Page MenuHomeHEPForge

No OneTemporary

diff --git a/include/HEJ/event_types.hh b/include/HEJ/event_types.hh
index b53ba36..d3273b8 100644
--- a/include/HEJ/event_types.hh
+++ b/include/HEJ/event_types.hh
@@ -1,109 +1,109 @@
/** \file
* \brief Define different types of events.
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <string>
#include "HEJ/exceptions.hh"
namespace HEJ {
//! Namespace for event types
namespace event_type {
//! Possible event types
enum EventType: std::size_t {
non_resummable = 0, //!< event configuration not covered by All Order resummation
bad_final_state = 1, //!< event with an unsupported final state
- no_2_jets = 2, //!< event with less than two jets
+ not_enough_jets = 2, //!< event with less than two jets
FKL = 4, //!< FKL-type event
unordered_backward = 8, //!< event with unordered backward emission
unordered_forward = 16, //!< event with unordered forward emission
extremal_qqxb = 32, //!< event with a backward extremal qqbar
extremal_qqxf = 64, //!< event with a forward extremal qqbar
central_qqx = 128, //!< event with a central qqbar
unob = unordered_backward, //!< alias for unordered_backward
unof = unordered_forward, //!< alias for unordered_forward
qqxexb = extremal_qqxb, //!< alias for extremal_qqxb
qqxexf = extremal_qqxf, //!< alias for extremal_qqxf
qqxmid = central_qqx, //!< alias for central_qqx
first_type = non_resummable, //!< alias for non_resummable
last_type = central_qqx //!< alias for central_qqx
};
//! Event type names
/**
* For example, name(FKL) is the string "FKL"
*/
inline
std::string name(EventType type) {
switch(type) {
case FKL:
return "FKL";
case unordered_backward:
return "unordered backward";
case unordered_forward:
return "unordered forward";
case extremal_qqxb:
return "extremal qqbar backward";
case extremal_qqxf:
return "extremal qqbar forward";
case central_qqx:
return "central qqbar";
case non_resummable:
return "non-resummable";
- case no_2_jets:
- return "no 2 jets";
+ case not_enough_jets:
+ return "not enough jets";
case bad_final_state:
return "bad final state";
default:
throw std::logic_error{"Unreachable"};
}
}
//! Returns True for a HEJ \ref event_type::EventType "EventType"
inline
constexpr bool is_resummable(EventType type) {
switch(type) {
case FKL:
case unordered_backward:
case unordered_forward:
case extremal_qqxb:
case extremal_qqxf:
case central_qqx:
return true;
default:
return false;
}
}
//! Returns True for an unordered \ref event_type::EventType "EventType"
inline
constexpr bool is_uno(EventType type) {
return type == unordered_backward || type == unordered_forward;
}
//! Returns True for an extremal_qqx \ref event_type::EventType "EventType"
inline
constexpr bool is_ex_qqx(EventType type) {
return type == extremal_qqxb || type == extremal_qqxf;
}
//! Returns True for an central_qqx \ref event_type::EventType "EventType"
inline
constexpr bool is_mid_qqx(EventType type) {
return type == central_qqx;
}
//! Returns True for any qqx event \ref event_type::EventType "EventType"
inline
constexpr bool is_qqx(EventType type) {
return is_ex_qqx(type) || is_mid_qqx(type);
}
} // namespace event_type
} // namespace HEJ
diff --git a/src/Event.cc b/src/Event.cc
index cac0fa1..b70a8a2 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,1175 +1,1219 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iomanip>
#include <iterator>
#include <memory>
#include <numeric>
#include <ostream>
#include <string>
#include <utility>
#include "fastjet/ClusterSequence.hh"
#include "fastjet/JetDefinition.hh"
#include "fastjet/PseudoJet.hh"
#include "LHEF/LHEF.h"
#include "HEJ/Constants.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/RNG.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/optional.hh"
namespace HEJ {
namespace {
using std::size_t;
//! LHE status codes
namespace lhe_status {
enum Status: int {
in = -1,
decay = 2,
out = 1,
};
}
using LHE_Status = lhe_status::Status;
//! true if leptonic W decay
bool valid_W_decay( int const w_type, // sign of W
std::vector<Particle> const & decays
){
if(decays.size() != 2) // no 1->2 decay
return false;
const int pidsum = decays[0].type + decays[1].type;
if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
return false;
// leptonic decay (only check first, second follows from pidsum)
if( w_type == 1 ) // W+
return is_antilepton(decays[0]) || is_neutrino(decays[0]);
// W-
return is_lepton(decays[0]) || is_antineutrino(decays[0]);
}
//! true for Z decay to charged leptons
bool valid_Z_decay(std::vector<Particle> const & decays){
if(decays.size() != 2) // no 1->2 decay
return false;
const int pidsum = decays[0].type + decays[1].type;
if( std::abs(pidsum) != 0 ) // correct charge
return false;
// leptonic decay (only check first, second follows from pidsum)
return is_anylepton(decays[0]) && !is_anyneutrino(decays[0]);
}
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(Event const & ev){
std::vector<Particle> const & outgoing = ev.outgoing();
if(ev.decays().size() > 1) // at most one decay
return false;
bool has_AWZH_boson = false;
for( size_t i=0; i<outgoing.size(); ++i ){
auto const & out{ outgoing[i] };
if(is_AWZH_boson(out.type)){
// at most one boson
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
// valid decay for W
if(std::abs(out.type) == ParticleID::Wp){
// exactly 1 decay of W
if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
return false;
if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
return false;
}
// valid decay for Z
if(out.type == ParticleID::Z_photon_mix){
// exactly 1 decay
if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
return false;
if( !valid_Z_decay(ev.decays().cbegin()->second) )
return false;
}
}
else if(! is_parton(out.type)) return false;
}
return true;
}
/**
* returns all EventTypes implemented in HEJ
*/
size_t implemented_types(std::vector<Particle> const & bosons){
using namespace event_type;
if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
if(bosons.size()>1) return non_resummable; // multi boson
switch (bosons[0].type) {
case ParticleID::Wp:
case ParticleID::Wm:
return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
case ParticleID::Z_photon_mix:
return FKL | unob | unof;
case ParticleID::h:
return FKL | unob | unof;
default:
return non_resummable;
}
}
/**
* \brief function which determines if type change is consistent with Wp emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* \see is_Wm_Change
*/
bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
using namespace pid;
if(!qqx && (in==d_bar || in==u || in==s_bar || in==c))
return out == (in-1);
if( qqx && (in==d || in==u_bar || in==s || in==c_bar))
return out == -(in+1);
return false;
}
/**
* \brief function which determines if type change is consistent with Wm emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* Ensures that change type of quark line is possible by a flavour changing
* Wm emission. Allows checking of qqx currents also.
*/
bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
using namespace pid;
if(!qqx && (in==d || in==u_bar || in==s || in==c_bar))
return out == (in+1);
if( qqx && (in==d_bar || in==u || in==s_bar || in==c))
return out == -(in-1);
return false;
}
/**
* \brief checks if particle type remains same from incoming to outgoing
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
*/
bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
const int qqxCurrent = qqx?-1:1;
if(std::abs(in)<=pid::top || in==pid::gluon)
return (in==out*qqxCurrent);
return false;
}
- bool has_2_jets(Event const & event){
- return event.jets().size() >= 2;
+ bool has_enough_jets(Event const & event){
+ if(event.jets().size() >= 2) return true;
+ if(event.jets().empty()) return false;
+ const auto the_higgs = std::find_if(
+ begin(event.outgoing()), end(event.outgoing()),
+ [](const auto & particle) { return particle.type == pid::higgs; }
+ );
+ if(the_higgs == end(event.outgoing())) return false;
+ // so we have Higgs + 1 jet
+ // check if we can have a g -> Higgs conversion
+ return event.incoming().front().type == pid::gluon
+ || event.incoming().back().type == pid::gluon;
+ }
+
+ bool is_gluon_to_Higgs(const ParticleID in, const ParticleID out) {
+ return in == pid::gluon && out == pid::Higgs;
}
/**
* \brief check if we have a valid Impact factor
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
* @param W_change returns +1 if Wp, -1 if Wm, else 0
*/
bool is_valid_impact_factor(
ParticleID in, ParticleID out, bool qqx, int & W_change
){
- if( no_flavour_change(in, out, qqx) ){
+ if( no_flavour_change(in, out, qqx) || is_gluon_to_Higgs(in, out)) {
return true;
}
if( is_Wp_Change(in, out, qqx) ) {
W_change+=1;
return true;
}
if( is_Wm_Change(in, out, qqx) ) {
W_change-=1;
return true;
}
return false;
}
+ bool is_extremal_higgs_off_quark(
+ const ParticleID in,
+ const ParticleID extremal_out,
+ const ParticleID out
+ ) {
+ return in == out && extremal_out == pid::higgs && is_anyquark(in);
+ }
+
//! Returns all possible classifications from the impact factors
// the beginning points are changed s.t. after the the classification they
// point to the beginning of the (potential) FKL chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
// This function can be used with forward & backwards iterators
template<class OutIterator>
size_t possible_impact_factors(
ParticleID incoming_id, // incoming
OutIterator & begin_out, OutIterator const & end_out, // outgoing
int & W_change, std::vector<Particle> const & boson,
bool const backward // backward?
){
using namespace event_type;
assert(boson.size() < 2);
// keep track of all states that we don't test
size_t not_tested = qqxmid;
if(backward)
not_tested |= unof | qqxexf;
else
not_tested |= unob | qqxexb;
// Is this LL current?
if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
++begin_out;
return not_tested | FKL;
}
+ // q -> H q and qbar -> H qbar are technically not LL,
+ // but we treat them as such anyway
+ if(is_extremal_higgs_off_quark(incoming_id, begin_out->type, std::next(begin_out)->type)) {
+ std::advance(begin_out, 2);
+ return not_tested | FKL;
+ }
// or NLL current?
// -> needs two partons in two different jets
if( std::distance(begin_out, end_out)>=2
){
auto next = std::next(begin_out);
// Is this unordered emisson?
if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
if( is_valid_impact_factor(
incoming_id, next->type, false, W_change )
){
// veto Higgs inside uno
assert(next!=end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < next->rapidity())
||(!backward && boson.front().rapidity() > next->rapidity()))
return non_resummable;
}
begin_out = std::next(next);
return not_tested | (backward?unob:unof);
}
}
// Is this QQbar?
else if( incoming_id==pid::gluon ){
if( is_valid_impact_factor(
begin_out->type, next->type, true, W_change )
){
// veto Higgs inside qqx
assert(next!=end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < next->rapidity())
||(!backward && boson.front().rapidity() > next->rapidity()))
return non_resummable;
}
begin_out = std::next(next);
return not_tested | (backward?qqxexb:qqxexf);
}
}
}
return non_resummable;
}
//! Returns all possible classifications from central emissions
// the beginning points are changed s.t. after the the classification they
// point to the end of the emission chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
template<class OutIterator>
size_t possible_central(
OutIterator & begin_out, OutIterator const & end_out,
int & W_change, std::vector<Particle> const & boson
){
using namespace event_type;
assert(boson.size() < 2);
// if we already passed the central chain,
// then it is not a valid all-order state
if(std::distance(begin_out, end_out) < 0) return non_resummable;
// keep track of all states that we don't test
size_t possible = unob | unof
| qqxexb | qqxexf;
- // Find the first non-gluon/non-FKL
- while( (begin_out->type==pid::gluon) && (begin_out!=end_out) ){
- ++begin_out;
- }
+ // Find the first quark or antiquark emission
+ begin_out = std::find_if(
+ begin_out, end_out,
+ [](Particle const & p) { return is_anyquark(p); }
+ );
// end of chain -> FKL
if( begin_out==end_out ){
return possible | FKL;
}
// is this a qqbar-pair?
// needs two partons in two separate jets
auto next = std::next(begin_out);
if( is_valid_impact_factor(
begin_out->type, next->type, true, W_change )
){
// veto Higgs inside qqx
if( !boson.empty() && boson.front().type == ParticleID::h
&& boson.front().rapidity() > begin_out->rapidity()
&& boson.front().rapidity() < next->rapidity()
){
return non_resummable;
}
begin_out = std::next(next);
- // remaining chain should be pure gluon/FKL
- for(; begin_out!=end_out; ++begin_out){
- if(begin_out->type != pid::gluon) return non_resummable;
+ // remaining chain should be pure FKL (gluon or higgs)
+ if(std::any_of(
+ begin_out, end_out,
+ [](Particle const & p) { return is_anyquark(p); }
+ )) {
+ return non_resummable;
}
return possible | qqxmid;
}
return non_resummable;
}
+ namespace {
+ bool is_parton_or_higgs(Particle const & p) {
+ return is_parton(p) || p.type == pid::higgs;
+ }
+ }
+
/**
* \brief Checks for all event types
* @param ev Event
* @returns Event Type
*
*/
event_type::EventType classify(Event const & ev){
using namespace event_type;
- if(! has_2_jets(ev))
- return no_2_jets;
+ if(! has_enough_jets(ev))
+ return not_enough_jets;
// currently we can't handle multiple boson states in the ME. So they are
// considered "bad_final_state" even though the "classify" could work with
// them.
if(! final_state_ok(ev))
return bad_final_state;
// initialise variables
auto const & in = ev.incoming();
// range for current checks
- auto begin_out{ev.cbegin_partons()};
- auto end_out{ev.crbegin_partons()};
+ auto begin_out = boost::make_filter_iterator(
+ is_parton_or_higgs, cbegin(ev.outgoing()), cend(ev.outgoing())
+ );
+ auto rbegin_out = std::make_reverse_iterator(
+ boost::make_filter_iterator(
+ is_parton_or_higgs, cend(ev.outgoing()), cend(ev.outgoing())
+ )
+ );
assert(std::distance(begin(in), end(in)) == 2);
- assert(std::distance(begin_out, end_out.base()) >= 2);
- assert(std::is_sorted(begin_out, end_out.base(), rapidity_less{}));
+ assert(std::distance(begin_out, rbegin_out.base()) >= 2);
+ assert(std::is_sorted(begin_out, rbegin_out.base(), rapidity_less{}));
auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
// we only allow one boson through final_state_ok
assert(boson.size()<=1);
// keep track of potential W couplings, at the end the sum should be 0
int remaining_Wp = 0;
int remaining_Wm = 0;
if(!boson.empty() && std::abs(boson.front().type) == ParticleID::Wp ){
if(boson.front().type>0) ++remaining_Wp;
else ++remaining_Wm;
}
int W_change = 0;
- size_t final_type = ~(no_2_jets | bad_final_state);
+ size_t final_type = ~(not_enough_jets | bad_final_state);
// check forward impact factor
final_type &= possible_impact_factors(
in.front().type,
- begin_out, end_out.base(),
+ begin_out, rbegin_out.base(),
W_change, boson, true );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check backward impact factor
final_type &= possible_impact_factors(
in.back().type,
- end_out, std::make_reverse_iterator(begin_out),
+ rbegin_out, std::make_reverse_iterator(begin_out),
W_change, boson, false );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check central emissions
final_type &= possible_central(
- begin_out, end_out.base(), W_change, boson );
+ begin_out, rbegin_out.base(), W_change, boson );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
// Check whether the right number of Ws are present
if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
// result has to be unique
if( (final_type & (final_type-1)) != 0) return non_resummable;
// check that each sub processes is implemented
// (has to be done at the end)
if( (final_type & ~implemented_types(boson)) != 0 )
return non_resummable;
return static_cast<EventType>(final_type);
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){
auto id = static_cast<ParticleID>(hepeup.IDUP[i]);
auto colour = is_parton(id)?hepeup.ICOLUP[i]:optional<Colour>();
return { id,
{ hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3] },
colour
};
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace
Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
parameters.central = EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP
};
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == LHE_Status::in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent const & ev,
fastjet::JetDefinition const & jet_def, double const min_jet_pt
):
Event( Event::EventData{
ev.incoming, ev.outgoing, ev.decays,
Parameters<EventParameters>{ev.central, ev.variations}
}.cluster(jet_def, min_jet_pt) )
{}
//! @TODO remove in HEJ 2.2.0
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
Event::EventData const evData{hepeup};
incoming = evData.incoming;
outgoing = evData.outgoing;
decays = evData.decays;
central = evData.parameters.central;
variations = evData.parameters.variations;
}
void Event::EventData::sort(){
// sort particles
std::sort(
begin(incoming), end(incoming),
[](Particle const & o1, Particle const & o2){return o1.p.pz()<o2.p.pz();}
);
auto old_outgoing = std::move(outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
outgoing.clear();
outgoing.reserve(old_outgoing.size());
for(size_t i: idx) {
outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
if(!decays.empty()){
auto old_decays = std::move(decays);
decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
decays.emplace(i, std::move(decay->second));
}
assert(old_decays.size() == decays.size());
}
}
namespace {
Particle reconstruct_boson(std::vector<Particle> const & leptons) {
Particle decayed_boson;
decayed_boson.p = leptons[0].p + leptons[1].p;
const int pidsum = leptons[0].type + leptons[1].type;
if(pidsum == +1) {
assert(is_antilepton(leptons[0]));
if(is_antineutrino(leptons[0])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_neutrino(leptons[1]));
// charged antilepton + neutrino means we had a W+
decayed_boson.type = pid::Wp;
}
else if(pidsum == -1) {
assert(is_antilepton(leptons[0]));
if(is_neutrino(leptons[1])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_antineutrino(leptons[0]));
// charged lepton + antineutrino means we had a W-
decayed_boson.type = pid::Wm;
}
else if(pidsum == 0) {
assert(is_anylepton(leptons[0]));
if(is_anyneutrino(leptons[0])) {
throw not_implemented{"final state with two neutrinos"};
}
// charged lepton-antilepton pair means we had a Z/photon
decayed_boson.type = pid::Z_photon_mix;
}
else {
throw not_implemented{
"final state with leptons "
+ name(leptons[0].type)
+ " and "
+ name(leptons[1].type)
};
}
return decayed_boson;
}
} // namespace
void Event::EventData::reconstruct_intermediate() {
const auto begin_leptons = std::partition(
begin(outgoing), end(outgoing),
[](Particle const & p) {return !is_anylepton(p);}
);
// We can only reconstruct FS with 2 leptons
if(std::distance(begin_leptons, end(outgoing)) != 2) return;
std::vector<Particle> leptons(begin_leptons, end(outgoing));
std::sort(
begin(leptons), end(leptons),
[](Particle const & p0, Particle const & p1) {
assert(is_anylepton(p0) && is_anylepton(p1));
return p0.type < p1.type;
}
);
// `reconstruct_boson` can throw, it should therefore be called before
// changing `outgoing` to allow the user to recover the original EventData
auto boson = reconstruct_boson(leptons);
outgoing.erase(begin_leptons, end(outgoing));
outgoing.emplace_back(std::move(boson));
decays.emplace(outgoing.size()-1, std::move(leptons));
}
Event Event::EventData::cluster(
fastjet::JetDefinition const & jet_def, double const min_jet_pt
){
sort();
return Event{ std::move(incoming), std::move(outgoing), std::move(decays),
std::move(parameters),
jet_def, min_jet_pt
};
}
Event::Event(
std::array<Particle, 2> && incoming,
std::vector<Particle> && outgoing,
std::unordered_map<size_t, std::vector<Particle>> && decays,
Parameters<EventParameters> && parameters,
fastjet::JetDefinition const & jet_def,
double const min_jet_pt
): incoming_{std::move(incoming)},
outgoing_{std::move(outgoing)},
decays_{std::move(decays)},
parameters_{std::move(parameters)},
cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
min_jet_pt_{min_jet_pt}
{
jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
assert(std::is_sorted(begin(outgoing_), end(outgoing_),
rapidity_less{}));
type_ = classify(*this);
}
namespace {
//! check that Particles have a reasonable colour
bool correct_colour(Particle const & part){
ParticleID id{ part.type };
if(!is_parton(id))
return !part.colour;
if(!part.colour)
return false;
Colour const & col{ *part.colour };
if(is_quark(id))
return col.first != 0 && col.second == 0;
if(is_antiquark(id))
return col.first == 0 && col.second != 0;
assert(id==ParticleID::gluon);
return col.first != 0 && col.second != 0 && col.first != col.second;
}
//! Connect parton to t-channel colour line & update the line
//! returns false if connection not possible
template<class OutIterator>
bool try_connect_t(OutIterator const & it_part, Colour & line_colour){
if( line_colour.first == it_part->colour->second ){
line_colour.first = it_part->colour->first;
return true;
}
if( line_colour.second == it_part->colour->first ){
line_colour.second = it_part->colour->second;
return true;
}
return false;
}
//! Connect parton to u-channel colour line & update the line
//! returns false if connection not possible
template<class OutIterator>
bool try_connect_u(OutIterator & it_part, Colour & line_colour){
auto it_next = std::next(it_part);
if( try_connect_t(it_next, line_colour)
&& try_connect_t(it_part, line_colour)
){
it_part=it_next;
return true;
}
return false;
}
} // namespace
bool Event::is_leading_colour() const {
if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
return false;
Colour line_colour = *incoming()[0].colour;
std::swap(line_colour.first, line_colour.second);
// reasonable colour
if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour))
return false;
for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){
switch (type()) {
case event_type::FKL:
if( !try_connect_t(it_part, line_colour) )
return false;
break;
case event_type::unob:
case event_type::qqxexb: {
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at impact factor
&& (std::distance(cbegin_partons(), it_part)!=0
|| !try_connect_u(it_part, line_colour)))
return false;
break;
}
case event_type::unof:
case event_type::qqxexf: {
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at impact factor
&& (std::distance(it_part, cend_partons())!=2
|| !try_connect_u(it_part, line_colour)))
return false;
break;
}
case event_type::qqxmid:{
auto it_next = std::next(it_part);
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at qqx/qxq pair
&& ( ( !(is_quark(*it_part) && is_antiquark(*it_next))
&& !(is_antiquark(*it_part) && is_quark(*it_next)))
|| !try_connect_u(it_part, line_colour))
)
return false;
break;
}
default:
throw std::logic_error{"unreachable"};
}
// no colour singlet exchange/disconnected diagram
if(line_colour.first == line_colour.second)
return false;
}
return (incoming()[1].colour->first == line_colour.first)
&& (incoming()[1].colour->second == line_colour.second);
}
namespace {
//! connect incoming Particle to colour flow
void connect_incoming(Particle & in, int & colour, int & anti_colour){
in.colour = std::make_pair(anti_colour, colour);
// gluon
if(in.type == pid::gluon)
return;
if(in.type > 0){
// quark
assert(is_quark(in));
in.colour->second = 0;
colour*=-1;
return;
}
// anti-quark
assert(is_antiquark(in));
in.colour->first = 0;
anti_colour*=-1;
}
//! connect outgoing Particle to t-channel colour flow
template<class OutIterator>
void connect_tchannel(
OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
){
assert(colour>0 || anti_colour>0);
if(it_part->type == ParticleID::gluon){
// gluon
if(colour>0 && anti_colour>0){
// on g line => connect to colour OR anti-colour (random)
if(ran.flat() < 0.5){
it_part->colour = std::make_pair(colour+2,colour);
colour+=2;
} else {
it_part->colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(colour > 0){
// on q line => connect to available colour
it_part->colour = std::make_pair(colour+2, colour);
colour+=2;
} else {
assert(colour<0 && anti_colour>0);
// on qx line => connect to available anti-colour
it_part->colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark(*it_part)) {
// quark
assert(anti_colour>0);
if(colour>0){
// on g line => connect and remove anti-colour
it_part->colour = std::make_pair(anti_colour, 0);
anti_colour+=2;
anti_colour*=-1;
} else {
// on qx line => new colour
colour*=-1;
it_part->colour = std::make_pair(colour, 0);
}
} else if(is_antiquark(*it_part)) {
// anti-quark
assert(colour>0);
if(anti_colour>0){
// on g line => connect and remove colour
it_part->colour = std::make_pair(0, colour);
colour+=2;
colour*=-1;
} else {
// on q line => new anti-colour
anti_colour*=-1;
it_part->colour = std::make_pair(0, anti_colour);
}
} else { // not a parton
assert(!is_parton(*it_part));
it_part->colour = {};
}
}
//! connect to t- or u-channel colour flow
template<class OutIterator>
void connect_utchannel(
OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
){
OutIterator it_first = it_part++;
if(ran.flat()<.5) {// t-channel
connect_tchannel(it_first, colour, anti_colour, ran);
connect_tchannel(it_part, colour, anti_colour, ran);
}
else { // u-channel
connect_tchannel(it_part, colour, anti_colour, ran);
connect_tchannel(it_first, colour, anti_colour, ran);
}
}
} // namespace
bool Event::generate_colours(RNG & ran){
// generate only for HEJ events
if(!event_type::is_resummable(type()))
return false;
assert(std::is_sorted(
begin(outgoing()), end(outgoing()), rapidity_less{}));
assert(incoming()[0].pz() < incoming()[1].pz());
// positive (anti-)colour -> can connect
// negative (anti-)colour -> not available/used up by (anti-)quark
int colour = COLOUR_OFFSET;
int anti_colour = colour+1;
// initialise first
connect_incoming(incoming_[0], colour, anti_colour);
// reset outgoing colours
std::for_each(outgoing_.begin(), outgoing_.end(),
[](Particle & part){ part.colour = {};});
for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){
switch (type()) {
// subleading can connect to t- or u-channel
case event_type::unob:
case event_type::qqxexb: {
if( std::distance(begin_partons(), it_part)==0)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
case event_type::unof:
case event_type::qqxexf: {
if( std::distance(it_part, end_partons())==2)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
case event_type::qqxmid:{
auto it_next = std::next(it_part);
if( std::distance(begin_partons(), it_part)>0
&& std::distance(it_part, end_partons())>2
&& ( (is_quark(*it_part) && is_antiquark(*it_next))
|| (is_antiquark(*it_part) && is_quark(*it_next)) )
)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
default: // rest has to be t-channel
connect_tchannel(it_part, colour, anti_colour, ran);
}
}
// Connect last
connect_incoming(incoming_[1], anti_colour, colour);
assert(is_leading_colour());
return true;
} // generate_colours
namespace {
bool valid_parton(
std::vector<fastjet::PseudoJet> const & jets,
Particle const & parton, int const idx,
double const soft_pt_regulator, double const min_extparton_pt
){
// TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
if(min_extparton_pt > parton.pt()) return false;
if(idx<0) return false;
assert(static_cast<int>(jets.size())>=idx);
auto const & jet{ jets[idx] };
return (parton.p - jet).pt()/jet.pt() <= soft_pt_regulator;
}
} // namespace
// this should work with multiple types
bool Event::valid_hej_state(double const soft_pt_regulator,
double const min_pt
) const {
using namespace event_type;
if(!is_resummable(type()))
return false;
auto const & jet_idx{ particle_jet_indices() };
auto idx_begin{ jet_idx.cbegin() };
auto idx_end{ jet_idx.crbegin() };
auto part_begin{ cbegin_partons() };
auto part_end{ crbegin_partons() };
// always seperate extremal jets
if( !valid_parton(jets(), *part_begin, *idx_begin,
soft_pt_regulator, min_pt) )
return false;
++part_begin;
++idx_begin;
if( !valid_parton(jets(), *part_end, *idx_end,
soft_pt_regulator, min_pt) )
return false;
++part_end;
++idx_end;
// unob -> second parton in own jet
if( type() & (unob | qqxexb) ){
if( !valid_parton(jets(), *part_begin, *idx_begin,
soft_pt_regulator, min_pt) )
return false;
++part_begin;
++idx_begin;
}
if( type() & (unof | qqxexf) ){
if( !valid_parton(jets(), *part_end, *idx_end,
soft_pt_regulator, min_pt) )
return false;
++part_end;
// ++idx_end; // last check, we don't need idx_end afterwards
}
if( type() & qqxmid ){
// find qqx pair
auto begin_qqx{ std::find_if( part_begin, part_end.base(),
[](Particle const & part) -> bool {
return part.type != ParticleID::gluon;
}
)};
assert(begin_qqx != part_end.base());
long int qqx_pos{ std::distance(part_begin, begin_qqx) };
assert(qqx_pos >= 0);
idx_begin+=qqx_pos;
if( !( valid_parton(jets(), *begin_qqx, *idx_begin,
soft_pt_regulator, min_pt)
&& valid_parton(jets(), *std::next(begin_qqx), *std::next(idx_begin),
soft_pt_regulator, min_pt)
))
return false;
}
return true;
}
Event::ConstPartonIterator Event::begin_partons() const {
return cbegin_partons();
}
Event::ConstPartonIterator Event::cbegin_partons() const {
return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())};
}
Event::ConstPartonIterator Event::end_partons() const {
return cend_partons();
}
Event::ConstPartonIterator Event::cend_partons() const {
return {HEJ::is_parton, cend(outgoing()), cend(outgoing())};
}
Event::ConstReversePartonIterator Event::rbegin_partons() const {
return crbegin_partons();
}
Event::ConstReversePartonIterator Event::crbegin_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
}
Event::ConstReversePartonIterator Event::rend_partons() const {
return crend_partons();
}
Event::ConstReversePartonIterator Event::crend_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
}
Event::PartonIterator Event::begin_partons() {
return {HEJ::is_parton, begin(outgoing_), end(outgoing_)};
}
Event::PartonIterator Event::end_partons() {
return {HEJ::is_parton, end(outgoing_), end(outgoing_)};
}
Event::ReversePartonIterator Event::rbegin_partons() {
return std::reverse_iterator<PartonIterator>( end_partons() );
}
Event::ReversePartonIterator Event::rend_partons() {
return std::reverse_iterator<PartonIterator>( begin_partons() );
}
namespace {
void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
constexpr int prec = 6;
const std::streamsize orig_prec = os.precision();
os <<std::scientific<<std::setprecision(prec) << "["
<<std::setw(2*prec+1)<<std::right<< part.px() << ", "
<<std::setw(2*prec+1)<<std::right<< part.py() << ", "
<<std::setw(2*prec+1)<<std::right<< part.pz() << ", "
<<std::setw(2*prec+1)<<std::right<< part.E() << "]"<< std::fixed;
os.precision(orig_prec);
}
void print_colour(std::ostream & os, optional<Colour> const & col){
constexpr int width = 3;
if(!col)
os << "(no color)"; // American spelling for better alignment
else
os << "(" <<std::setw(width)<<std::right<< col->first
<< ", " <<std::setw(width)<<std::right<< col->second << ")";
}
} // namespace
std::ostream& operator<<(std::ostream & os, Event const & ev){
constexpr int prec = 4;
constexpr int wtype = 3; // width for types
const std::streamsize orig_prec = os.precision();
os <<std::setprecision(prec)<<std::fixed;
os << "########## " << name(ev.type()) << " ##########" << std::endl;
os << "Incoming particles:\n";
for(auto const & in: ev.incoming()){
os <<std::setw(wtype)<< in.type << ": ";
print_colour(os, in.colour);
os << " ";
print_momentum(os, in.p);
os << std::endl;
}
os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
for(auto const & out: ev.outgoing()){
os <<std::setw(wtype)<< out.type << ": ";
print_colour(os, out.colour);
os << " ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< out.rapidity() << std::endl;
}
os << "\nForming Jets: " << ev.jets().size() << "\n";
for(auto const & jet: ev.jets()){
print_momentum(os, jet);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< jet.rapidity() << std::endl;
}
if(!ev.decays().empty() ){
os << "\nDecays: " << ev.decays().size() << "\n";
for(auto const & decay: ev.decays()){
os <<std::setw(wtype)<< ev.outgoing()[decay.first].type
<< " (" << decay.first << ") to:\n";
for(auto const & out: decay.second){
os <<" "<<std::setw(wtype)<< out.type << ": ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< out.rapidity() << std::endl;
}
}
}
os << std::defaultfloat;
os.precision(orig_prec);
return os;
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type(); // event type
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
result.IDUP.reserve(num_particles); // PID
result.ISTUP.reserve(num_particles); // status (in, out, decay)
result.PUP.reserve(num_particles); // momentum
result.MOTHUP.reserve(num_particles); // index mother particle
result.ICOLUP.reserve(num_particles); // colour
// incoming
std::array<Particle, 2> incoming{ event.incoming() };
// First incoming should be positive pz according to LHE standard
// (or at least most (everyone?) do it this way, and Pythia assumes it)
if(incoming[0].pz() < incoming[1].pz())
std::swap(incoming[0], incoming[1]);
for(Particle const & in: incoming){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(LHE_Status::in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
assert(in.colour);
result.ICOLUP.emplace_back(*in.colour);
}
// outgoing
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i) != 0u
?LHE_Status::decay
:LHE_Status::out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
if(out.colour)
result.ICOLUP.emplace_back(*out.colour);
else{
result.ICOLUP.emplace_back(std::make_pair(0,0));
}
}
// decays
for(auto const & decay: event.decays()){
for(auto const & out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(LHE_Status::out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
} // namespace HEJ
diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc
index 2896389..cd1d08c 100644
--- a/src/YAMLreader.cc
+++ b/src/YAMLreader.cc
@@ -1,574 +1,574 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/YAMLreader.hh"
#include <algorithm>
#include <iostream>
#include <limits>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include <dlfcn.h>
#include "HEJ/ConfigFlags.hh"
#include "HEJ/Constants.hh"
#include "HEJ/ScaleFunction.hh"
#include "HEJ/event_types.hh"
#include "HEJ/output_formats.hh"
namespace HEJ {
class Event;
namespace {
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"trials", "min extparton pt", "max ext soft pt fraction",
"soft pt regulator",
"scales", "scale factors", "max scale ratio", "import scales",
"log correction", "event output", "analysis", "analyses", "vev",
"regulator parameter", "max events"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "algorithm", "R"}){
supported["resummation jets"][jet_opt] = "";
supported["fixed order jets"][jet_opt] = "";
}
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
for(auto && opt: {"FKL", "unordered", "extremal qqx", "central qqx", "non-resummable"}){
supported["event treatment"][opt] = "";
}
for(auto && particle_type: {"Higgs", "W", "Z"}){
for(auto && particle_opt: {"mass", "width"}){
supported["particle properties"][particle_type][particle_opt] = "";
}
}
for(auto && opt: {"type", "trials", "max deviation"}){
supported["unweight"][opt] = "";
}
return supported;
}();
return supported;
}
fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){
using namespace fastjet;
static const std::map<std::string, fastjet::JetAlgorithm> known = {
{"kt", kt_algorithm},
{"cambridge", cambridge_algorithm},
{"antikt", antikt_algorithm},
{"cambridge for passive", cambridge_for_passive_algorithm},
{"plugin", plugin_algorithm}
};
const auto res = known.find(algo);
if(res == known.end()){
throw std::invalid_argument("Unknown jet algorithm \"" + algo + "\"");
}
return res->second;
}
EventTreatment to_EventTreatment(std::string const & name){
static const std::map<std::string, EventTreatment> known = {
{"reweight", EventTreatment::reweight},
{"keep", EventTreatment::keep},
{"discard", EventTreatment::discard}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown event treatment \"" + name + "\"");
}
return res->second;
}
WeightType to_weight_type(std::string const & setting){
if(setting == "weighted")
return WeightType::weighted;
if(setting =="resummation")
return WeightType::unweighted_resum;
if(setting =="partial")
return WeightType::partially_unweighted;
throw std::invalid_argument{"Unknown weight type \"" + setting + "\""};
}
} // namespace
namespace detail{
void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){
setting = to_JetAlgorithm(yaml.as<std::string>());
}
void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){
setting = to_EventTreatment(yaml.as<std::string>());
}
void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){
setting = to_ParticleID(yaml.as<std::string>());
}
void set_from_yaml(WeightType & setting, YAML::Node const & yaml){
setting = to_weight_type(yaml.as<std::string>());
}
} // namespace detail
JetParameters get_jet_parameters(
YAML::Node const & node,
std::string const & entry
){
assert(node);
JetParameters result;
fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm;
double R = NAN;
set_from_yaml_if_defined(jet_algo, node, entry, "algorithm");
set_from_yaml(R, node, entry, "R");
result.def = fastjet::JetDefinition{jet_algo, R};
set_from_yaml(result.min_pt, node, entry, "min pt");
return result;
}
RNGConfig to_RNGConfig(
YAML::Node const & node,
std::string const & entry
){
assert(node);
RNGConfig result;
set_from_yaml(result.name, node, entry, "name");
set_from_yaml_if_defined(result.seed, node, entry, "seed");
return result;
}
ParticleProperties get_particle_properties(
YAML::Node const & node, std::string const & entry,
std::string const & boson
){
ParticleProperties result{};
set_from_yaml(result.mass, node, entry, boson, "mass");
set_from_yaml(result.width, node, entry, boson, "width");
return result;
}
EWConstants get_ew_parameters(YAML::Node const & node){
EWConstants result;
double vev = NAN;
set_from_yaml(vev, node, "vev");
result.set_vevWZH(vev,
get_particle_properties(node, "particle properties", "W"),
get_particle_properties(node, "particle properties", "Z"),
get_particle_properties(node, "particle properties", "Higgs")
);
return result;
}
HiggsCouplingSettings get_Higgs_coupling(
YAML::Node const & node,
std::string const & entry
){
assert(node);
static constexpr double mt_max = 2e4;
#ifndef HEJ_BUILD_WITH_QCDLOOP
if(node[entry].IsDefined()){
throw std::invalid_argument{
"Higgs coupling settings require building HEJ 2 "
"with QCDloop support"
};
}
#endif
HiggsCouplingSettings settings;
set_from_yaml_if_defined(settings.mt, node, entry, "mt");
set_from_yaml_if_defined(settings.mb, node, entry, "mb");
set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom");
set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors");
if(settings.use_impact_factors){
if(settings.mt != std::numeric_limits<double>::infinity()){
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
else{
// huge values of the top mass are numerically unstable
settings.mt = std::min(settings.mt, mt_max);
}
return settings;
}
FileFormat to_FileFormat(std::string const & name){
static const std::map<std::string, FileFormat> known = {
{"Les Houches", FileFormat::Les_Houches},
{"HepMC", FileFormat::HepMC},
{"HepMC2", FileFormat::HepMC2},
{"HepMC3", FileFormat::HepMC3},
{"HDF5", FileFormat::HDF5}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown file format \"" + name + "\"");
}
return res->second;
}
std::string extract_suffix(std::string const & filename){
size_t separator = filename.rfind('.');
if(separator == std::string::npos) return {};
return filename.substr(separator + 1);
}
FileFormat format_from_suffix(std::string const & filename){
const std::string suffix = extract_suffix(filename);
if(suffix == "lhe") return FileFormat::Les_Houches;
if(suffix == "hepmc") return FileFormat::HepMC;
if(suffix == "hepmc3") return FileFormat::HepMC3;
if(suffix == "hepmc2") return FileFormat::HepMC2;
if(suffix == "hdf5") return FileFormat::HDF5;
throw std::invalid_argument{
"Can't determine format for output file \"" + filename + "\""
};
}
void assert_all_options_known(
YAML::Node const & conf, YAML::Node const & supported
){
if(!conf.IsMap()) return;
if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"};
for(auto const & entry: conf){
const auto name = entry.first.as<std::string>();
if(! supported[name]) throw unknown_option{name};
/* check sub-options, e.g. 'resummation jets: min pt'
* we don't check analyses sub-options
* those depend on the analysis being used and should be checked there
* similar for "import scales"
*/
if(name != "analyses" && name != "analysis" && name != "import scales"){
try{
assert_all_options_known(conf[name], supported[name]);
}
catch(unknown_option const & ex){
throw unknown_option{name + ": " + ex.what()};
}
catch(invalid_type const & ex){
throw invalid_type{name + ": " + ex.what()};
}
}
}
}
} // namespace HEJ
namespace YAML {
Node convert<HEJ::OutputFile>::encode(HEJ::OutputFile const & outfile) {
Node node;
node[to_string(outfile.format)] = outfile.name;
return node;
}
bool convert<HEJ::OutputFile>::decode(Node const & node, HEJ::OutputFile & out) {
switch(node.Type()){
case NodeType::Map: {
YAML::const_iterator it = node.begin();
out.format = HEJ::to_FileFormat(it->first.as<std::string>());
out.name = it->second.as<std::string>();
return true;
}
case NodeType::Scalar:
out.name = node.as<std::string>();
out.format = HEJ::format_from_suffix(out.name);
return true;
default:
return false;
}
}
} // namespace YAML
namespace HEJ {
namespace detail{
void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){
setting = yaml.as<OutputFile>();
}
}
namespace {
void update_fixed_order_jet_parameters(
JetParameters & fixed_order_jets, YAML::Node const & yaml
){
if(!yaml["fixed order jets"]) return;
set_from_yaml_if_defined(
fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt"
);
fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm();
set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm");
double R = fixed_order_jets.def.R();
set_from_yaml_if_defined(R, yaml, "fixed order jets", "R");
fixed_order_jets.def = fastjet::JetDefinition{algo, R};
}
// like std::stod, but throw if not the whole string can be converted
double to_double(std::string const & str){
std::size_t pos = 0;
const double result = std::stod(str, &pos);
if(pos < str.size()){
throw std::invalid_argument(str + " is not a valid double value");
}
return result;
}
using EventScale = double (*)(Event const &);
void import_scale_functions(
std::string const & file,
std::vector<std::string> const & scale_names,
std::unordered_map<std::string, EventScale> & known
) {
void * handle = dlopen(file.c_str(), RTLD_NOW);
char * error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
for(auto const & scale: scale_names) {
void * sym = dlsym(handle, scale.c_str());
error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
known.emplace(scale, reinterpret_cast<EventScale>(sym)); // NOLINT
}
}
auto get_scale_map(
YAML::Node const & yaml
) {
std::unordered_map<std::string, EventScale> scale_map;
scale_map.emplace("H_T", H_T);
scale_map.emplace("max jet pperp", max_jet_pt);
scale_map.emplace("jet invariant mass", jet_invariant_mass);
scale_map.emplace("m_j1j2", m_j1j2);
if(yaml["import scales"].IsDefined()) {
if(! yaml["import scales"].IsMap()) {
throw invalid_type{"Entry 'import scales' is not a map"};
}
for(auto const & import: yaml["import scales"]) {
const auto file = import.first.as<std::string>();
const auto scale_names =
import.second.IsSequence()
?import.second.as<std::vector<std::string>>()
:std::vector<std::string>{import.second.as<std::string>()};
import_scale_functions(file, scale_names, scale_map);
}
}
return scale_map;
}
// simple (as in non-composite) scale functions
/**
* An example for a simple scale function would be H_T,
* H_T/2 is then composite (take H_T and then divide by 2)
*/
ScaleFunction parse_simple_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
) {
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
const auto it = known.find(scale_fun);
if(it != end(known)) return {it->first, it->second};
try{
const double scale = to_double(scale_fun);
return {scale_fun, FixedScale{scale}};
} catch(std::invalid_argument const &){}
throw std::invalid_argument{"Unknown scale choice: \"" + scale_fun + "\""};
}
std::string trim_front(std::string const & str){
const auto new_begin = std::find_if(
begin(str), end(str), [](char c){ return std::isspace(c) == 0; }
);
return std::string(new_begin, end(str));
}
std::string trim_back(std::string str){
size_t pos = str.size() - 1;
// use guaranteed wrap-around behaviour to check whether we have
// traversed the whole string
for(; pos < str.size() && std::isspace(str[pos]); --pos) {}
str.resize(pos + 1); // note that pos + 1 can be 0
return str;
}
ScaleFunction parse_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
){
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
// parse from right to left => a/b/c gives (a/b)/c
const size_t delim = scale_fun.find_last_of("*/");
if(delim == std::string::npos){
return parse_simple_ScaleFunction(scale_fun, known);
}
const std::string first = trim_back(std::string{scale_fun, 0, delim});
const std::string second = trim_front(std::string{scale_fun, delim+1});
if(scale_fun[delim] == '/'){
return parse_ScaleFunction(first, known)
/ parse_ScaleFunction(second, known);
}
assert(scale_fun[delim] == '*');
return parse_ScaleFunction(first, known)
* parse_ScaleFunction(second, known);
}
EventTreatMap get_event_treatment(
YAML::Node const & node, std::string const & entry
){
using namespace event_type;
EventTreatMap treat {
- {no_2_jets, EventTreatment::discard},
+ {not_enough_jets, EventTreatment::discard},
{bad_final_state, EventTreatment::discard},
{FKL, EventTreatment::discard},
{unob, EventTreatment::discard},
{unof, EventTreatment::discard},
{qqxexb, EventTreatment::discard},
{qqxexf, EventTreatment::discard},
{qqxmid, EventTreatment::discard},
{non_resummable, EventTreatment::discard}
};
set_from_yaml(treat.at(FKL), node, entry, "FKL");
set_from_yaml(treat.at(unob), node, entry, "unordered");
treat.at(unof) = treat.at(unob);
set_from_yaml(treat.at(qqxexb), node, entry, "extremal qqx");
treat.at(qqxexf) = treat.at(qqxexb);
set_from_yaml(treat.at(qqxmid), node, entry, "central qqx");
set_from_yaml(treat.at(non_resummable), node, entry, "non-resummable");
if(treat[non_resummable] == EventTreatment::reweight){
throw std::invalid_argument{"Cannot reweight non-resummable events"};
}
return treat;
}
Config to_Config(YAML::Node const & yaml){
try{
assert_all_options_known(yaml, get_supported_options());
}
catch(unknown_option const & ex){
throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.resummation_jets = get_jet_parameters(yaml, "resummation jets");
config.fixed_order_jets = config.resummation_jets;
update_fixed_order_jet_parameters(config.fixed_order_jets, yaml);
set_from_yaml_if_defined(config.min_extparton_pt, yaml, "min extparton pt");
if(config.min_extparton_pt!=0)
std::cerr << "WARNING: \"min extparton pt\" is deprecated."
<< " Please remove this entry or set \"soft pt regulator\" instead.\n";
set_from_yaml_if_defined(
config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction"
);
if(config.max_ext_soft_pt_fraction){
std::cerr << "WARNING: \"max ext soft pt fraction\" is deprecated."
<< " Please remove this entry or set \"soft pt regulator\" instead.\n";
config.soft_pt_regulator = *config.max_ext_soft_pt_fraction;
} else {
set_from_yaml_if_defined(
config.soft_pt_regulator, yaml, "soft pt regulator"
);
}
// Sets the standard value, then changes this if defined
config.regulator_lambda=CLAMBDA;
set_from_yaml_if_defined(config.regulator_lambda, yaml, "regulator parameter");
set_from_yaml_if_defined(config.max_events, yaml, "max events");
set_from_yaml(config.trials, yaml, "trials");
config.weight_type = WeightType::weighted;
set_from_yaml_if_defined(config.weight_type, yaml, "unweight", "type");
if(config.weight_type == WeightType::partially_unweighted) {
config.unweight_config = PartialUnweightConfig{};
set_from_yaml(
config.unweight_config->trials, yaml,
"unweight", "trials"
);
set_from_yaml(
config.unweight_config->max_dev, yaml,
"unweight", "max deviation"
);
}
else if(yaml["unweight"].IsDefined()) {
for(auto && opt: {"trials", "max deviation"}) {
if(yaml["unweight"][opt].IsDefined()) {
throw std::invalid_argument{
"'unweight: " + std::string{opt} + "' "
"is only supported if 'unweight: type' is set to 'partial'"
};
}
}
}
set_from_yaml(config.log_correction, yaml, "log correction");
config.treat = get_event_treatment(yaml, "event treatment");
set_from_yaml_if_defined(config.output, yaml, "event output");
config.rng = to_RNGConfig(yaml, "random generator");
set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses");
if(yaml["analysis"].IsDefined()){
std::cerr <<
"WARNING: Configuration entry 'analysis' is deprecated. "
" Use 'analyses' instead.\n";
set_from_yaml(config.analysis_parameters, yaml, "analysis");
if(!config.analysis_parameters.IsNull()){
config.analyses_parameters.push_back(config.analysis_parameters);
}
}
config.scales = to_ScaleConfig(yaml);
config.ew_parameters = get_ew_parameters(yaml);
config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling");
return config;
}
} // namespace
ScaleConfig to_ScaleConfig(YAML::Node const & yaml){
ScaleConfig config;
auto scale_funs = get_scale_map(yaml);
std::vector<std::string> scales;
set_from_yaml(scales, yaml, "scales");
config.base.reserve(scales.size());
std::transform(
begin(scales), end(scales), std::back_inserter(config.base),
[scale_funs](auto const & entry){
return parse_ScaleFunction(entry, scale_funs);
}
);
set_from_yaml_if_defined(config.factors, yaml, "scale factors");
config.max_ratio = std::numeric_limits<double>::infinity();
set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio");
return config;
}
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
} // namespace HEJ
diff --git a/t/check_res.cc b/t/check_res.cc
index 33b0103..bfa8d00 100644
--- a/t/check_res.cc
+++ b/t/check_res.cc
@@ -1,164 +1,164 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "hej_test.hh"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include "HEJ/Config.hh"
#include "HEJ/CrossSectionAccumulator.hh"
#include "HEJ/Event.hh"
#include "HEJ/event_types.hh"
#include "HEJ/EventReweighter.hh"
#include "HEJ/EWConstants.hh"
#include "HEJ/Fraction.hh"
#include "HEJ/HiggsCouplingSettings.hh"
#include "HEJ/Mixmax.hh"
#include "HEJ/Parameters.hh"
#include "HEJ/ScaleFunction.hh"
#include "HEJ/stream.hh"
#include "fastjet/JetDefinition.hh"
#include "LHEF/LHEF.h"
namespace HEJ { struct RNG; }
namespace {
const fastjet::JetDefinition JET_DEF{fastjet::kt_algorithm, 0.4};
const fastjet::JetDefinition BORN_JET_DEF{JET_DEF};
constexpr double BORN_JETPTMIN = 30;
constexpr double JETPTMIN = 35;
constexpr bool LOG_CORR = false;
constexpr std::size_t NUM_TRIES = 100;
constexpr HEJ::ParticleProperties WPROP{80.385, 2.085};
constexpr HEJ::ParticleProperties ZPROP{91.187, 2.495};
constexpr HEJ::ParticleProperties HPROP{125, 0.004165};
constexpr double VEV = 246.2196508;
using EventTreatment = HEJ::EventTreatment;
using namespace HEJ::event_type;
HEJ::EventTreatMap TREAT{
- {no_2_jets, EventTreatment::discard},
+ {not_enough_jets, EventTreatment::discard},
{bad_final_state, EventTreatment::discard},
{non_resummable, EventTreatment::discard},
{unof, EventTreatment::discard},
{unob, EventTreatment::discard},
{qqxexb, EventTreatment::discard},
{qqxexf, EventTreatment::discard},
{qqxmid, EventTreatment::discard},
{FKL, EventTreatment::reweight}
};
bool correct_colour(HEJ::Event const & ev){
if(!HEJ::event_type::is_resummable(ev.type()))
return true;
return ev.is_leading_colour();
}
} // namespace
int main(int argn, char** argv) {
if(argn == 5 && std::string(argv[4]) == "unof"){
--argn;
TREAT[unof] = EventTreatment::reweight;
TREAT[unob] = EventTreatment::discard;
TREAT[FKL] = EventTreatment::discard;
}
if(argn == 5 && std::string(argv[4]) == "unob"){
--argn;
TREAT[unof] = EventTreatment::discard;
TREAT[unob] = EventTreatment::reweight;
TREAT[FKL] = EventTreatment::discard;
}
else if(argn == 5 && std::string(argv[4]) == "splitf"){
--argn;
TREAT[qqxexb] = EventTreatment::discard;
TREAT[qqxexf] = EventTreatment::reweight;
TREAT[FKL] = EventTreatment::discard;
}
else if(argn == 5 && std::string(argv[4]) == "splitb"){
--argn;
TREAT[qqxexb] = EventTreatment::reweight;
TREAT[qqxexf] = EventTreatment::discard;
TREAT[FKL] = EventTreatment::discard;
}
else if(argn == 5 && std::string(argv[4]) == "qqxmid"){
--argn;
TREAT[qqxmid] = EventTreatment::reweight;
TREAT[FKL] = EventTreatment::discard;
}
if(argn != 4){
std::cerr << "Usage: check_res eventfile xsection tolerance [uno]";
return EXIT_FAILURE;
}
const double xsec_ref = std::stod(argv[2]);
const double tolerance = std::stod(argv[3]);
HEJ::istream in{argv[1]};
LHEF::Reader reader{in};
HEJ::PhaseSpacePointConfig psp_conf;
psp_conf.jet_param = HEJ::JetParameters{JET_DEF, JETPTMIN};
HEJ::MatrixElementConfig ME_conf;
ME_conf.log_correction = LOG_CORR;
ME_conf.Higgs_coupling = HEJ::HiggsCouplingSettings{};
ME_conf.ew_parameters.set_vevWZH(VEV, WPROP, ZPROP, HPROP);
HEJ::EventReweighterConfig conf;
conf.psp_config = std::move(psp_conf);
conf.ME_config = std::move(ME_conf);
conf.treat = TREAT;
reader.readEvent();
const bool has_Higgs = std::find(
begin(reader.hepeup.IDUP),
end(reader.hepeup.IDUP),
25
) != end(reader.hepeup.IDUP);
const double mu = has_Higgs?125.:91.188;
HEJ::ScaleGenerator scale_gen{
{{std::to_string(mu), HEJ::FixedScale{mu}}}, {}, 1.
};
std::shared_ptr<HEJ::RNG> ran{std::make_shared<HEJ::Mixmax>()};
HEJ::EventReweighter hej{reader.heprup, std::move(scale_gen), conf, ran};
HEJ::CrossSectionAccumulator xs;
do{
auto ev_data = HEJ::Event::EventData{reader.hepeup};
shuffle_particles(ev_data);
ev_data.reconstruct_intermediate();
HEJ::Event ev{
ev_data.cluster(
BORN_JET_DEF, BORN_JETPTMIN
)
};
auto resummed_events = hej.reweight(ev, NUM_TRIES);
for(auto const & res_ev: resummed_events) {
ASSERT(correct_colour(res_ev));
ASSERT(std::isfinite(res_ev.central().weight));
// we fill the xs uncorrelated since we only want to test the uncertainty
// of the resummation
xs.fill(res_ev);
}
} while(reader.readEvent());
const double xsec = xs.total().value;
const double xsec_err = std::sqrt(xs.total().error);
const double significance =
std::abs(xsec - xsec_ref) / std::sqrt( xsec_err*xsec_err + tolerance*tolerance );
std::cout << xsec_ref << " +/- " << tolerance << " ~ "
<< xsec << " +- " << xsec_err << " => " << significance << " sigma\n";
if(significance > 3.){
std::cerr << "Cross section is off by over 3 sigma!\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
diff --git a/t/test_classify.cc b/t/test_classify.cc
index 14aad7b..5c47fc8 100644
--- a/t/test_classify.cc
+++ b/t/test_classify.cc
@@ -1,525 +1,525 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "hej_test.hh"
#include <array>
#include <cstdlib>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "fastjet/JetDefinition.hh"
#include "HEJ/Event.hh"
#include "HEJ/event_types.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/PDG_codes.hh"
namespace {
const fastjet::JetDefinition JET_DEF{fastjet::JetAlgorithm::antikt_algorithm, 0.4};
const double MIN_JET_PT{30.};
const std::vector<std::string> ALL_QUARKS{"-4","-1","1","2","3","4"};
const std::vector<std::string> ALL_PARTONS{"g","-2","-1","1","2","3","4"};
const std::vector<std::string> ALL_BOSONS{"h", "Wp", "Wm", "Z_photon_mix"};
const std::vector<std::string> ALL_G_Z{"photon", "Z"};
const std::vector<std::string> ALL_W{"W+", "W-"};
const std::size_t MAX_MULTI = 6;
std::mt19937_64 RAN{0};
bool couple_quark(std::string const & boson, std::string & quark){
if(std::abs(HEJ::to_ParticleID(boson)) == HEJ::ParticleID::Wp){
auto qflav{ HEJ::to_ParticleID(quark) };
if(!HEJ::is_anyquark(qflav)) return false;
const int W_charge = HEJ::to_ParticleID(boson)>0?1:-1;
if(W_charge*qflav < 0 && !(std::abs(qflav)%2)) return false; // not anti-down
if(W_charge*qflav > 0 && (std::abs(qflav)%2)) return false; // not up
quark=std::to_string(qflav-W_charge);
}
if(HEJ::to_ParticleID(boson) == HEJ::ParticleID::Z_photon_mix){
auto qflav{ HEJ::to_ParticleID(quark) };
if(!HEJ::is_anyquark(qflav)) return false;
}
return true;
}
bool match_expectation( HEJ::event_type::EventType expected,
std::array<std::string,2> const & in, std::vector<std::string> const & out,
int const overwrite_boson = 0
){
HEJ::Event ev{ parse_configuration(
in,out,overwrite_boson ).cluster(JET_DEF, MIN_JET_PT)};
if(ev.type() != expected){
std::cerr << "Expected type " << name(expected)
<< " but found " << name(ev.type()) << "\n" << ev;
auto jet_idx{ ev.particle_jet_indices() };
std::cout << "Particle Jet indices: ";
for(int const i: jet_idx)
std::cout << i << " ";
std::cout << std::endl;
return false;
}
return true;
}
//! test FKL configurations
//! if implemented==false : check processes that are not in HEJ yet
bool check_fkl( bool const implemented=true ){
using namespace HEJ;
auto const type{ implemented?event_type::FKL:event_type::non_resummable };
std::vector<std::string> bosons;
if(implemented)
bosons = ALL_BOSONS;
else {
bosons = ALL_G_Z;
}
for(std::string const & first: ALL_PARTONS) // all quark flavours
for(std::string const & last: ALL_PARTONS){
for(std::size_t njet=2; njet<=MAX_MULTI; ++njet){ // all multiplicities
if(njet==5) continue;
std::array<std::string,2> base_in{first,last};
std::vector<std::string> base_out(njet, "g");
base_out.front() = first;
base_out.back() = last;
if(implemented && !match_expectation(type, base_in, base_out))
return false;
for(auto const & boson: bosons) // any boson
for(std::size_t pos=0; pos<=njet; ++pos){ // at any position
auto const & in{base_in};
auto out{base_out};
// change quark flavours for W
const bool couple_idx
= std::uniform_int_distribution<int>{0,1}(RAN) != 0;
if(!couple_quark(boson, couple_idx?out.back():out.front()))
continue;
out.insert(out.begin()+pos, boson);
if(!match_expectation(type, in, out))
return false;
}
}
}
return true;
}
//! test unordered configurations
//! if implemented==false : check processes that are not in HEJ yet
bool check_uno( bool const implemented=true ){
using namespace HEJ;
auto const b{ implemented?event_type::unob:event_type::non_resummable };
auto const f{ implemented?event_type::unof:event_type::non_resummable };
std::vector<std::string> bosons;
if(implemented) {
bosons = ALL_BOSONS;
} else {
bosons = ALL_G_Z;
}
for(std::string const & uno: ALL_QUARKS) // all quark flavours
for(std::string const & fkl: ALL_PARTONS){
for(std::size_t njet=3; njet<=MAX_MULTI; ++njet){ // all multiplicities >2
if(njet==5) continue;
for(std::size_t i=0; i<2; ++i){ // forward & backwards
std::array<std::string,2> base_in;
std::vector<std::string> base_out(njet, "g");
const std::size_t uno_pos = i?1:(njet-2);
const std::size_t fkl_pos = i?(njet-1):0;
base_in[i?0:1] = uno;
base_in[i?1:0] = fkl;
base_out[uno_pos] = uno;
base_out[fkl_pos] = fkl;
auto expectation{ i?b:f };
if( implemented
&& !match_expectation(expectation, base_in, base_out) )
return false;
for(auto const & boson: bosons){ // any boson
// at any position (higgs only inside FKL chain)
std::size_t start = 0;
std::size_t end = njet;
if(to_ParticleID(boson) == pid::higgs){
start = i?(uno_pos+1):fkl_pos;
end = i?(fkl_pos+1):uno_pos;
}
for(std::size_t pos=start; pos<=end; ++pos){
auto const & in{base_in};
auto out{base_out};
// change quark flavours for W
const bool couple_idx
= std::uniform_int_distribution<int>{0,1}(RAN) != 0;
if(!couple_quark(boson, couple_idx?out[fkl_pos]:out[uno_pos]))
continue;
out.insert(out.begin()+pos, boson);
if(!match_expectation(expectation, in, out))
return false;
}
}
}
}
}
return true;
}
//! test extremal qqx configurations
//! if implemented==false : check processes that are not in HEJ yet
bool check_extremal_qqx( bool const implemented=true ){
using namespace HEJ;
auto const b{ implemented?event_type::qqxexb:event_type::non_resummable };
auto const f{ implemented?event_type::qqxexf:event_type::non_resummable };
std::vector<std::string> bosons;
if(implemented)
bosons = ALL_W;
else {
bosons = ALL_G_Z;
bosons.emplace_back("h");
bosons.emplace_back("Z_photon_mix");
}
for(std::string const & qqx: ALL_QUARKS) // all quark flavours
for(std::string const & fkl: ALL_PARTONS){
std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) };
for(std::size_t njet=3; njet<=MAX_MULTI; ++njet){ // all multiplicities >2
if(njet==5) continue;
for(std::size_t i=0; i<2; ++i){ // forward & backwards
std::array<std::string,2> base_in;
std::vector<std::string> base_out(njet, "g");
const std::size_t qqx_pos = i?0:(njet-2);
const std::size_t fkl_pos = i?(njet-1):0;
base_in[i?0:1] = "g";
base_in[i?1:0] = fkl;
base_out[fkl_pos] = fkl;
base_out[qqx_pos] = qqx;
base_out[qqx_pos+1] = qqx2;
auto expectation{ i?b:f };
if( implemented
&& !match_expectation(expectation, base_in, base_out) )
return false;
for(auto const & boson: bosons){ // all bosons
// at any position (higgs only inside FKL chain)
std::size_t start = 0;
std::size_t end = njet;
if(to_ParticleID(boson) == pid::higgs){
start = i?(qqx_pos+2):fkl_pos;
end = i?(fkl_pos+1):qqx_pos;
}
for(std::size_t pos=start; pos<=end; ++pos){
auto const & in{base_in};
auto out{base_out};
// change quark flavours for W
const bool couple_idx
= std::uniform_int_distribution<int>{0,1}(RAN) != 0;
if(couple_idx || !couple_quark(boson, out[fkl_pos]) ){
// (randomly) try couple to FKL, else fall-back to qqx
if(!couple_quark(boson, out[qqx_pos]))
couple_quark(boson, out[qqx_pos+1]);
}
out.insert(out.begin()+pos, boson);
if(!match_expectation(expectation, in, out))
return false;
}
}
}
}
// test allowed jet configurations
if( implemented){
if( !( match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -3)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -4)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -5)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -5)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -6)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -7)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -7)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -8)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -8)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -9)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -10)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -11)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -11)
&& match_expectation(f,{fkl,"g"},{fkl,"g","g","g","g",qqx,qqx2}, -12)
&& match_expectation(b,{"g",fkl},{qqx,qqx2,"g","g","g","g",fkl}, -12)
))
return false;
if (fkl == "2") {
if( !( match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -3)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -4)
&& match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -5)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -5)
&& match_expectation(f,{"2","g"},{"1","g","Wp","g","g",qqx,qqx2}, -6)
&& match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -7)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -7)
&& match_expectation(f,{"2","g"},{"1","Wp","g","g","g",qqx,qqx2}, -8)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"Wp","g","g","g","1"}, -8)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -9)
&& match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -10)
&& match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -11)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","g","g","Wp","1"}, -11)
&& match_expectation(f,{"2","g"},{"1","g","g","g","Wp",qqx,qqx2}, -12)
&& match_expectation(b,{"g","2"},{qqx,qqx2,"g","Wp","g","g","1"}, -12)
))
return false;
}
}
}
return true;
}
//! test central qqx configurations
//! if implemented==false : check processes that are not in HEJ yet
bool check_central_qqx(bool const implemented=true){
using namespace HEJ;
auto const t{ implemented?event_type::qqxmid:event_type::non_resummable };
std::vector<std::string> bosons;
if(implemented)
bosons = ALL_W;
else {
bosons = ALL_G_Z;
bosons.emplace_back("h");
bosons.emplace_back("Z_photon_mix");
}
for(std::string const & qqx: ALL_QUARKS) // all quark flavours
for(std::string const & fkl1: ALL_PARTONS)
for(std::string const & fkl2: ALL_PARTONS){
std::string const qqx2{ std::to_string(HEJ::to_ParticleID(qqx)*-1) };
for(std::size_t njet=4; njet<=MAX_MULTI; ++njet){ // all multiplicities >3
if(njet==5) continue;
for(std::size_t qqx_pos=1; qqx_pos<njet-2; ++qqx_pos){ // any qqx position
std::array<std::string,2> base_in;
std::vector<std::string> base_out(njet, "g");
base_in[0] = fkl1;
base_in[1] = fkl2;
base_out.front() = fkl1;
base_out.back() = fkl2;
base_out[qqx_pos] = qqx;
base_out[qqx_pos+1] = qqx2;
if( implemented && !match_expectation(t, base_in, base_out) )
return false;
for(auto const & boson: bosons) // any boson
for(std::size_t pos=0; pos<=njet; ++pos){ // at any position
if( to_ParticleID(boson) == pid::higgs
&& (pos==qqx_pos || pos==qqx_pos+1) )
continue;
auto const & in{base_in};
auto out{base_out};
// change quark flavours for W
const int couple_idx{ std::uniform_int_distribution<int>{0,2}(RAN) };
// (randomly) try couple to FKL, else fall-back to qqx
if( couple_idx == 0 && couple_quark(boson, out.front()) ){}
else if( couple_idx == 1 && couple_quark(boson, out.back()) ){}
else {
if(!couple_quark(boson, out[qqx_pos]))
couple_quark(boson, out[qqx_pos+1]);
}
out.insert(out.begin()+pos, boson);
if(!match_expectation(t, in, out))
return false;
}
}
}
}
return true;
}
// this checks a (non excessive) list of non-resummable states
bool check_non_resummable(){
auto type{ HEJ::event_type::non_resummable};
return
// 2j - crossing lines
match_expectation(type, {"g","2"}, {"2","g"})
&& match_expectation(type, {"-1","g"}, {"g","-1"})
&& match_expectation(type, {"1","-1"}, {"-1","1"})
&& match_expectation(type, {"g","2"}, {"2","g","h"})
&& match_expectation(type, {"1","2"}, {"2","h","1"})
&& match_expectation(type, {"1","-1"}, {"h","-1","1"})
&& match_expectation(type, {"g","2"}, {"Wp","1","g"})
&& match_expectation(type, {"1","-1"}, {"-2","Wp","1"})
&& match_expectation(type, {"4","g"}, {"g","3","Wp"})
&& match_expectation(type, {"1","-2"}, {"-1","Wm","1"})
&& match_expectation(type, {"g","3"}, {"4","g","Wm"})
&& match_expectation(type, {"1","3"}, {"Wm","4","1"})
&& match_expectation(type, {"g","2"}, {"Z_photon_mix","2","g"})
&& match_expectation(type, {"1","-1"}, {"-1","Z_photon_mix","1"})
&& match_expectation(type, {"4","g"}, {"g","4","Z_photon_mix"})
// 2j - qqx
&& match_expectation(type, {"g","g"}, {"1","-1"})
&& match_expectation(type, {"g","g"}, {"-2","2","h"})
&& match_expectation(type, {"g","g"}, {"-4","Wp","3"})
&& match_expectation(type, {"g","g"}, {"Wm","-1","2"})
&& match_expectation(type, {"g","g"}, {"-3","Z_photon_mix","3"})
// 3j - crossing lines
&& match_expectation(type, {"g","4"}, {"4","g","g"})
&& match_expectation(type, {"-1","g"}, {"g","g","-1"})
&& match_expectation(type, {"1","3"}, {"3","g","1"})
&& match_expectation(type, {"-2","2"}, {"2","g","-2","h"})
&& match_expectation(type, {"-3","g"}, {"g","g","Wp","-4"})
&& match_expectation(type, {"1","-2"}, {"Wm","-1","g","1"})
&& match_expectation(type, {"-1","g"}, {"1","-1","-1"})
&& match_expectation(type, {"1","-4"}, {"Z_photon_mix","-4","g","1"})
// higgs inside uno
&& match_expectation(type, {"-1","g"}, {"g","h","-1","g"})
&& match_expectation(type, {"-1","1"}, {"g","h","-1","1"})
&& match_expectation(type, {"g","2"}, {"g","2","h","g"})
&& match_expectation(type, {"-1","1"}, {"-1","1","h","g"})
// higgs outside uno
&& match_expectation(type, {"-1","g"}, {"h","g","-1","g"})
&& match_expectation(type, {"-1","1"}, {"-1","1","g","h"})
// higgs inside qqx
&& match_expectation(type, {"g","g"}, {"-1","h","1","g","g"})
&& match_expectation(type, {"g","g"}, {"g","-1","h","1","g"})
&& match_expectation(type, {"g","g"}, {"g","g","2","h","-2"})
// higgs outside qqx
&& match_expectation(type, {"g","g"}, {"h","-1","1","g","g"})
&& match_expectation(type, {"g","g"}, {"g","g","2","-2","h"})
// 4j - two uno
&& match_expectation(type, {"-2","2"}, {"g","-2","2","g"})
&& match_expectation(type, {"1","3"}, {"g","1","h","3","g"})
&& match_expectation(type, {"1","2"}, {"g","1","3","Wp","g"})
&& match_expectation(type, {"1","-2"}, {"g","Wm","1","-1","g"})
&& match_expectation(type, {"3","2"}, {"g","3","Z_photon_mix","2","g"})
// 4j - two gluon outside
&& match_expectation(type, {"g","4"}, {"g","4","g","g"})
&& match_expectation(type, {"1","3"}, {"1","3","h","g","g"})
&& match_expectation(type, {"1","2"}, {"1","3","g","Wp","g"})
&& match_expectation(type, {"1","-2"}, {"1","Wm","-1","g","g"})
&& match_expectation(type, {"-1","g"}, {"g","g","-1","g"})
&& match_expectation(type, {"1","3"}, {"g","g","1","3","h"})
&& match_expectation(type, {"1","2"}, {"g","g","1","Wp","3"})
&& match_expectation(type, {"1","-2"}, {"Wm","g","g","1","-1"})
&& match_expectation(type, {"-1","2"}, {"g","g","-1","Z_photon_mix","2"})
// 4j - ggx+uno
&& match_expectation(type, {"g","4"}, {"1","-1","4","g"})
&& match_expectation(type, {"2","g"}, {"g","2","-3","3"})
&& match_expectation(type, {"g","4"}, {"1","-1","h","4","g"})
&& match_expectation(type, {"2","g"}, {"g","2","-3","3","h"})
&& match_expectation(type, {"g","4"}, {"Wp","1","-1","3","g"})
&& match_expectation(type, {"2","g"}, {"g","2","-4","Wp","3"})
&& match_expectation(type, {"g","4"}, {"2","Wm","-1","4","g"})
&& match_expectation(type, {"2","g"}, {"g","2","Wp","-3","4"})
&& match_expectation(type, {"-4","g"}, {"g","-4","-3","3","Z_photon_mix"})
// 3j - crossing+uno
&& match_expectation(type, {"1","4"}, {"g","4","1"})
&& match_expectation(type, {"1","4"}, {"4","1","g"})
&& match_expectation(type, {"1","4"}, {"g","h","4","1"})
&& match_expectation(type, {"-1","-3"},{"Wm","g","-4","-1"})
&& match_expectation(type, {"1","4"}, {"3","1","Wp","g"})
&& match_expectation(type, {"1","4"}, {"3","1","g","h"})
&& match_expectation(type, {"2","3"}, {"3","2","Z_photon_mix","g"})
// 3j - crossing+qqx
&& match_expectation(type, {"1","g"}, {"-1","1","g","1"})
&& match_expectation(type, {"1","g"}, {"-1","1","1","g"})
&& match_expectation(type, {"g","1"}, {"1","g","1","-1"})
&& match_expectation(type, {"g","1"}, {"g","1","1","-1"})
&& match_expectation(type, {"1","g"}, {"2","-2","g","1"})
&& match_expectation(type, {"1","g"}, {"2","-2","1","g"})
&& match_expectation(type, {"g","1"}, {"1","g","-2","2"})
&& match_expectation(type, {"g","1"}, {"g","1","-2","2"})
&& match_expectation(type, {"1","g"}, {"-1","1","h","g","1"})
&& match_expectation(type, {"1","g"}, {"-1","h","1","1","g"})
&& match_expectation(type, {"g","1"}, {"1","g","1","h","-1"})
&& match_expectation(type, {"g","1"}, {"h","g","1","1","-1"})
&& match_expectation(type, {"1","g"}, {"2","-2","1","g","h"})
&& match_expectation(type, {"g","1"}, {"g","h","1","-2","2"})
&& match_expectation(type, {"1","g"}, {"Wp","3","-4","g","1"})
&& match_expectation(type, {"3","g"}, {"-2","Wm","1","3","g"})
&& match_expectation(type, {"g","1"}, {"1","g","Wm","-3","4"})
&& match_expectation(type, {"g","-3"}, {"g","-3","-1","Wp","2"})
&& match_expectation(type, {"g","2"}, {"2","g","Z_photon_mix","4","-4"})
// 4j- gluon in qqx
&& match_expectation(type, {"g","1"}, {"1","g","-1","1"})
&& match_expectation(type, {"1","g"}, {"1","-1","g","1"})
&& match_expectation(type, {"g","1"}, {"1","g","Wm","-2","1"})
&& match_expectation(type, {"2","g"}, {"2","-2","g","Wp","1"})
&& match_expectation(type, {"g","g"}, {"Wp","3","g","-4","g"})
&& match_expectation(type, {"1","g"}, {"1","h","-1","g","1"})
&& match_expectation(type, {"3","g"}, {"3","1","g","Z_photon_mix","-1"})
// 6j - two qqx
&& match_expectation(type, {"g","g"}, {"1","-1","g","g","1","-1"})
&& match_expectation(type, {"g","g"}, {"1","-1","g","1","-1","g"})
&& match_expectation(type, {"g","g"}, {"g","1","-1","g","1","-1"})
&& match_expectation(type, {"g","g"}, {"g","1","-1","1","-1","g"})
&& match_expectation(type, {"g","g"}, {"g","1","1","-1","-1","g"})
&& match_expectation(type, {"g","g"}, {"h","1","-1","g","g","1","-1"})
&& match_expectation(type, {"g","g"}, {"1","Wp","-2","g","1","-1","g"})
&& match_expectation(type, {"g","g"}, {"g","1","Wp","-1","g","1","-2"})
&& match_expectation(type, {"g","g"}, {"g","1","-1","Wm","2","-1","g"})
&& match_expectation(type, {"g","g"}, {"g","1","2","-1","Wm","-1","g"})
&& match_expectation(type, {"g","g"}, {"2","-2","g","-1","1","Z_photon_mix","g"})
// random stuff (can be non-physical)
&& match_expectation(type, {"g","g"}, {"1","-2","2","-1"}) // != 2 qqx
&& match_expectation(type, {"g","g"}, {"1","-2","2","g"}) // could be qqx
&& match_expectation(type, {"e+","e-"},{"1","-1"}) // bad initial state
&& match_expectation(type, {"1","e-"}, {"g","1","Wm"}) // bad initial state
&& match_expectation(type, {"h","g"}, {"g","g"}) // bad initial state
&& match_expectation(type, {"-1","g"}, {"-1","1","1"}) // bad qqx
&& match_expectation(type, {"-1","g"}, {"1","1","-1"}) // crossing in bad qqx
&& match_expectation(type, {"-1","g"}, {"-2","1","1","Wp"}) // bad qqx
&& match_expectation(type, {"1","2"}, {"1","-1","g","g","g","2"}) // bad qqx
&& match_expectation(type, {"1","2"}, {"1","-1","-2","g","g","2"}) // gluon in bad qqx
&& match_expectation(type, {"g","g"}, {"-1","2","g","g"}) // wrong back qqx
&& match_expectation(type, {"g","g"}, {"g","g","2","1"}) // wrong forward qqx
&& match_expectation(type, {"g","g"}, {"g","-2","1","g"}) // wrong central qqx
&& match_expectation(type, {"1","g"}, {"1","-2","g","g","Wp"}) // extra quark
&& match_expectation(type, {"g","1"}, {"g","g","-2","1","Wp"}) // extra quark
&& match_expectation(type, {"g","1"}, {"g","g","Wp","-2","1"}) // extra quark
&& match_expectation(type, {"g","1"}, {"g","-2","1","g","Wp"}) // extra quark
&& match_expectation(type, {"g","g"}, {"g","g","g","-2","1","-1","Wp"}) // extra quark
&& match_expectation(type, {"1","g"}, {"g","Wp","1","-2","g"}) // extra quark
&& match_expectation(type, {"g","g"}, {"1","-1","-2","g","g","g","Wp"}) // extra quark
;
}
// Two boson states, that are currently not implemented
bool check_bad_FS(){
auto type{ HEJ::event_type::bad_final_state};
return
match_expectation(type, {"g","g"}, {"g","h","h","g"})
&& match_expectation(type, {"g","g"}, {"h","g","h","g"})
&& match_expectation(type, {"g","-1"}, {"g","h","Wp","-2"})
&& match_expectation(type, {"-3","-1"},{"-4","g","Wp","Wp","-2"})
&& match_expectation(type, {"-4","-1"},{"-3","Wp","g","Wm","-2"})
&& match_expectation(type, {"-4","-1"},{"g","-3","Wp","Wm","-2"})
&& match_expectation(type, {"-4","-1"},{"-4","g","11","-11","-2"})
&& match_expectation(type, {"-4","-1"},{"-4","g","-13","g","-2"})
&& match_expectation(type, {"3","-2"}, {"Wp","3","Wm","g","g","g","-2"}, -13)
&& match_expectation(type, {"1","2"},{"1","g","Z_photon_mix","Z_photon_mix","2"})
&& match_expectation(type, {"-4","g"},{"-4","Z_photon_mix","g","Z_photon_mix","g"})
&& match_expectation(type, {"g","-2"}, {"g","Z_photon_mix","Wm","-1"})
&& match_expectation(type, {"3","1"},{"3","g","h","Z_photon_mix","1"})
;
}
- // not 2 jets
- bool check_not_2_jets(){
- auto type{ HEJ::event_type::no_2_jets};
+ // not enough jets
+ bool check_not_enough_jets(){
+ auto type{ HEJ::event_type::not_enough_jets};
return
match_expectation(type, {"g","g"}, {})
&& match_expectation(type, {"1","-1"}, {})
&& match_expectation(type, {"g","-1"}, {"-1"})
&& match_expectation(type, {"g","g"}, {"g"})
;
}
// not implemented processes
bool check_not_implemented(){
return check_fkl(false)
&& check_uno(false)
&& check_extremal_qqx(false)
&& check_central_qqx(false);
}
} // namespace
int main() {
// tests for "no false negatives"
// i.e. all HEJ-configurations get classified correctly
if(!check_fkl()) return EXIT_FAILURE;
if(!check_uno()) return EXIT_FAILURE;
if(!check_extremal_qqx()) return EXIT_FAILURE;
if(!check_central_qqx()) return EXIT_FAILURE;
// test for "no false positive"
// i.e. non-resummable gives non-resummable
if(!check_non_resummable()) return EXIT_FAILURE;
if(!check_bad_FS()) return EXIT_FAILURE;
- if(!check_not_2_jets()) return EXIT_FAILURE;
+ if(!check_not_enough_jets()) return EXIT_FAILURE;
if(!check_not_implemented()) return EXIT_FAILURE;
return EXIT_SUCCESS;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:13 PM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805780
Default Alt Text
(99 KB)

Event Timeline