1.;
found = true;
}
else if(decaylist[iz+io[0]]->id()==_diagrams[ix].outgoingPair.second &&
decaylist[iz+io[1]]->id()==_diagrams[ix].outgoingPair.first ) {
sign *= -1.;
found = true;
}
}
if(found) {
if(iy==1) sign *=-1.;
break;
}
}
_diagrams[ix]. colourFlow = vector<CFPair>(1,make_pair(1,sign));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(1,sign));
}
}
else {
generator()->log() << "Unknown colour flow structure for "
<< "colour neutral decay "
<< name << " in GeneralThreeBodyDecayer::"
<< "setColourFactors(), omitting decay\n";
return false;
}
}
// colour triplet decaying particle
else if( _incoming->iColour() == PDT::Colour3) {
if(sng.size()==2&&trip.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,1.));
_colourLargeNC = vector<DVector>(1,DVector(1,1.));
}
else if(trip.size()==2&&atrip.size()==1) {
_nflow = 2;
_colour.resize(2,DVector(2,0.));
_colour[0][0] = 3.; _colour[0][1] = 1.;
_colour[1][0] = 1.; _colour[1][1] = 3.;
_colourLargeNC.resize(2,DVector(2,0.));
_colourLargeNC[0][0] = 3.; _colourLargeNC[1][1] = 3.;
// sort out the contribution of the different diagrams to the colour
// flows
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
// colour singlet intermediate
if(_diagrams[ix].intermediate->iColour()==PDT::Colour0) {
if(_diagrams[ix].channelType==trip[0]) {
_diagrams[ix]. colourFlow = vector<CFPair>(1,make_pair(1,1.));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(1,1.));
}
else {
_diagrams[ix].colourFlow = vector<CFPair>(1,make_pair(2,1.));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(2,1.));
}
}
// colour octet intermediate
else if(_diagrams[ix].intermediate->iColour()==PDT::Colour8) {
if(_diagrams[ix].channelType==trip[0]) {
vector<CFPair> flow(1,make_pair(2, 0.5 ));
_diagrams[ix].largeNcColourFlow = flow;
flow.push_back( make_pair(1,-1./6.));
_diagrams[ix].colourFlow=flow;
}
else {
vector<CFPair> flow(1,make_pair(1, 0.5 ));
_diagrams[ix].largeNcColourFlow = flow;
flow.push_back( make_pair(2,-1./6.));
_diagrams[ix].colourFlow=flow;
}
}
else {
generator()->log() << "Unknown colour for the intermediate in "
<< "triplet -> triplet triplet antitriplet in "
<< "GeneralThreeBodyDecayer::setColourFactors()"
<< " for " << name << " omitting decay\n";
return false;
}
}
}
else if(trip.size()==1&&oct.size()==1&&sng.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,4./3.));
_colourLargeNC = vector<DVector>(1,DVector(1,4./3.));
}
else if(sng.size()==1&&atrip.size()==2) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,2.));
_colourLargeNC = vector<DVector>(1,DVector(1,2.));
}
else {
generator()->log() << "Unknown colour structure for "
<< "triplet decay in "
<< "GeneralThreeBodyDecayer::setColourFactors()"
<< " for " << name << " omitting decay\n";
return false;
}
}
// colour antitriplet decaying particle
else if( _incoming->iColour() == PDT::Colour3bar) {
if(sng.size()==2&&atrip.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,1.));
_colourLargeNC = vector<DVector>(1,DVector(1,1.));
}
else if(atrip.size()==2&&trip.size()==1) {
_nflow = 2;
_colour.resize(2,DVector(2,0.));
_colour[0][0] = 3.; _colour[0][1] = 1.;
_colour[1][0] = 1.; _colour[1][1] = 3.;
_colourLargeNC.resize(2,DVector(2,0.));
_colourLargeNC[0][0] = 3.; _colourLargeNC[1][1] = 3.;
// sort out the contribution of the different diagrams to the colour
// flows
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
// colour singlet intermediate
if(_diagrams[ix].intermediate->iColour()==PDT::Colour0) {
if(_diagrams[ix].channelType==atrip[0]) {
_diagrams[ix]. colourFlow = vector<CFPair>(1,make_pair(1,1.));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(1,1.));
}
else {
_diagrams[ix].colourFlow = vector<CFPair>(1,make_pair(2,1.));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(2,1.));
}
}
// colour octet intermediate
else if(_diagrams[ix].intermediate->iColour()==PDT::Colour8) {
if(_diagrams[ix].channelType==atrip[0]) {
vector<CFPair> flow(1,make_pair(2, 0.5 ));
_diagrams[ix].largeNcColourFlow = flow;
flow.push_back( make_pair(1,-1./6.));
_diagrams[ix].colourFlow=flow;
}
else {
vector<CFPair> flow(1,make_pair(1, 0.5 ));
_diagrams[ix].largeNcColourFlow = flow;
flow.push_back( make_pair(2,-1./6.));
_diagrams[ix].colourFlow=flow;
}
}
else {
generator()->log() << "Unknown colour for the intermediate in "
<< "antitriplet -> antitriplet antitriplet triplet in "
<< "GeneralThreeBodyDecayer::setColourFactors()"
<< " for " << name << " omitting decay\n";
return false;
}
}
}
else if(atrip.size()==1&&oct.size()==1&&sng.size()==1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,4./3.));
_colourLargeNC = vector<DVector>(1,DVector(1,4./3.));
}
else if(sng.size()==1&&trip.size()==2) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,2.));
_colourLargeNC = vector<DVector>(1,DVector(1,2.));
}
else {
generator()->log() << "Unknown colour antitriplet decay in "
<< "GeneralThreeBodyDecayer::setColourFactors()"
<< " for " << name << " omitting decay\n";
return false;
}
}
// colour octet particle
else if( _incoming->iColour() == PDT::Colour8) {
// triplet antitriplet
if(trip.size() == 1 && atrip.size() == 1 && sng.size() == 1) {
_nflow = 1;
_colour = vector<DVector>(1,DVector(1,0.5));
_colourLargeNC = vector<DVector>(1,DVector(1,0.5));
}
// three (anti)triplets
else if(trip.size()==3||atrip.size()==3) {
_nflow = 3;
_colour = vector<DVector>(3,DVector(3,0.));
_colourLargeNC = vector<DVector>(3,DVector(3,0.));
_colour[0][0] = 1.; _colour[1][1] = 1.; _colour[2][2] = 1.;
_colour[0][1] = -0.5; _colour[1][0] = -0.5;
_colour[0][2] = -0.5; _colour[2][0] = -0.5;
_colour[1][2] = -0.5; _colour[2][1] = -0.5;
_colourLargeNC = vector<DVector>(3,DVector(3,0.));
_colourLargeNC[0][0] = 1.; _colourLargeNC[1][1] = 1.; _colourLargeNC[2][2] = 1.;
// sett the factors for the diagrams
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
tPDPtr inter = _diagrams[ix].intermediate;
if(inter->CC()) inter = inter->CC();
unsigned int io[2]={1,2};
double sign = _diagrams[ix].channelType == TBDiagram::channel13 ? -1. : 1.;
for(unsigned int iy=0;iy<3;++iy) {
if (iy==1) io[0]=0;
else if(iy==2) io[1]=1;
tPDVector decaylist = _diagrams[ix].vertices.second->search(iy, inter);
if(decaylist.empty()) continue;
bool found=false;
for(unsigned int iz=0;iz<decaylist.size();iz+=3) {
if(decaylist[iz+io[0]]->id()==_diagrams[ix].outgoingPair.first &&
decaylist[iz+io[1]]->id()==_diagrams[ix].outgoingPair.second) {
sign *= 1.;
found = true;
}
else if(decaylist[iz+io[0]]->id()==_diagrams[ix].outgoingPair.second &&
decaylist[iz+io[1]]->id()==_diagrams[ix].outgoingPair.first ) {
sign *= -1.;
found = true;
}
}
if(found) {
if(iy==1) sign *=-1.;
break;
}
}
_diagrams[ix]. colourFlow = vector<CFPair>(1,make_pair(_diagrams[ix].channelType+1,sign));
_diagrams[ix].largeNcColourFlow = vector<CFPair>(1,make_pair(_diagrams[ix].channelType+1,sign));
}
}
// unknown
else {
generator()->log() << "Unknown colour octet decay in "
<< "GeneralThreeBodyDecayer::setColourFactors()"
<< " for " << name << " omitting decay\n";
return false;
}
}
+ else if (_incoming->iColour() == PDT::Colour6 ) {
+ generator()->log() << "Unknown colour sextet decay in "
+ << "GeneralThreeBodyDecayer::setColourFactors()"
+ << " for " << name << " omitting decay\n";
+ return false;
+ }
+ else if (_incoming->iColour() == PDT::Colour6bar ) {
+ generator()->log() << "Unknown colour anti-sextet decay in "
+ << "GeneralThreeBodyDecayer::setColourFactors()"
+ << " for " << name << " omitting decay\n";
+ return false;
+ }
+
+ assert(_nflow != 999);
+
for(unsigned int ix=0;ix<_nflow;++ix) {
for(unsigned int iy=0;iy<_nflow;++iy) {
_colour [ix][iy] /= symfac;
_colourLargeNC[ix][iy] /= symfac;
}
}
if( Debug::level > 1 ) {
generator()->log() << "Mode: " << name << " has colour factors\n";
for(unsigned int ix=0;ix<_nflow;++ix) {
for(unsigned int iy=0;iy<_nflow;++iy) {
generator()->log() << _colour[ix][iy] << " ";
}
generator()->log() << "\n";
}
for(unsigned int ix=0;ix<_diagrams.size();++ix) {
generator()->log() << "colour flow for diagram : " << ix;
for(unsigned int iy=0;iy<_diagrams[ix].colourFlow.size();++iy)
generator()->log() << "(" << _diagrams[ix].colourFlow[iy].first << ","
<< _diagrams[ix].colourFlow[iy].second << "); ";
generator()->log() << "\n";
}
}
return true;
}
diff --git a/Models/General/NBodyDecayConstructorBase.cc b/Models/General/NBodyDecayConstructorBase.cc
--- a/Models/General/NBodyDecayConstructorBase.cc
+++ b/Models/General/NBodyDecayConstructorBase.cc
@@ -1,627 +1,627 @@
// -*- C++ -*-
//
// NBodyDecayConstructorBase.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the NBodyDecayConstructorBase class.
//
#include "NBodyDecayConstructorBase.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "DecayConstructor.h"
#include "Herwig++/Models/StandardModel/StandardModel.h"
using namespace Herwig;
using namespace ThePEG;
void NBodyDecayConstructorBase::persistentOutput(PersistentOStream & os ) const {
os << init_ << iteration_ << points_ << info_ << decayConstructor_
<< createModes_ << minReleaseFraction_ << maxBoson_ << maxList_
<< removeOnShell_ << excludeEffective_ << includeTopOnShell_
<< excludedVerticesVector_ << excludedVerticesSet_
<< excludedParticlesVector_ << excludedParticlesSet_;
}
void NBodyDecayConstructorBase::persistentInput(PersistentIStream & is , int) {
is >> init_ >> iteration_ >> points_ >> info_ >> decayConstructor_
>> createModes_ >> minReleaseFraction_ >> maxBoson_ >> maxList_
>> removeOnShell_ >> excludeEffective_ >> includeTopOnShell_
>> excludedVerticesVector_ >> excludedVerticesSet_
>> excludedParticlesVector_ >> excludedParticlesSet_;
}
AbstractClassDescription<NBodyDecayConstructorBase>
NBodyDecayConstructorBase::initNBodyDecayConstructorBase;
// Definition of the static class description member.
void NBodyDecayConstructorBase::Init() {
static ClassDocumentation<NBodyDecayConstructorBase> documentation
("The NBodyDecayConstructorBase class is the base class for the automatic"
"construction of the decay modes");
static Switch<NBodyDecayConstructorBase,bool> interfaceInitializeDecayers
("InitializeDecayers",
"Initialize new decayers",
&NBodyDecayConstructorBase::init_, true, false, false);
static SwitchOption interfaceInitializeDecayersInitializeDecayersOn
(interfaceInitializeDecayers,
"Yes",
"Initialize new decayers to find max weights",
true);
static SwitchOption interfaceInitializeDecayersoff
(interfaceInitializeDecayers,
"No",
"Use supplied weights for integration",
false);
static Parameter<NBodyDecayConstructorBase,int> interfaceInitIteration
("InitIteration",
"Number of iterations to optimise integration weights",
&NBodyDecayConstructorBase::iteration_, 1, 0, 10,
false, false, true);
static Parameter<NBodyDecayConstructorBase,int> interfaceInitPoints
("InitPoints",
"Number of points to generate when optimising integration",
&NBodyDecayConstructorBase::points_, 1000, 100, 100000000,
false, false, true);
static Switch<NBodyDecayConstructorBase,bool> interfaceOutputInfo
("OutputInfo",
"Whether to output information about the decayers",
&NBodyDecayConstructorBase::info_, false, false, false);
static SwitchOption interfaceOutputInfoOff
(interfaceOutputInfo,
"No",
"Do not output information regarding the created decayers",
false);
static SwitchOption interfaceOutputInfoOn
(interfaceOutputInfo,
"Yes",
"Output information regarding the decayers",
true);
static Switch<NBodyDecayConstructorBase,bool> interfaceCreateDecayModes
("CreateDecayModes",
"Whether to create the ThePEG::DecayMode objects as well as the decayers",
&NBodyDecayConstructorBase::createModes_, true, false, false);
static SwitchOption interfaceCreateDecayModesOn
(interfaceCreateDecayModes,
"Yes",
"Create the ThePEG::DecayMode objects",
true);
static SwitchOption interfaceCreateDecayModesOff
(interfaceCreateDecayModes,
"No",
"Only create the Decayer objects",
false);
static Switch<NBodyDecayConstructorBase,unsigned int> interfaceRemoveOnShell
("RemoveOnShell",
"Remove on-shell diagrams as should be treated as a sequence of 1->2 decays",
&NBodyDecayConstructorBase::removeOnShell_, 1, false, false);
static SwitchOption interfaceRemoveOnShellYes
(interfaceRemoveOnShell,
"Yes",
"Remove the diagrams if neither the production of decay or the intermediate"
" can happen",
1);
static SwitchOption interfaceRemoveOnShellNo
(interfaceRemoveOnShell,
"No",
"Never remove the intermediate",
0);
static SwitchOption interfaceRemoveOnShellProduction
(interfaceRemoveOnShell,
"Production",
"Remove the diagram if the on-shell production of the intermediate is allowed",
2);
static RefVector<NBodyDecayConstructorBase,VertexBase> interfaceExcludedVertices
("ExcludedVertices",
"Vertices which are not included in the three-body decayers",
&NBodyDecayConstructorBase::excludedVerticesVector_,
-1, false, false, true, true, false);
static RefVector<NBodyDecayConstructorBase,ParticleData> interfaceExcludedIntermediates
("ExcludedIntermediates",
"Excluded intermediate particles",
&NBodyDecayConstructorBase::excludedParticlesVector_,
-1, false, false, true, true, false);
static Switch<NBodyDecayConstructorBase,bool> interfaceExcludeEffectiveVertices
("ExcludeEffectiveVertices",
"Exclude effectice vertices",
&NBodyDecayConstructorBase::excludeEffective_, true, false, false);
static SwitchOption interfaceExcludeEffectiveVerticesYes
(interfaceExcludeEffectiveVertices,
"Yes",
"Exclude the effective vertices",
true);
static SwitchOption interfaceExcludeEffectiveVerticesNo
(interfaceExcludeEffectiveVertices,
"No",
"Don't exclude the effective vertices",
false);
static Parameter<NBodyDecayConstructorBase,double> interfaceMinReleaseFraction
("MinReleaseFraction",
"The minimum energy release for a three-body decay, as a "
"fraction of the parent mass.",
&NBodyDecayConstructorBase::minReleaseFraction_, 1e-3, 0.0, 1.0,
false, false, Interface::limited);
static Switch<NBodyDecayConstructorBase,unsigned int> interfaceMaximumGaugeBosons
("MaximumGaugeBosons",
"Maximum number of electroweak gauge bosons"
" to be produced as decay products",
&NBodyDecayConstructorBase::maxBoson_, 1, false, false);
static SwitchOption interfaceMaximumGaugeBosonsNone
(interfaceMaximumGaugeBosons,
"None",
"Produce no W/Zs",
0);
static SwitchOption interfaceMaximumGaugeBosonsSingle
(interfaceMaximumGaugeBosons,
"Single",
"Produce at most one W/Zs",
1);
static SwitchOption interfaceMaximumGaugeBosonsDouble
(interfaceMaximumGaugeBosons,
"Double",
"Produce at most two W/Zs",
2);
static SwitchOption interfaceMaximumGaugeBosonsTriple
(interfaceMaximumGaugeBosons,
"Triple",
"Produce at most three W/Zs",
3);
static Switch<NBodyDecayConstructorBase,unsigned int> interfaceMaximumNewParticles
("MaximumNewParticles",
"Maximum number of particles from the list of "
"decaying particles to be allowed as decay products",
&NBodyDecayConstructorBase::maxList_, 0, false, false);
static SwitchOption interfaceMaximumNewParticlesNone
(interfaceMaximumNewParticles,
"None",
"No particles from the list",
0);
static SwitchOption interfaceMaximumNewParticlesOne
(interfaceMaximumNewParticles,
"One",
"A single particle from the list",
1);
static SwitchOption interfaceMaximumNewParticlesTwo
(interfaceMaximumNewParticles,
"Two",
"Two particles from the list",
2);
static SwitchOption interfaceMaximumNewParticlesThree
(interfaceMaximumNewParticles,
"Three",
"Three particles from the list",
3);
static SwitchOption interfaceMaximumNewParticlesFour
(interfaceMaximumNewParticles,
"Four",
"Four particles from the list",
4);
static Switch<NBodyDecayConstructorBase,bool> interfaceIncludeOnShellTop
("IncludeOnShellTop",
"Include the on-shell diagrams involving t -> bW",
&NBodyDecayConstructorBase::includeTopOnShell_, false, false, false);
static SwitchOption interfaceIncludeOnShellTopYes
(interfaceIncludeOnShellTop,
"Yes",
"Inlude them",
true);
static SwitchOption interfaceIncludeOnShellTopNo
(interfaceIncludeOnShellTop,
"No",
"Don't include them",
true);
}
void NBodyDecayConstructorBase::setBranchingRatio(tDMPtr dm, Energy pwidth) {
//Need width and branching ratios for all currently created decay modes
PDPtr parent = const_ptr_cast<PDPtr>(dm->parent());
DecaySet modes = parent->decayModes();
if( modes.empty() ) return;
double dmbrat(0.);
if( modes.size() == 1 ) {
parent->width(pwidth);
if( pwidth > ZERO ) parent->cTau(hbarc/pwidth);
dmbrat = 1.;
}
else {
Energy currentwidth(parent->width());
Energy newWidth(currentwidth + pwidth);
parent->width(newWidth);
if( newWidth > ZERO ) parent->cTau(hbarc/newWidth);
//need to reweight current branching fractions if there are any
double factor = newWidth > ZERO ? double(currentwidth/newWidth) : 0.;
for(DecaySet::const_iterator dit = modes.begin();
dit != modes.end(); ++dit) {
if( **dit == *dm || !(**dit).on() ) continue;
double newbrat = (**dit).brat()*factor;
ostringstream brf;
brf << setprecision(13)<< newbrat;
generator()->preinitInterface(*dit, "BranchingRatio",
"set", brf.str());
}
//set brat for current mode
dmbrat = newWidth > ZERO ? double(pwidth/newWidth) : 0.;
}
ostringstream br;
br << setprecision(13) << dmbrat;
generator()->preinitInterface(dm, "BranchingRatio",
"set", br.str());
}
void NBodyDecayConstructorBase::setDecayerInterfaces(string fullname) const {
if( initialize() ) {
ostringstream value;
value << initialize();
generator()->preinitInterface(fullname, "Initialize", "set",
value.str());
value.str("");
value << iteration();
generator()->preinitInterface(fullname, "Iteration", "set",
value.str());
value.str("");
value << points();
generator()->preinitInterface(fullname, "Points", "set",
value.str());
}
// QED stuff if needed
if(decayConstructor()->QEDGenerator())
generator()->preinitInterface(fullname, "PhotonGenerator", "set",
decayConstructor()->QEDGenerator()->fullName());
string outputmodes;
if( info() ) outputmodes = string("Output");
else outputmodes = string("NoOutput");
generator()->preinitInterface(fullname, "OutputModes", "set",
outputmodes);
}
void NBodyDecayConstructorBase::doinit() {
Interfaced::doinit();
excludedVerticesSet_ = set<VertexBasePtr>(excludedVerticesVector_.begin(),
excludedVerticesVector_.end());
excludedParticlesSet_ = set<PDPtr>(excludedParticlesVector_.begin(),
excludedParticlesVector_.end());
if(removeOnShell_==0&&numBodies()>2)
generator()->log() << "Warning: Including diagrams with on-shell "
<< "intermediates in " << numBodies() << "-body BSM decays, this"
<< " can lead to double counting and is not"
<< " recommended unless you really know what you are doing\n"
<< "This can be switched off using\n set "
<< fullName() << ":RemoveOnShell Yes\n";
}
namespace {
double factorial(const int i) {
if(i>1) return i*factorial(i-1);
else return 1.;
}
void constructIdenticalSwaps(unsigned int depth,
vector<vector<unsigned int> > identical,
vector<unsigned int> channelType,
list<vector<unsigned int> > & swaps) {
if(depth==0) {
unsigned int size = identical.size();
for(unsigned ix=0;ix<size;++ix) {
for(unsigned int iy=2;iy<identical[ix].size();++iy)
identical.push_back(identical[ix]);
}
}
if(depth+1!=identical.size()) {
constructIdenticalSwaps(depth+1,identical,channelType,swaps);
}
else {
swaps.push_back(channelType);
}
for(unsigned int ix=0;ix<identical[depth].size();++ix) {
for(unsigned int iy=ix+1;iy<identical[depth].size();++iy) {
vector<unsigned int> newType=channelType;
swap(newType[identical[depth][ix]],newType[identical[depth][iy]]);
// at bottom of chain
if(depth+1==identical.size()) {
swaps.push_back(newType);
}
else {
constructIdenticalSwaps(depth+1,identical,newType,swaps);
}
}
}
}
void identicalFromSameDecay(unsigned int & loc, const NBVertex & vertex,
vector<vector<unsigned int> > & sameDecay) {
list<pair<PDPtr,NBVertex> >::const_iterator it = vertex.vertices.begin();
while(it!=vertex.vertices.end()) {
if(it->second.incoming) {
identicalFromSameDecay(loc,it->second,sameDecay);
++it;
continue;
}
++loc;
long id = it->first->id();
++it;
if(it->second.incoming) continue;
if(it->first->id()!=id) continue;
sameDecay.push_back(vector<unsigned int>());
sameDecay.back().push_back(loc-1);
while(!it->second.incoming&&it->first->id()==id) {
++loc;
++it;
sameDecay.back().push_back(loc-1);
}
};
}
}
void NBodyDecayConstructorBase::DecayList(const set<PDPtr> & particles) {
if( particles.empty() ) return;
// cast the StandardModel to the Hw++ one to get the vertices
tHwSMPtr model = dynamic_ptr_cast<tHwSMPtr>(generator()->standardModel());
unsigned int nv(model->numberOfVertices());
// loop over the particles and create the modes
for(set<PDPtr>::const_iterator ip=particles.begin();
ip!=particles.end();++ip) {
// get the decaying particle
tPDPtr parent = *ip;
if ( Debug::level > 0 )
Repository::cout() << "Constructing N-body decays for "
<< parent->PDGName() << '\n';
// first create prototype 1->2 decays
std::stack<PrototypeVertexPtr> prototypes;
for(unsigned int iv = 0; iv < nv; ++iv) {
VertexBasePtr vertex = model->vertex(iv);
if(excluded(vertex)) continue;
PrototypeVertex::createPrototypes(parent, vertex, prototypes);
}
// now expand them into potential decay modes
list<vector<PrototypeVertexPtr> > modes;
while(!prototypes.empty()) {
// get the first prototype from the stack
PrototypeVertexPtr proto = prototypes.top();
prototypes.pop();
// multiplcity too low
if(proto->npart<numBodies()) {
// loop over all vertices and expand
for(unsigned int iv = 0; iv < nv; ++iv) {
VertexBasePtr vertex = model->vertex(iv);
if(excluded(vertex) ||
proto->npart+vertex->getNpoint()>numBodies()+2) continue;
PrototypeVertex::expandPrototypes(proto,vertex,prototypes,
excludedParticlesSet_);
}
}
// multiplcity too high disgard
else if(proto->npart>numBodies()) {
continue;
}
// right multiplicity
else {
// check it's kinematical allowed for physical masses
if( proto->incomingMass() < proto->outgoingMass() ) continue;
// and for constituent masses
Energy outgoingMass = proto->outgoingConstituentMass();
if( proto->incomingMass() < proto->outgoingConstituentMass() ) continue;
// remove processes which aren't kinematically allowed within
// the release fraction
if( proto->incomingMass() - outgoingMass <=
minReleaseFraction_ * proto->incomingMass() ) continue;
// check the external particles
if(!proto->checkExternal()) continue;
// check if first piece on-shell
bool onShell = proto->canBeOnShell(removeOnShell(),proto->incomingMass(),true);
// special treatment for three-body top decays
if(onShell) {
if(includeTopOnShell_ &&
abs(proto->incoming->id())==ParticleID::t && proto->npart==3) {
unsigned int nprimary=0;
bool foundW=false, foundQ=false;
for(OrderedVertices::const_iterator it = proto->outgoing.begin();
it!=proto->outgoing.end();++it) {
if(abs(it->first->id())==ParticleID::Wplus)
foundW = true;
if(abs(it->first->id())==ParticleID::b ||
abs(it->first->id())==ParticleID::s ||
abs(it->first->id())==ParticleID::d)
foundQ = true;
++nprimary;
}
if(!(foundW&&foundQ&&nprimary==2)) continue;
}
else continue;
}
// check if should be added to an existing decaymode
bool added = false;
for(list<vector<PrototypeVertexPtr> >::iterator it=modes.begin();
it!=modes.end();++it) {
// is the same ?
if(!(*it)[0]->sameDecay(*proto)) continue;
// it is the same
added = true;
// check if it is a duplicate
bool already = false;
for(unsigned int iz = 0; iz < (*it).size(); ++iz) {
if( *(*it)[iz] == *proto) {
already = true;
break;
}
}
if(!already) (*it).push_back(proto);
break;
}
if(!added) modes.push_back(vector<PrototypeVertexPtr>(1,proto));
}
}
// now look at the decay modes
for(list<vector<PrototypeVertexPtr> >::iterator mit = modes.begin();
mit!=modes.end();++mit) {
// count the number of gauge bosons and particles from the list
unsigned int nlist(0),nbos(0);
for(OrderedParticles::const_iterator it=(*mit)[0]->outPart.begin();
it!=(*mit)[0]->outPart.end();++it) {
if(abs((**it).id()) == ParticleID::Wplus ||
abs((**it).id()) == ParticleID::Z0) ++nbos;
if(particles.find(*it)!=particles.end()) ++nlist;
if((**it).CC() && particles.find((**it).CC())!=particles.end()) ++nlist;
}
// if too many ignore the mode
if(nbos > maxBoson_ || nlist > maxList_) continue;
// translate the prototypes into diagrams
vector<NBDiagram> newDiagrams;
double symfac(1.);
bool possibleOnShell=false;
for(unsigned int ix=0;ix<(*mit).size();++ix) {
symfac = 1.;
possibleOnShell |= (*mit)[ix]->possibleOnShell;
NBDiagram templateDiagram = NBDiagram((*mit)[ix]);
// extract the ordering
vector<int> order(templateDiagram.channelType.size());
for(unsigned int iz=0;iz<order.size();++iz) {
order[templateDiagram.channelType[iz]-1]=iz;
}
// find any identical particles
vector<vector<unsigned int> > identical;
OrderedParticles::const_iterator it=templateDiagram.outgoing.begin();
unsigned int iloc=0;
while(it!=templateDiagram.outgoing.end()) {
OrderedParticles::const_iterator lt = templateDiagram.outgoing.lower_bound(*it);
OrderedParticles::const_iterator ut = templateDiagram.outgoing.upper_bound(*it);
unsigned int nx=0;
for(OrderedParticles::const_iterator jt=lt;jt!=ut;++jt) {++nx;}
if(nx==1) {
++it;
++iloc;
}
else {
symfac *= factorial(nx);
identical.push_back(vector<unsigned int>());
for(OrderedParticles::const_iterator jt=lt;jt!=ut;++jt) {
identical.back().push_back(order[iloc]);
++iloc;
}
it = ut;
}
}
// that's it if there outgoing are unqiue
if(identical.empty()) {
newDiagrams.push_back(templateDiagram);
continue;
}
// find any identical particles which shouldn't be swapped
unsigned int loc=0;
vector<vector<unsigned int> > sameDecay;
identicalFromSameDecay(loc,templateDiagram,sameDecay);
// compute the swaps
list<vector<unsigned int> > swaps;
constructIdenticalSwaps(0,identical,templateDiagram.channelType,swaps);
// special if identical from same decay
if(!sameDecay.empty()) {
for(vector<vector<unsigned int> >::const_iterator st=sameDecay.begin();
st!=sameDecay.end();++st) {
for(list<vector<unsigned int> >::iterator it=swaps.begin();
it!=swaps.end();++it) {
for(unsigned int iy=0;iy<(*st).size();++iy) {
for(unsigned int iz=iy+1;iz<(*st).size();++iz) {
if((*it)[(*st)[iy]]>(*it)[(*st)[iz]])
swap((*it)[(*st)[iy]],(*it)[(*st)[iz]]);
}
}
}
}
}
// remove any dupliciates
for(list<vector<unsigned int> >::iterator it=swaps.begin();
it!=swaps.end();++it) {
for(list<vector<unsigned int> >::iterator jt=it;
jt!=swaps.end();++jt) {
if(it==jt) continue;
bool different=false;
for(unsigned int iz=0;iz<(*it).size();++iz) {
if((*it)[iz]!=(*jt)[iz]) {
different = true;
break;
}
}
if(!different) {
jt = swaps.erase(jt);
--jt;
}
}
}
// special for identical decay products
if(templateDiagram.vertices.begin()->second.incoming) {
if( templateDiagram.vertices.begin() ->first ==
(++templateDiagram.vertices.begin())->first) {
if(*( (*mit)[ix]->outgoing.begin() ->second) ==
*((++(*mit)[ix]->outgoing.begin())->second)) {
for(list<vector<unsigned int> >::iterator it=swaps.begin();
it!=swaps.end();++it) {
for(list<vector<unsigned int> >::iterator jt=it;
jt!=swaps.end();++jt) {
if(it==jt) continue;
if((*it)[0]==(*jt)[2]&&(*it)[1]==(*jt)[3]) {
jt = swaps.erase(jt);
--jt;
}
}
}
}
}
}
for(list<vector<unsigned int> >::iterator it=swaps.begin();
it!=swaps.end();++it) {
newDiagrams.push_back(templateDiagram);
newDiagrams.back().channelType = *it;
}
}
// create the decay
- createDecayMode(newDiagrams,possibleOnShell,symfac);
if( Debug::level > 1 ) {
generator()->log() << "Mode: ";
generator()->log() << (*mit)[0]->incoming->PDGName() << " -> ";
for(OrderedParticles::const_iterator it=(*mit)[0]->outPart.begin();
it!=(*mit)[0]->outPart.end();++it)
generator()->log() << (**it).PDGName() << " ";
generator()->log() << "\n";
generator()->log() << "There are " << (*mit).size() << " diagrams\n";
for(unsigned int iy=0;iy<newDiagrams.size();++iy) {
generator()->log() << "Diagram: " << iy << "\n";
generator()->log() << newDiagrams[iy] << "\n";
}
}
+ createDecayMode(newDiagrams,possibleOnShell,symfac);
}
}
}
void NBodyDecayConstructorBase::createDecayMode(vector<NBDiagram> &,
bool, double) {
throw Exception() << "In NBodyDecayConstructorBase::createDecayMode() which"
<< " should have be overridden in an inheriting class"
<< Exception::abortnow;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:42 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805888
Default Alt Text
(61 KB)

Event Timeline