Page MenuHomeHEPForge

No OneTemporary

diff --git a/DipoleShower/Base/DipoleSplittingGenerator.cc b/DipoleShower/Base/DipoleSplittingGenerator.cc
--- a/DipoleShower/Base/DipoleSplittingGenerator.cc
+++ b/DipoleShower/Base/DipoleSplittingGenerator.cc
@@ -1,721 +1,724 @@
// -*- C++ -*-
//
// DipoleSplittingGenerator.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the DipoleSplittingGenerator class.
//
#include <config.h>
#include "DipoleSplittingGenerator.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig/DipoleShower/DipoleShowerHandler.h"
using namespace Herwig;
DipoleSplittingGenerator::DipoleSplittingGenerator()
: HandlerBase(),
theExponentialGenerator(0), prepared(false), presampling(false),
theDoCompensate(false) {
if ( ShowerHandler::currentHandler() )
setGenerator(ShowerHandler::currentHandler()->generator());
}
DipoleSplittingGenerator::~DipoleSplittingGenerator() {
if ( theExponentialGenerator ) {
delete theExponentialGenerator;
theExponentialGenerator = 0;
}
}
IBPtr DipoleSplittingGenerator::clone() const {
return new_ptr(*this);
}
IBPtr DipoleSplittingGenerator::fullclone() const {
return new_ptr(*this);
}
void DipoleSplittingGenerator::wrap(Ptr<DipoleSplittingGenerator>::ptr other) {
assert(!prepared);
theOtherGenerator = other;
}
void DipoleSplittingGenerator::prepare(const DipoleSplittingInfo& sp) {
generatedSplitting = sp;
generatedSplitting.splittingKinematics(splittingKernel()->splittingKinematics());
generatedSplitting.splittingParameters().resize(splittingKernel()->nDimAdditional());
if ( wrapping() ) {
generatedSplitting.emitterData(theSplittingKernel->emitter(generatedSplitting.index()));
generatedSplitting.spectatorData(theSplittingKernel->spectator(generatedSplitting.index()));
generatedSplitting.emissionData(theSplittingKernel->emission(generatedSplitting.index()));
parameters.resize(theOtherGenerator->nDim());
prepared = true;
return;
}
generatedSplitting.emitterData(splittingKernel()->emitter(generatedSplitting.index()));
generatedSplitting.spectatorData(splittingKernel()->spectator(generatedSplitting.index()));
generatedSplitting.emissionData(splittingKernel()->emission(generatedSplitting.index()));
presampledSplitting = generatedSplitting;
prepared = true;
parameters.resize(nDim());
theExponentialGenerator =
new exsample::exponential_generator<DipoleSplittingGenerator,UseRandom>();
theExponentialGenerator->sampling_parameters().maxtry = maxtry();
theExponentialGenerator->sampling_parameters().presampling_points = presamplingPoints();
theExponentialGenerator->sampling_parameters().freeze_grid = freezeGrid();
theExponentialGenerator->docompensate(theDoCompensate);
theExponentialGenerator->function(this);
theExponentialGenerator->initialize();
}
void DipoleSplittingGenerator::fixParameters(const DipoleSplittingInfo& sp,
Energy optHardPt) {
assert(generator());
assert(!presampling);
assert(prepared);
assert(sp.index() == generatedSplitting.index());
generatedSplitting.scale(sp.scale());
parameters[3] = sp.scale()/generator()->maximumCMEnergy();
generatedSplitting.hardPt(sp.hardPt());
parameters[0] = splittingKinematics()->ptToRandom(optHardPt == ZERO ?
generatedSplitting.hardPt() :
min(generatedSplitting.hardPt(),optHardPt),
sp.scale(),
sp.emitterX(), sp.spectatorX(),
generatedSplitting.index(),
*splittingKernel());
size_t shift = 4;
if ( generatedSplitting.index().emitterPDF().pdf() &&
generatedSplitting.index().spectatorPDF().pdf() ) {
generatedSplitting.emitterX(sp.emitterX());
generatedSplitting.spectatorX(sp.spectatorX());
parameters[4] = sp.emitterX();
parameters[5] = sp.spectatorX();
shift += 2;
}
if ( generatedSplitting.index().emitterPDF().pdf() &&
!generatedSplitting.index().spectatorPDF().pdf() ) {
generatedSplitting.emitterX(sp.emitterX());
parameters[4] = sp.emitterX();
++shift;
}
if ( !generatedSplitting.index().emitterPDF().pdf() &&
generatedSplitting.index().spectatorPDF().pdf() ) {
generatedSplitting.spectatorX(sp.spectatorX());
parameters[4] = sp.spectatorX();
++shift;
}
if ( splittingReweight() ) {
parameters[shift] = splittingReweight()->evaluate(sp);
++shift;
}
if ( splittingKernel()->nDimAdditional() )
copy(sp.lastSplittingParameters().begin(),sp.lastSplittingParameters().end(),parameters.begin()+shift);
if ( sp.emitter() )
generatedSplitting.emitter(sp.emitter());
if ( sp.spectator() )
generatedSplitting.spectator(sp.spectator());
}
int DipoleSplittingGenerator::nDim() const {
assert(!wrapping());
assert(prepared);
int ret = 4; // 0 pt, 1 z, 2 phi, 3 scale, 4/5 xs + parameters
if ( generatedSplitting.index().emitterPDF().pdf() ) {
++ret;
}
if ( generatedSplitting.index().spectatorPDF().pdf() ) {
++ret;
}
if ( splittingReweight() )
++ret;
ret += splittingKernel()->nDimAdditional();
return ret;
}
const vector<bool>& DipoleSplittingGenerator::sampleFlags() {
assert(!wrapping());
if ( !theFlags.empty() )
return theFlags;
theFlags.resize(nDim(),false);
theFlags[0] = true; theFlags[1] = true; theFlags[2] = true; // 0 pt, 1 z, 2 phi
return theFlags;
}
const pair<vector<double>,vector<double> >& DipoleSplittingGenerator::support() {
assert(!wrapping());
if ( !theSupport.first.empty() )
return theSupport;
vector<double> lower(nDim(),0.);
vector<double> upper(nDim(),1.);
pair<double,double> kSupport =
generatedSplitting.splittingKinematics()->kappaSupport(generatedSplitting);
pair<double,double> xSupport =
generatedSplitting.splittingKinematics()->xiSupport(generatedSplitting);
lower[0] = kSupport.first;
lower[1] = xSupport.first;
upper[0] = kSupport.second;
upper[1] = xSupport.second;
if ( splittingReweight() ) {
pair<double,double> bounds = splittingReweight()->reweightBounds(generatedSplitting.index());
int pos = 4;
if ( generatedSplitting.index().emitterPDF().pdf() ) {
++pos;
}
if ( generatedSplitting.index().spectatorPDF().pdf() ) {
++pos;
}
lower[pos] = bounds.first;
upper[pos] = bounds.second;
}
theSupport.first = lower;
theSupport.second = upper;
return theSupport;
}
void DipoleSplittingGenerator::startPresampling() {
assert(!wrapping());
splittingKernel()->startPresampling(generatedSplitting.index());
presampling = true;
}
void DipoleSplittingGenerator::stopPresampling() {
assert(!wrapping());
splittingKernel()->stopPresampling(generatedSplitting.index());
presampling = false;
}
bool DipoleSplittingGenerator::haveOverestimate() const {
assert(!wrapping());
assert(prepared);
return
generatedSplitting.splittingKinematics()->haveOverestimate() &&
splittingKernel()->haveOverestimate(generatedSplitting);
}
bool DipoleSplittingGenerator::overestimate(const vector<double>& point) {
assert(!wrapping());
assert(prepared);
assert(!presampling);
assert(haveOverestimate());
if ( ! generatedSplitting.splittingKinematics()->generateSplitting(point[0],point[1],point[2],
generatedSplitting,
*splittingKernel()) )
return 0.;
generatedSplitting.splittingKinematics()->prepareSplitting(generatedSplitting);
return
( generatedSplitting.splittingKinematics()->jacobianOverestimate() *
splittingKernel()->overestimate(generatedSplitting) *
(splittingReweight() ? splittingReweight()->evaluate(generatedSplitting) : 1.) );
}
double DipoleSplittingGenerator::invertOverestimateIntegral(double value) const {
assert(!wrapping());
assert(prepared);
assert(!presampling);
assert(haveOverestimate());
return
splittingKernel()->invertOverestimateIntegral(generatedSplitting,value);
}
double DipoleSplittingGenerator::evaluate(const vector<double>& point,Energy fixed) {
assert(!wrapping());
assert(prepared);
assert(generator());
DipoleSplittingInfo& split =
( !presampling ? generatedSplitting : presampledSplitting );
if(fixed>0.*GeV){
split.fixedScale(fixed);
}else{
split.fixedScale(-1.*GeV);
}
split.continuesEvolving();
size_t shift = 4;
if ( presampling ) {
split.scale(point[3] * generator()->maximumCMEnergy());
if ( split.index().emitterPDF().pdf() &&
split.index().spectatorPDF().pdf() ) {
split.emitterX(point[4]);
split.spectatorX(point[5]);
shift += 2;
}
if ( split.index().emitterPDF().pdf() &&
!split.index().spectatorPDF().pdf() ) {
split.emitterX(point[4]);
++shift;
}
if ( !split.index().emitterPDF().pdf() &&
split.index().spectatorPDF().pdf() ) {
split.spectatorX(point[4]);
++shift;
}
if ( splittingReweight() )
++shift;
if ( splittingKernel()->nDimAdditional() )
copy(point.begin()+shift,point.end(),split.splittingParameters().begin());
split.hardPt(split.splittingKinematics()->ptMax(split.scale(),
split.emitterX(),
split.spectatorX(),
split.index(),
*splittingKernel()));
}
if ( ! split.splittingKinematics()->generateSplitting(point[0],point[1],point[2],split,*splittingKernel()) ) {
split.lastValue(0.);
return 0.;
}
split.splittingKinematics()->prepareSplitting(split);
if ( split.stoppedEvolving() ) {
split.lastValue(0.);
return 0.;
}
double kernel = splittingKernel()->evaluate(split);
if ( splittingReweight() ) {
if ( !presampling )
kernel *= splittingReweight()->evaluate(split);
else
kernel *= point[shift-1];
}
double jac = split.splittingKinematics()->jacobian();
split.lastValue( abs(jac) * kernel );
if ( isnan(split.lastValue()) || isinf(split.lastValue()) ) {
generator()->log() << "DipoleSplittingGenerator:evaluate(): problematic splitting kernel encountered for "
<< splittingKernel()->name() << "\n" << flush;
split.lastValue(0.0);
}
if ( kernel < 0. )
return 0.;
return split.lastValue();
}
void DipoleSplittingGenerator::doGenerate(Energy optCutoff) {
assert(!wrapping());
double res = 0.;
Energy startPt = generatedSplitting.hardPt();
double optKappaCutoff = 0.0;
if ( optCutoff > splittingKinematics()->IRCutoff() ) {
optKappaCutoff = splittingKinematics()->ptToRandom(optCutoff,
generatedSplitting.scale(),
generatedSplitting.emitterX(),
generatedSplitting.spectatorX(),
generatedSplitting.index(),
*splittingKernel());
}
while (true) {
try {
if ( optKappaCutoff == 0.0 ) {
res = theExponentialGenerator->generate();
} else {
res = theExponentialGenerator->generate(optKappaCutoff);
}
} catch (exsample::exponential_regenerate&) {
generatedSplitting.hardPt(startPt);
continue;
} catch (exsample::hit_and_miss_maxtry&) {
throw DipoleShowerHandler::RedoShower();
} catch (exsample::selection_maxtry&) {
throw DipoleShowerHandler::RedoShower();
}
break;
}
if ( res == 0. ) {
generatedSplitting.lastPt(0.0*GeV);
generatedSplitting.didStopEvolving();
} else {
generatedSplitting.continuesEvolving();
if ( theMCCheck )
theMCCheck->book(generatedSplitting.emitterX(),
generatedSplitting.spectatorX(),
generatedSplitting.scale(),
startPt,
generatedSplitting.lastPt(),
generatedSplitting.lastZ(),
1.);
}
}
Energy DipoleSplittingGenerator::generate(const DipoleSplittingInfo& split,
Energy optHardPt,
Energy optCutoff) {
fixParameters(split,optHardPt);
if ( wrapping() ) {
return theOtherGenerator->generateWrapped(generatedSplitting,optHardPt,optCutoff);
}
doGenerate(optCutoff);
return generatedSplitting.lastPt();
}
double DipoleSplittingGenerator::unlops(const DipoleSplittingInfo& split,Energy down,Energy fixedScale){
fixParameters(split);
if ( wrapping() ) {
return theOtherGenerator->wrappedUnlops( generatedSplitting, down,fixedScale);
}
return dounlops( split, down,fixedScale);
}
double DipoleSplittingGenerator::sudakov(const DipoleSplittingInfo& split,Energy down, bool fast){
fixParameters(split);
if ( wrapping() ) {
return theOtherGenerator->wrappedSudakov( generatedSplitting, down,fast);
}
return dosudakov( split, down,fast);
}
double DipoleSplittingGenerator::dounlops(const DipoleSplittingInfo& ,Energy down,Energy fixedScale){
assert(down > splittingKinematics()->IRCutoff());
double optKappaCutoff = splittingKinematics()->ptToRandom(down,
generatedSplitting.scale(),
generatedSplitting.emitterX(),
generatedSplitting.spectatorX(),
generatedSplitting.index(),
*splittingKernel());
vector<double> RN;
RN.resize(parameters.size());
double res=0.;
double resq=0.;
double var=10.;
double varx=10.;
int k=0;
while ((k<500.||varx>0.1)&&k<5000){
k+=1.;
RN[0]= optKappaCutoff+(1-optKappaCutoff)*UseRandom::rnd();
for (size_t rn=1;rn< parameters.size();rn++)RN[rn]=UseRandom::rnd();
double tmp=(1-optKappaCutoff)*evaluate(RN,fixedScale);
res+= tmp;
resq+=pow(tmp,2.);
if(k%50==0.){
varx=sqrt((resq/pow(1.*k,2)-pow(res,2)/pow(1.*k,3)));
}
}
return -res/(1.0*k);
}
double DipoleSplittingGenerator::dosudakov(const DipoleSplittingInfo& ,Energy down,bool fast){
double est=splittingKernel()->estimate(generatedSplitting.scale(),down);;
if(fast){
//cout<<"\nDipoleSplittingGenerator::dosudakov estimate "<< est;
Ptr<StandardEventHandler>::ptr eH =
dynamic_ptr_cast<Ptr<StandardEventHandler>::ptr>(generator()->eventHandler());
eH->estimatedDSigRD();
return est;
}
double optKappaCutoff = splittingKinematics()->ptToRandom(down,
generatedSplitting.scale(),
generatedSplitting.emitterX(),
generatedSplitting.spectatorX(),
generatedSplitting.index(),
*splittingKernel());
vector<double> RN;
RN.resize(parameters.size());
double res=0.;
double resq=0.;
double var=10.;
double varx=10.;
int k=0;
while (((k<500.||var>0.05)&&k<50000)||(fast&&k<50)){
k+=1.;
RN[0]= optKappaCutoff+(1-optKappaCutoff)*UseRandom::rnd();
for (size_t rn=1;rn< parameters.size();rn++)RN[rn]=UseRandom::rnd();
double tmp=(1-optKappaCutoff)*evaluate(RN);
res+= tmp;
resq+=pow(tmp,2.);
varx=sqrt((resq/pow(1.*k,2)-pow(res,2)/pow(1.*k,3)));
if(k%50==0.)var= exp(-(res)/(1.0*k)+varx)-exp(-(res)/(1.0*k)-varx);
}
- // cout<<"\n"<<splittingKernel()->name()<<" "<<generatedSplitting.scale()/GeV<<" "<<down/GeV<<" "<<log(est)<<" "<<-res/(1.0*k)<<" "<<log(est)/(-res/(1.0*k));
+ //if (abs(est/exp(-res/(1.0*k))-1.)>2) {
+ cout<<"\n"<<splittingKernel()->name()<<" "<<generatedSplitting.scale()/GeV<<" "<<down/GeV<<" "<<est<<" "<<exp(-res/(1.0*k))<<" "<<est/exp(-res/(1.0*k));
+ //}
+
return exp(-res/(1.0*k));
}
double DipoleSplittingGenerator::wrappedUnlops(DipoleSplittingInfo& split,
Energy down,Energy fixedScale) {
assert(!wrapping());
DipoleSplittingInfo backup = generatedSplitting;
generatedSplitting = split;
fixParameters(split);
double res=dounlops( split, down,fixedScale);
split = generatedSplitting;
generatedSplitting = backup;
return res;
}
double DipoleSplittingGenerator::wrappedSudakov(DipoleSplittingInfo& split,
Energy down, bool fast) {
assert(!wrapping());
DipoleSplittingInfo backup = generatedSplitting;
generatedSplitting = split;
fixParameters(split);
double res=dosudakov( split, down,fast);
split = generatedSplitting;
generatedSplitting = backup;
return res;
}
Energy DipoleSplittingGenerator::generateWrapped(DipoleSplittingInfo& split,
Energy optHardPt,
Energy optCutoff) {
assert(!wrapping());
DipoleSplittingInfo backup = generatedSplitting;
generatedSplitting = split;
fixParameters(split,optHardPt);
try {
doGenerate(optCutoff);
} catch (...) {
split = generatedSplitting;
generatedSplitting = backup;
throw;
}
Energy pt = generatedSplitting.lastPt();
split = generatedSplitting;
generatedSplitting = backup;
return pt;
}
void DipoleSplittingGenerator::completeSplitting(DipoleSplittingInfo& sp) const {
pair<bool,bool> conf = sp.configuration();
sp = generatedSplitting;
sp.configuration(conf);
}
Ptr<DipoleSplittingKernel>::tptr DipoleSplittingGenerator::splittingKernel() const {
if ( wrapping() )
return theOtherGenerator->splittingKernel();
return theSplittingKernel;
}
Ptr<DipoleSplittingReweight>::tptr DipoleSplittingGenerator::splittingReweight() const {
if ( wrapping() )
return theOtherGenerator->splittingReweight();
return theSplittingReweight;
}
Ptr<DipoleSplittingKinematics>::tptr DipoleSplittingGenerator::splittingKinematics() const {
if ( wrapping() )
return theOtherGenerator->splittingKinematics();
return theSplittingKernel->splittingKinematics();
}
void DipoleSplittingGenerator::splittingKernel(Ptr<DipoleSplittingKernel>::tptr sp) {
theSplittingKernel = sp;
if ( theSplittingKernel->mcCheck() )
theMCCheck = theSplittingKernel->mcCheck();
}
void DipoleSplittingGenerator::splittingReweight(Ptr<DipoleSplittingReweight>::tptr sp) {
theSplittingReweight = sp;
}
void DipoleSplittingGenerator::debugGenerator(ostream& os) const {
os << "--- DipoleSplittingGenerator ---------------------------------------------------\n";
os << " generating splittings using\n"
<< " splittingKernel = " << splittingKernel()->name()
<< " splittingKinematics = " << generatedSplitting.splittingKinematics()->name() << "\n"
<< " to sample splittings of type:\n";
os << generatedSplitting;
os << "--------------------------------------------------------------------------------\n";
}
void DipoleSplittingGenerator::debugLastEvent(ostream& os) const {
os << "--- DipoleSplittingGenerator ---------------------------------------------------\n";
os << " last generated event:\n";
os << generatedSplitting;
os << "--------------------------------------------------------------------------------\n";
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void DipoleSplittingGenerator::persistentOutput(PersistentOStream & os) const {
os << theOtherGenerator << theSplittingKernel << theSplittingReweight << theMCCheck << theDoCompensate;
}
void DipoleSplittingGenerator::persistentInput(PersistentIStream & is, int) {
is >> theOtherGenerator >> theSplittingKernel >> theSplittingReweight >> theMCCheck >> theDoCompensate;
}
ClassDescription<DipoleSplittingGenerator> DipoleSplittingGenerator::initDipoleSplittingGenerator;
// Definition of the static class description member.
void DipoleSplittingGenerator::Init() {
static ClassDocumentation<DipoleSplittingGenerator> documentation
("DipoleSplittingGenerator is used by the dipole shower "
"to sample splittings from a given dipole splitting kernel.");
static Reference<DipoleSplittingGenerator,DipoleSplittingKernel> interfaceSplittingKernel
("SplittingKernel",
"Set the splitting kernel to sample from.",
&DipoleSplittingGenerator::theSplittingKernel, false, false, true, false, false);
static Reference<DipoleSplittingGenerator,DipoleSplittingReweight> interfaceSplittingReweight
("SplittingReweight",
"Set the splitting reweight.",
&DipoleSplittingGenerator::theSplittingReweight, false, false, true, true, false);
static Reference<DipoleSplittingGenerator,DipoleMCCheck> interfaceMCCheck
("MCCheck",
"[debug option] MCCheck",
&DipoleSplittingGenerator::theMCCheck, false, false, true, true, false);
interfaceMCCheck.rank(-1);
}
diff --git a/DipoleShower/Kernels/FIgx2ggxDipoleKernel.h b/DipoleShower/Kernels/FIgx2ggxDipoleKernel.h
--- a/DipoleShower/Kernels/FIgx2ggxDipoleKernel.h
+++ b/DipoleShower/Kernels/FIgx2ggxDipoleKernel.h
@@ -1,188 +1,190 @@
// -*- C++ -*-
#ifndef HERWIG_FIgx2ggxDipoleKernel_H
#define HERWIG_FIgx2ggxDipoleKernel_H
//
// This is the declaration of the FIgx2ggxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief FIgx2ggxDipoleKernel implements the g -> gg
* splitting off a final-initial dipole
*
*/
class FIgx2ggxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
FIgx2ggxDipoleKernel();
/**
* The destructor.
*/
virtual ~FIgx2ggxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*theSymmetryFactor*3.*(pow(log(up/down),2)- 11./12.* log(up/down)) *0.2/(2.*3.14));
+ }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* Symmetry factor for final state gluon splittings (should be 1/2).
*/
double theSymmetryFactor;
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<FIgx2ggxDipoleKernel> initFIgx2ggxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
FIgx2ggxDipoleKernel & operator=(const FIgx2ggxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of FIgx2ggxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::FIgx2ggxDipoleKernel,1> {
/** Typedef of the first base class of FIgx2ggxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the FIgx2ggxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::FIgx2ggxDipoleKernel>
: public ClassTraitsBase<Herwig::FIgx2ggxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::FIgx2ggxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* FIgx2ggxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class FIgx2ggxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_FIgx2ggxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/FIgx2qqxDipoleKernel.h b/DipoleShower/Kernels/FIgx2qqxDipoleKernel.h
--- a/DipoleShower/Kernels/FIgx2qqxDipoleKernel.h
+++ b/DipoleShower/Kernels/FIgx2qqxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_FIgx2qqxDipoleKernel_H
#define HERWIG_FIgx2qqxDipoleKernel_H
//
// This is the declaration of the FIgx2qqxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief FIgx2qqxDipoleKernel implements the g -> qqbar
* splitting off a final-initial dipole
*
*/
class FIgx2qqxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
FIgx2qqxDipoleKernel();
/**
* The destructor.
*/
virtual ~FIgx2qqxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*1./4.*log(up/down)*0.2/(2.*3.14));
+ }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<FIgx2qqxDipoleKernel> initFIgx2qqxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
FIgx2qqxDipoleKernel & operator=(const FIgx2qqxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of FIgx2qqxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::FIgx2qqxDipoleKernel,1> {
/** Typedef of the first base class of FIgx2qqxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the FIgx2qqxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::FIgx2qqxDipoleKernel>
: public ClassTraitsBase<Herwig::FIgx2qqxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::FIgx2qqxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* FIgx2qqxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class FIgx2qqxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_FIgx2qqxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/FIqx2qgxDipoleKernel.h b/DipoleShower/Kernels/FIqx2qgxDipoleKernel.h
--- a/DipoleShower/Kernels/FIqx2qgxDipoleKernel.h
+++ b/DipoleShower/Kernels/FIqx2qgxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_FIqx2qgxDipoleKernel_H
#define HERWIG_FIqx2qgxDipoleKernel_H
//
// This is the declaration of the FIqx2qgxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief FIqx2qgxDipoleKernel implements the q -> qg
* splitting off a final-initial dipole
*
*/
class FIqx2qgxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
FIqx2qgxDipoleKernel();
/**
* The destructor.
*/
virtual ~FIqx2qgxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
-
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*4./3.*(pow(log(up/down),2)-3./4.*log(up/down))*0.2/(2.*3.14));
+ }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<FIqx2qgxDipoleKernel> initFIqx2qgxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
FIqx2qgxDipoleKernel & operator=(const FIqx2qgxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of FIqx2qgxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::FIqx2qgxDipoleKernel,1> {
/** Typedef of the first base class of FIqx2qgxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the FIqx2qgxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::FIqx2qgxDipoleKernel>
: public ClassTraitsBase<Herwig::FIqx2qgxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::FIqx2qgxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* FIqx2qgxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class FIqx2qgxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_FIqx2qgxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/IFgx2ggxDipoleKernel.h b/DipoleShower/Kernels/IFgx2ggxDipoleKernel.h
--- a/DipoleShower/Kernels/IFgx2ggxDipoleKernel.h
+++ b/DipoleShower/Kernels/IFgx2ggxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_IFgx2ggxDipoleKernel_H
#define HERWIG_IFgx2ggxDipoleKernel_H
//
// This is the declaration of the IFgx2ggxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief IFgx2ggxDipoleKernel implements the g -> gg
* splitting off an initial-final dipole
*
*/
class IFgx2ggxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
IFgx2ggxDipoleKernel();
/**
* The destructor.
*/
virtual ~IFgx2ggxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*3.*(pow(log(up/down),2)- 11./12.* log(up/down)) *0.2/(2.*3.14));
+ }
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<IFgx2ggxDipoleKernel> initIFgx2ggxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
IFgx2ggxDipoleKernel & operator=(const IFgx2ggxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of IFgx2ggxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::IFgx2ggxDipoleKernel,1> {
/** Typedef of the first base class of IFgx2ggxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the IFgx2ggxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::IFgx2ggxDipoleKernel>
: public ClassTraitsBase<Herwig::IFgx2ggxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::IFgx2ggxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* IFgx2ggxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class IFgx2ggxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_IFgx2ggxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/IFgx2qqxDipoleKernel.h b/DipoleShower/Kernels/IFgx2qqxDipoleKernel.h
--- a/DipoleShower/Kernels/IFgx2qqxDipoleKernel.h
+++ b/DipoleShower/Kernels/IFgx2qqxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_IFgx2qqxDipoleKernel_H
#define HERWIG_IFgx2qqxDipoleKernel_H
//
// This is the declaration of the IFgx2qqxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief IFgx2qqxDipoleKernel implements the g -> qq
* splitting off an initial-final dipole
*
*/
class IFgx2qqxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
IFgx2qqxDipoleKernel();
/**
* The destructor.
*/
virtual ~IFgx2qqxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
-
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*0.5*4./3.*(pow(log(up/down),2)-3./4.*log(up/down))*0.2/(2.*3.14));
+ }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<IFgx2qqxDipoleKernel> initIFgx2qqxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
IFgx2qqxDipoleKernel & operator=(const IFgx2qqxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of IFgx2qqxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::IFgx2qqxDipoleKernel,1> {
/** Typedef of the first base class of IFgx2qqxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the IFgx2qqxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::IFgx2qqxDipoleKernel>
: public ClassTraitsBase<Herwig::IFgx2qqxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::IFgx2qqxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* IFgx2qqxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class IFgx2qqxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_IFgx2qqxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/IFqx2gqxDipoleKernel.h b/DipoleShower/Kernels/IFqx2gqxDipoleKernel.h
--- a/DipoleShower/Kernels/IFqx2gqxDipoleKernel.h
+++ b/DipoleShower/Kernels/IFqx2gqxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_IFqx2gqxDipoleKernel_H
#define HERWIG_IFqx2gqxDipoleKernel_H
//
// This is the declaration of the IFqx2gqxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief IFqx2gqxDipoleKernel implements the q -> gqbar
* splitting off an initial-final dipole
*
*/
class IFqx2gqxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
IFqx2gqxDipoleKernel();
/**
* The destructor.
*/
virtual ~IFqx2gqxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
-
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*1./4.*log(up/down)*0.2/(2.*3.14));
+ }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<IFqx2gqxDipoleKernel> initIFqx2gqxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
IFqx2gqxDipoleKernel & operator=(const IFqx2gqxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of IFqx2gqxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::IFqx2gqxDipoleKernel,1> {
/** Typedef of the first base class of IFqx2gqxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the IFqx2gqxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::IFqx2gqxDipoleKernel>
: public ClassTraitsBase<Herwig::IFqx2gqxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::IFqx2gqxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* IFqx2gqxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class IFqx2gqxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_IFqx2gqxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/IFqx2qgxDipoleKernel.h b/DipoleShower/Kernels/IFqx2qgxDipoleKernel.h
--- a/DipoleShower/Kernels/IFqx2qgxDipoleKernel.h
+++ b/DipoleShower/Kernels/IFqx2qgxDipoleKernel.h
@@ -1,183 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_IFqx2qgxDipoleKernel_H
#define HERWIG_IFqx2qgxDipoleKernel_H
//
// This is the declaration of the IFqx2qgxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief IFqx2qgxDipoleKernel implements the q -> qg
* splitting off an initial-final dipole
*
*/
class IFqx2qgxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
IFqx2qgxDipoleKernel();
/**
* The destructor.
*/
virtual ~IFqx2qgxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
- virtual double estimate(Energy up,Energy down) const {assert(false);return 1.;}
-
+ virtual double estimate(Energy up,Energy down) const {
+ return exp(-1.*0.5*4./3.*(pow(log(up/down),2)-3./4.*log(up/down))*0.2/(2.*3.14));
+ }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<IFqx2qgxDipoleKernel> initIFqx2qgxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
IFqx2qgxDipoleKernel & operator=(const IFqx2qgxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of IFqx2qgxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::IFqx2qgxDipoleKernel,1> {
/** Typedef of the first base class of IFqx2qgxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the IFqx2qgxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::IFqx2qgxDipoleKernel>
: public ClassTraitsBase<Herwig::IFqx2qgxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::IFqx2qgxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* IFqx2qgxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class IFqx2qgxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_IFqx2qgxDipoleKernel_H */
diff --git a/DipoleShower/Kernels/IIgx2ggxDipoleKernel.h b/DipoleShower/Kernels/IIgx2ggxDipoleKernel.h
--- a/DipoleShower/Kernels/IIgx2ggxDipoleKernel.h
+++ b/DipoleShower/Kernels/IIgx2ggxDipoleKernel.h
@@ -1,185 +1,185 @@
// -*- C++ -*-
#ifndef HERWIG_IIgx2ggxDipoleKernel_H
#define HERWIG_IIgx2ggxDipoleKernel_H
//
// This is the declaration of the IIgx2ggxDipoleKernel class.
//
#include "DipoleSplittingKernel.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup DipoleShower
* \author Simon Platzer
*
* \brief IIgx2ggxDipoleKernel implements the g -> gg
* splitting off an initial-initial dipole
*
*/
class IIgx2ggxDipoleKernel: public DipoleSplittingKernel {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
IIgx2ggxDipoleKernel();
/**
* The destructor.
*/
virtual ~IIgx2ggxDipoleKernel();
//@}
public:
/**
* Return true, if this splitting kernel
* applies to the given dipole index.
*/
virtual bool canHandle(const DipoleIndex&) const;
/**
* Return true, if this splitting kernel is
* the same for the given index a, as the given
* splitting kernel for index b.
*/
virtual bool canHandleEquivalent(const DipoleIndex& a,
const DipoleSplittingKernel& sk,
const DipoleIndex& b) const;
/**
* Return the emitter data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emitter(const DipoleIndex&) const;
/**
* Return the emission data after splitting, given
* a dipole index.
*/
virtual tcPDPtr emission(const DipoleIndex&) const;
/**
* Return the spectator data after splitting, given
* a dipole index.
*/
virtual tcPDPtr spectator(const DipoleIndex&) const;
/**
* Evaluate this splitting kernel for the given
* dipole splitting.
*/
virtual double evaluate(const DipoleSplittingInfo&) const;
virtual double estimate(Energy up,Energy down) const {
- return exp(-1.*3.*(pow(log(up/down),2)- 11./12.* log(up/down)) *0.2/(2.*3.14));
+ return exp(-1.*0.5*3.*(pow(log(up/down),2)- 11./12.* log(up/down)) *0.2/(2.*3.14));
}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<IIgx2ggxDipoleKernel> initIIgx2ggxDipoleKernel;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
IIgx2ggxDipoleKernel & operator=(const IIgx2ggxDipoleKernel &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of IIgx2ggxDipoleKernel. */
template <>
struct BaseClassTrait<Herwig::IIgx2ggxDipoleKernel,1> {
/** Typedef of the first base class of IIgx2ggxDipoleKernel. */
typedef Herwig::DipoleSplittingKernel NthBase;
};
/** This template specialization informs ThePEG about the name of
* the IIgx2ggxDipoleKernel class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::IIgx2ggxDipoleKernel>
: public ClassTraitsBase<Herwig::IIgx2ggxDipoleKernel> {
/** Return a platform-independent class name */
static string className() { return "Herwig::IIgx2ggxDipoleKernel"; }
/**
* The name of a file containing the dynamic library where the class
* IIgx2ggxDipoleKernel is implemented. It may also include several, space-separated,
* libraries if the class IIgx2ggxDipoleKernel depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShower.so"; }
};
/** @endcond */
}
#endif /* HERWIG_IIgx2ggxDipoleKernel_H */
diff --git a/Sampling/MonacoSampler.cc b/Sampling/MonacoSampler.cc
--- a/Sampling/MonacoSampler.cc
+++ b/Sampling/MonacoSampler.cc
@@ -1,440 +1,440 @@
// -*- C++ -*-
//
// MonacoSampler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MonacoSampler class.
//
#include "MonacoSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include <boost/progress.hpp>
#include "MonacoSampler.h"
#include "Herwig/Sampling/GeneralSampler.h"
#include <ctime>
using namespace Herwig;
MonacoSampler::MonacoSampler()
: BinSampler(),
theAlpha(0.875),
theGridDivisions(48),
theIterationPoints(0) {}
MonacoSampler::~MonacoSampler() {}
IBPtr MonacoSampler::clone() const {
return new_ptr(*this);
}
IBPtr MonacoSampler::fullclone() const {
return new_ptr(*this);
}
double MonacoSampler::generate() {
double w = 1.;
double wref=1.;
// cout<<"\npoint: ";
std::valarray<int> upperb(dimension());
for ( int k = 0; k < dimension(); ++k ) {
double div = (1 - UseRandom::rnd()) * theGridDivisions;
upperb[k] = static_cast<int>(div);
double gupper, glower;
if ( upperb[k] <= 0 ) {
upperb[k] = 0;
glower = 0.;
gupper = theGrid(k,0);
} else if (upperb[k] >= static_cast<int>(theGridDivisions)) {
upperb[k] = theGridDivisions-1;
glower = theGrid(k,theGridDivisions-2);
gupper = theGrid(k,theGridDivisions-1);
} else {
glower = theGrid(k,upperb[k]-1);
gupper = theGrid(k,upperb[k]);
}
double gdiff = gupper - glower;
lastPoint()[k] = glower + (div-upperb[k])*gdiff;
w *= gdiff * theGridDivisions;
}
double elapsed_secs;
bool canImprove = sampler()->almostUnweighted();
eventHandler()->resetDidEstimate();
try {
/**
* For AlmostUnweighted Events we can speed up the calculation.
* 1. Calculate a fast estimate (e.g. Born, analytic CKKW ...)
* 2. If accepted reweight with full/estimate.
* (Born+Virt, CKKW with sampled sudakovs)
**/
clock_t begin = clock();
wref=eventHandler()->dSigDR(lastPoint(),canImprove) / nanobarn;
clock_t end = clock();
elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
w *= wref;
} catch (Veto&) {
w = 0.0;
} catch (...) {
throw;
}
// only store numbers
double wgt = w;
if ( isnan(wgt) || isinf(wgt) ) wgt = 0;
// save results for later grid optimization
theIterationPoints++;
for ( int k = 0; k < dimension(); ++k ) {
theGridData(k,upperb[k]) += wgt*wgt;
}
if (randomNumberString()!="")
for ( size_t k = 0; k < lastPoint().size(); ++k ) {
RandomNumberHistograms[RandomNumberIndex(id(),k)].first.book(lastPoint()[k],wgt);
RandomNumberHistograms[RandomNumberIndex(id(),k)].second+=wgt;
}
if ( !weighted() && initialized() ) {
double p = min(abs(w),referenceWeight())/referenceWeight();
double sign = w >= 0. ? 1. : -1.;
if ( p < 1 && UseRandom::rnd() > p )
w = 0.;
else
w = sign*max(abs(w),referenceWeight());
}
//if (eventHandler()->didEstimate())
//cout<<"\n"<<canImprove <<" "<<eventHandler()->didEstimate()<<" "<<weighted()<<" "<<initialized()<<" ---------------------------->"<<w;
if(canImprove && eventHandler()->didEstimate()
- && (w!=0.) && ((!weighted()&&initialized())||UseRandom::rnd()<0.01)){
+ && (w!=0.) && ((!weighted()&&initialized())||UseRandom::rnd()<0.1)){
double x=elapsed_secs;
clock_t begin = clock();
double wfull=eventHandler()->dSigDR(lastPoint(),false) / nanobarn;
clock_t end = clock();
elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
cout<<"\nwfull/wref: "<<wfull/wref <<" time ratio "<<x/elapsed_secs;
w*=abs(wfull/wref);
}
select(w);
if ( w != 0.0 )
accept();
return w;
}
void MonacoSampler::saveGrid() const {
XML::Element grid = toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
}
void MonacoSampler::initialize(bool progress) {
//read in grid
bool haveGrid = false;
list<XML::Element>::iterator git = sampler()->grids().children().begin();
for ( ; git != sampler()->grids().children().end(); ++git ) {
if ( git->type() != XML::ElementTypes::Element )
continue;
if ( git->name() != "Monaco" )
continue;
string proc;
git->getFromAttribute("process",proc);
if ( proc == id() ) {
haveGrid = true;
break;
}
}
if ( haveGrid ) {
fromXML(*git);
sampler()->grids().erase(git);
didReadGrids();
} else {
// flat grid
theGrid.resize(dimension(),theGridDivisions);
for (int k = 0; k < dimension(); k++)
for (size_t l = 0; l < theGridDivisions; l++)
theGrid(k,l) = (l+1)/static_cast<double>(theGridDivisions);
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
theIterationPoints = 0;
}
lastPoint().resize(dimension());
if (randomNumberString()!="")
for(size_t i=0;i<lastPoint().size();i++){
RandomNumberHistograms[RandomNumberIndex(id(),i)] = make_pair( RandomNumberHistogram(),0.);
}
if ( initialized() ) {
if ( !hasGrids() )
throw Exception() << "MonacoSampler: Require existing grid when starting to run.\n"
<< "Did you miss setting --setupfile?"
<< Exception::abortnow;
return;
}
if ( haveGrid ) {
if ( !integrated() ) {
runIteration(initialPoints(),progress);
adapt();
}
isInitialized();
return;
}
// if ( !sampler()->grids().children().empty() ) {
// nIterations(1);
// }
unsigned long points = initialPoints();
for ( unsigned long k = 0; k < nIterations(); ++k ) {
runIteration(points,progress);
if ( k < nIterations() - 1 ) {
points = (unsigned long)(points*enhancementFactor());
adapt();
nextIteration();
}
}
adapt();
didReadGrids();
isInitialized();
}
void MonacoSampler::adapt() {
int dim = dimension();
// refine grid
std::valarray<double> gridcumul(dim);
for (int k=0; k<dim; ++k) {
double gridold = theGridData(k,0);
double gridnew = theGridData(k,1);
theGridData(k,0) = (gridold + gridnew) / 2.0;
gridcumul[k] = theGridData(k,0);
for (size_t l=1; l<theGridDivisions-1; ++l) {
theGridData(k,l) = gridold + gridnew;
gridold = gridnew;
gridnew = theGridData(k,l+1);
theGridData(k,l) = (theGridData(k,l) + gridnew) / 3.0;
gridcumul[k] += theGridData(k,l);
}
theGridData(k,theGridDivisions-1) = (gridnew + gridold) / 2.0;
gridcumul[k] += theGridData(k,theGridDivisions-1);
}
for (int k=0; k<dim; ++k) {
double rc = 0.;
std::valarray<double> ri(theGridDivisions);
for (size_t l=0; l<theGridDivisions; ++l) {
ri[l] = 0.;
if ((theGridData(k,l) >= 0) && (gridcumul[k] != 0)) {
theGridData(k,l) = max( 1.0e-30, theGridData(k,l) );
double gpart = gridcumul[k] / theGridData(k,l);
ri[l] = pow( (gpart - 1.0) / (gpart * log( gpart )), theAlpha);
} else {
ri[l] = pow( 1. / log( 1e30 ), theAlpha);
}
rc += ri[l];
}
rc /= theGridDivisions;
double gridold = 0, gridnew = 0.;
double deltar = 0.;
unsigned int m = 0;
std::valarray<double> theGridRowNew(theGridDivisions);
for (size_t l = 0; l < theGridDivisions; ++l) {
deltar += ri[l];
gridold = gridnew;
gridnew = theGrid(k,l);
for (; deltar > rc; m++) {
deltar -= rc;
theGridRowNew[m] = gridnew - (gridnew - gridold) * deltar / ri[l];
}
}
for (size_t l = 0; l < theGridDivisions-1; ++l) {
theGrid(k,l) = theGridRowNew[l];
}
theGrid(k,theGridDivisions-1) = 1.0;
}
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
theIterationPoints = 0;
}
void MonacoSampler::finalize(bool) {
// save grid
adapt();
XML::Element grid = MonacoSampler::toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
if (randomNumberString()!="")
for ( map<RandomNumberIndex,pair<RandomNumberHistogram,double> >::
const_iterator b = RandomNumberHistograms.begin();
b != RandomNumberHistograms.end(); ++b ) {
b->second.first.dump(randomNumberString(), b->first.first,shortprocess(),b->first.second);
}
}
void MonacoSampler::fromXML(const XML::Element& grid) {
int dim = 0;
grid.getFromAttribute("Dimension",dim);
if ( dim != dimension() ) {
throw std::runtime_error("[MonacoSampler] Number of dimensions in grid file does not match expectation.");
}
size_t griddivisions = 0;
grid.getFromAttribute("GridDivisions",griddivisions);
boost::numeric::ublas::matrix<double> tmpgrid(dim,griddivisions);
pair<multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator,multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator> cit;
cit = grid.findAll(XML::ElementTypes::Element,"GridVector");
if ( cit.first->second == grid.children().end() )
throw std::runtime_error("[MonacoSampler] Expected a GridVector element.");
for (multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator iit=cit.first; iit!=cit.second; ++iit) {
const XML::Element& gridvector = *iit->second;
int k = 0;
gridvector.getFromAttribute("Index",k);
if ( k >= dim ) {
throw std::runtime_error("[MonacoSampler] Index of grid dimension larger than grid size.");
} else {
list<XML::Element>::const_iterator git;
git = gridvector.findFirst(XML::ElementTypes::ParsedCharacterData,"");
if ( git == gridvector.children().end() )
throw std::runtime_error("[MonacoSampler] Expected grid data.");
istringstream bdata(git->content());
for ( size_t l = 0; l < griddivisions; ++l ) {
bdata >> tmpgrid(k,l);
}
}
}
// store back into main variable
// if griddivisions do not match, rebin preserving bin density
theGrid.resize(dim,theGridDivisions);
theIterationPoints = 0;
double divratio = griddivisions / static_cast<double>(theGridDivisions);
for (int k = 0; k < dim; k++) {
double xold = 0, xnew = 0, deltar = 0;
size_t l = 0;
for (size_t m = 0; m < griddivisions; m++) {
deltar += 1;
xold = xnew;
xnew = tmpgrid(k,m);
for (; deltar > divratio; l++) {
deltar -= divratio;
theGrid(k,l) = xnew - (xnew - xold) * deltar;
}
}
theGrid(k,theGridDivisions-1) = 1.0;
}
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
}
XML::Element MonacoSampler::toXML() const {
XML::Element grid(XML::ElementTypes::Element,"Monaco");
grid.appendAttribute("Dimension",dimension());
grid.appendAttribute("GridDivisions",theGridDivisions);
for ( int k = 0; k < dimension(); ++k ) {
XML::Element gridvector(XML::ElementTypes::Element,"GridVector");
gridvector.appendAttribute("Index",k);
ostringstream bdata;
bdata << setprecision(20);
for ( size_t l = 0; l < theGridDivisions; ++l )
bdata << theGrid(k,l) << " ";
XML::Element belem(XML::ElementTypes::ParsedCharacterData,bdata.str());
gridvector.append(belem);
grid.append(gridvector);
}
return grid;
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void MonacoSampler::persistentOutput(PersistentOStream & os) const {
BinSampler::put(os);
os << theAlpha << theGridDivisions;
}
void MonacoSampler::persistentInput(PersistentIStream & is, int) {
BinSampler::get(is);
is >> theAlpha >> theGridDivisions;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MonacoSampler,BinSampler>
describeHerwigMonacoSampler("Herwig::MonacoSampler", "HwSampling.so");
void MonacoSampler::Init() {
static ClassDocumentation<MonacoSampler> documentation
("MonacoSampler samples XCombs bins. This implementation performs weighted MC integration using Monaco, an adapted Vegas algorithm.");
static Parameter<MonacoSampler,double> interfaceAlpha
("Alpha",
"Rate of grid modification (0 for no modification).",
&MonacoSampler::theAlpha, 0.875, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MonacoSampler,size_t> interfaceGridDivisions
("GridDivisions",
"The number of divisions per grid dimension.",
&MonacoSampler::theGridDivisions, 48, 1, 0,
false, false, Interface::lowerlim);
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:32 PM (1 d, 18 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3801233
Default Alt Text
(76 KB)

Event Timeline