Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8724527
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
33 KB
Subscribers
None
View Options
diff --git a/include/HEJ/Event.hh b/include/HEJ/Event.hh
index a110609..a037a82 100644
--- a/include/HEJ/Event.hh
+++ b/include/HEJ/Event.hh
@@ -1,203 +1,210 @@
/** \file
* \brief Declares the Event class and helpers
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "HEJ/event_types.hh"
#include "HEJ/Particle.hh"
#include "HEJ/RNG.hh"
#include "fastjet/ClusterSequence.hh"
namespace LHEF{
class HEPEUP;
class HEPRUP;
}
namespace fastjet{
class JetDefinition;
}
namespace HEJ{
struct ParameterDescription;
//! Event parameters
struct EventParameters{
double mur; /**< Value of the Renormalisation Scale */
double muf; /**< Value of the Factorisation Scale */
double weight; /**< Event Weight */
//! Optional description
std::shared_ptr<ParameterDescription> description = nullptr;
};
//! Description of event parameters
struct ParameterDescription {
//! Name of central scale choice (e.g. "H_T/2")
std::string scale_name;
//! Actual renormalisation scale divided by central scale
double mur_factor;
//! Actual factorisation scale divided by central scale
double muf_factor;
ParameterDescription() = default;
ParameterDescription(
std::string scale_name, double mur_factor, double muf_factor
):
scale_name{scale_name}, mur_factor{mur_factor}, muf_factor{muf_factor}
{};
};
//! An event before jet clustering & classification
struct UnclusteredEvent{
//! Default Constructor
UnclusteredEvent() = default;
//! Constructor from LesHouches event information
UnclusteredEvent(LHEF::HEPEUP const & hepeup);
std::array<Particle, 2> incoming; /**< Incoming Particles */
std::vector<Particle> outgoing; /**< Outgoing Particles */
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<size_t, std::vector<Particle>> decays;
//! Central parameter (e.g. scale) choice
EventParameters central;
std::vector<EventParameters> variations; /**< For parameter variation */
- //! @brief Generate the particle colour leading in the MRK limit, see \cite Andersen:2011zd
- //! @note This will overwrite all existing colours
- void generate_colour_flow(HEJ::RNG &);
- void sort(); /**< Sort Particles in rapidity **/
};
/** An event with clustered jets
*
* This is the main HEJ 2 event class.
* It contains kinematic information including jet clustering,
* parameter (e.g. scale) settings and the event weight.
*/
class Event{
public:
//! Default Event Constructor
Event() = default;
//! Event Constructor adding jet clustering to an unclustered event
Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
);
//! The jets formed by the outgoing partons
std::vector<fastjet::PseudoJet> jets() const;
//! The corresponding event before jet clustering
UnclusteredEvent const & unclustered() const {
return ev_;
}
//! Central parameter choice
EventParameters const & central() const{
return ev_.central;
}
//! Central parameter choice
EventParameters & central(){
return ev_.central;
}
//! Incoming particles
std::array<Particle, 2> const & incoming() const{
return ev_.incoming;
}
//! Outgoing particles
std::vector<Particle> const & outgoing() const{
return ev_.outgoing;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<size_t, std::vector<Particle>> const & decays() const{
return ev_.decays;
}
//! Parameter (scale) variations
std::vector<EventParameters> const & variations() const{
return ev_.variations;
}
//! Parameter (scale) variations
std::vector<EventParameters> & variations(){
return ev_.variations;
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters const & variations(size_t i) const{
return ev_.variations[i];
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters & variations(size_t i){
return ev_.variations[i];
}
//! Indices of the jets the outgoing partons belong to
/**
* @param jets Jets to be tested
* @returns A vector containing, for each outgoing parton,
* the index in the vector of jets the considered parton
* belongs to. If the parton is not inside any of the
* passed jets, the corresponding index is set to -1.
*/
std::vector<int> particle_jet_indices(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cs_.particle_jet_indices(jets);
}
//! Jet definition used for clustering
fastjet::JetDefinition const & jet_def() const{
return cs_.jet_def();
}
//! Minimum jet transverse momentum
double min_jet_pt() const{
return min_jet_pt_;
}
//! Event type
event_type::EventType type() const{
return type_;
}
+ //! Assign colours to each particle
+ /**
+ * @details Colour ordering is done according to leading colour in the MRK
+ * limit, see \cite Andersen:2011zd. This only affects \ref
+ * is_HEJ() "HEJ" configurations, all other \ref event_type
+ * "EventTypes" will be ignored.
+ * @note This overwrites all previous set colours.
+ */
+ void generate_colour_flow(HEJ::RNG &);
+
private:
+ void sort(); /**< Sort Particles in rapidity **/
UnclusteredEvent ev_;
fastjet::ClusterSequence cs_;
double min_jet_pt_;
event_type::EventType type_;
};
//! Square of the partonic centre-of-mass energy \f$\hat{s}\f$
double shat(Event const & ev);
//! Convert an event to a LHEF::HEPEUP
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
}
diff --git a/include/HEJ/event_types.hh b/include/HEJ/event_types.hh
index 1b145a8..df60728 100644
--- a/include/HEJ/event_types.hh
+++ b/include/HEJ/event_types.hh
@@ -1,63 +1,65 @@
/** \file
* \brief Define different types of events.
*
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include "HEJ/utility.hh"
namespace HEJ{
//! Namespace for event types
namespace event_type{
//! Possible event types
enum EventType: size_t{
FKL, /**< FKL-type event */
unordered_backward, /**< event with unordered backward emission */
unordered_forward, /**< event with unordered forward emission */
nonHEJ, /**< event configuration not covered by HEJ */
no_2_jets, /**< event with less than two jets */
bad_final_state, /**< event with an unsupported final state */
unob = unordered_backward,
unof = unordered_forward,
first_type = FKL,
last_type = bad_final_state
};
//! Event type names
/**
* For example, names[FKL] is the string "FKL"
*/
static constexpr auto names = make_array(
"FKL",
"unordered backward",
"unordered forward",
"nonHEJ",
"no 2 jets",
"bad final state"
);
+ //! Returns True for a HEJ \ref event_type::EventType "EventType"
inline
bool is_HEJ(EventType type) {
switch(type) {
case FKL:
case unordered_backward:
case unordered_forward:
return true;
default:
return false;
}
}
+ //! Returns True for an unordered \ref event_type::EventType "EventType"
inline
bool is_uno(EventType type) {
return type == unordered_backward || type == unordered_forward;
}
}
}
diff --git a/src/Event.cc b/src/Event.cc
index 7df221a..31245b4 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,486 +1,490 @@
/**
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <utility>
#include "LHEF/LHEF.h"
#include "fastjet/JetDefinition.hh"
#include "HEJ/Constants.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/PDG_codes.hh"
namespace HEJ{
namespace{
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(std::vector<Particle> const & outgoing){
bool has_AWZH_boson = false;
for(auto const & out: outgoing){
if(is_AWZH_boson(out.type)){
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
}
else if(! is_parton(out.type)) return false;
}
return true;
}
template<class Iterator>
Iterator remove_AWZH(Iterator begin, Iterator end){
return std::remove_if(
begin, end, [](Particle const & p){return is_AWZH_boson(p);}
);
}
template<class Iterator>
bool valid_outgoing(Iterator begin, Iterator end){
return std::distance(begin, end) >= 2
&& std::is_sorted(begin, end, rapidity_less{})
&& std::count_if(
begin, end, [](Particle const & s){return is_AWZH_boson(s);}
) < 2;
}
/// @note that this changes the outgoing range!
template<class ConstIterator, class Iterator>
bool is_FKL(
ConstIterator begin_incoming, ConstIterator end_incoming,
Iterator begin_outgoing, Iterator end_outgoing
){
assert(std::distance(begin_incoming, end_incoming) == 2);
assert(std::distance(begin_outgoing, end_outgoing) >= 2);
// One photon, W, H, Z in the final state is allowed.
// Remove it for remaining tests,
end_outgoing = remove_AWZH(begin_outgoing, end_outgoing);
// Test if this is a standard FKL configuration.
return
(begin_incoming->type == begin_outgoing->type)
&& ((end_incoming-1)->type == (end_outgoing-1)->type)
&& std::all_of(
begin_outgoing + 1, end_outgoing - 1,
[](Particle const & p){ return p.type == pid::gluon; }
);
}
bool is_FKL(
std::array<Particle, 2> const & incoming,
std::vector<Particle> outgoing
){
assert(std::is_sorted(begin(incoming), end(incoming), pz_less{}));
assert(valid_outgoing(begin(outgoing), end(outgoing)));
return is_FKL(
begin(incoming), end(incoming),
begin(outgoing), end(outgoing)
);
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief Checks whether event is unordered backwards
* @param ev Event
* @returns Is Event Unordered Backwards
*
* - Checks there is more than 3 constuents in the final state
* - Checks there is more than 3 jets
* - Checks the most backwards parton is a gluon
* - Checks the most forwards jet is not a gluon
* - Checks the rest of the event is FKL
* - Checks the second most backwards is not a different boson
* - Checks the unordered gluon actually forms a jet
*/
bool is_unordered_backward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.front().type == pid::gluon) return false;
if(out.front().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) first outgoing particle must not be a A,W,Z,H.
const auto FKL_begin = next(begin(out));
if(is_AWZH_boson(*FKL_begin)) return false;
if(!is_FKL(in, {FKL_begin, end(out)})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.front()});
return indices[0] >= 0 && indices[1] == -1;
}
/**
* \brief Checks for a forward unordered gluon emission
* @param ev Event
* @returns Is the event a forward unordered emission
*
* \see is_unordered_backward
*/
bool is_unordered_forward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.back().type == pid::gluon) return false;
if(out.back().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) last outgoing particle must not be a A,W,Z,H.
const auto FKL_end = prev(end(out));
if(is_AWZH_boson(*prev(FKL_end))) return false;
if(!is_FKL(in, {begin(out), FKL_end})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.back()});
return indices.back() >= 0 && indices[indices.size()-2] == -1;
}
using event_type::EventType;
EventType classify(Event const & ev){
if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state;
if(! has_2_jets(ev)) return EventType::no_2_jets;
if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL;
if(is_unordered_backward(ev)){
return EventType::unordered_backward;
}
if(is_unordered_forward(ev)){
return EventType::unordered_forward;
}
return EventType::nonHEJ;
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
const fastjet::PseudoJet momentum{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
};
if(is_parton(id))
return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
return Particle{ id, std::move(momentum), {} };
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace anonymous
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup):
central(EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
})
{
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
namespace {
int connect_incoming(Particle & part, int & colour, int & anti_colour){
- // TODO something is wrong here
part.colour = std::make_pair(anti_colour, colour);
// gluon
if(part.type == pid::gluon) {
return 0;
}
// q
if(part.type > 0){
part.colour->second = 0;
colour*=-1;
return -1;
}
// qx
part.colour->first = 0;
anti_colour*=-1;
return +1;
}
}
- void UnclusteredEvent::generate_colour_flow(RNG & ran){
- sort();
+ void Event::generate_colour_flow(RNG & ran){
+ // only sort HEJ events
+ if(!event_type::is_HEJ(type()))
+ return;
+
+ assert(std::is_sorted(
+ begin(outgoing()), end(outgoing()), rapidity_less{}));
+ assert(incoming()[0].pz() < incoming()[1].pz());
// initialise first
int colour = COLOUR_OFFSET;
int anti_colour = colour+1;
// -1 anti, 0 no, +1 colour
- int is_quark_line = connect_incoming(incoming[0], colour, anti_colour);
+ int is_quark_line = connect_incoming(ev_.incoming[0], colour, anti_colour);
- for(auto & part: outgoing){
+ for(auto & part: ev_.outgoing){
if(part.type == ParticleID::gluon){
// gluon
if(is_quark_line == 0){
// on g line => connect to colour OR anti-colour (random)
if(ran.flat() < 0.5){
part.colour = std::make_pair(colour+2,colour);
colour+=2;
} else {
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark_line > 0){
// on q line => connect to available colour
part.colour = std::make_pair(colour+2, colour);
colour+=2;
} else {
// on qx line => connect to available anti-colour
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark(part)) {
// quark
if(is_quark_line == 0){
// on g line => connect and remove colour
is_quark_line = 1;
part.colour = std::make_pair(anti_colour, 0);
anti_colour+=2;
anti_colour*=-1;
} else if(is_quark_line < 0){
// on qx line => new colour
is_quark_line = 0;
colour*=-1;
part.colour = std::make_pair(colour,0);
} else {
throw std::logic_error("Colour connection impossible: Expected anti-quark but found quark.");
}
} else if(is_antiquark(part)) {
// anti-quark
if(is_quark_line == 0){
// on g line => connect and remove anti-colour
is_quark_line = -1;
part.colour = std::make_pair(0, colour);
colour+=2;
colour*=-1;
} else if(is_quark_line > 0){
// on q line => new anti-colour
is_quark_line = 0;
anti_colour*=-1;
part.colour = std::make_pair(0,anti_colour);
} else {
throw std::logic_error("Colour connection impossible: Expected quark but found anti-quark.");
}
}
}
// Connect last
- connect_incoming(incoming[1], anti_colour, colour);
+ connect_incoming(ev_.incoming[1], anti_colour, colour);
}
- void UnclusteredEvent::sort(){
+ void Event::sort(){
// sort incoming
std::sort(
- begin(incoming), end(incoming),
+ begin(ev_.incoming), end(ev_.incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
//sort outgoing
- if(std::is_sorted(begin(outgoing), end(outgoing), rapidity_less{}))
+ if(std::is_sorted(begin(ev_.outgoing), end(ev_.outgoing), rapidity_less{}))
return;
- auto old_outgoing = std::move(outgoing);
+ auto old_outgoing = std::move(ev_.outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
- outgoing.clear();
- outgoing.reserve(old_outgoing.size());
+ ev_.outgoing.clear();
for(size_t i: idx) {
- outgoing.emplace_back(std::move(old_outgoing[i]));
+ ev_.outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
- if(!decays.empty()){
- auto old_decays = std::move(decays);
- decays.clear();
+ if(!ev_.decays.empty()){
+ auto old_decays = std::move(ev_.decays);
+ ev_.decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
- decays.emplace(i, std::move(decay->second));
+ ev_.decays.emplace(i, std::move(decay->second));
}
- assert(old_decays.size() == decays.size());
+ assert(old_decays.size() == ev_.decays.size());
}
}
Event::Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
):
ev_{std::move(ev)},
cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def},
min_jet_pt_{min_jet_pt}
{
// sort particles
- ev_.sort();
+ sort();
// classify event
type_ = classify(*this);
assert(std::is_sorted(begin(outgoing()), end(outgoing()), rapidity_less{}));
}
std::vector<fastjet::PseudoJet> Event::jets() const{
return cs_.inclusive_jets(min_jet_pt_);
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
namespace{
// colour flow according to Les Houches standard
// TODO: stub
std::vector<std::pair<int, int>> colour_flow(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
std::vector<std::pair<int, int>> result(
incoming.size() + outgoing.size()
);
for(auto & col: result){
col = std::make_pair(-1, -1);
}
return result;
}
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type()+1; // event ID
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
for(Particle const & in: event.incoming()){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
}
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
}
result.ICOLUP = colour_flow(
event.incoming(), filter_partons(event.outgoing())
);
if(result.ICOLUP.size() < num_particles){
const size_t AWZH_boson_idx = std::find_if(
begin(event.outgoing()), end(event.outgoing()),
[](Particle const & s){ return is_AWZH_boson(s); }
) - begin(event.outgoing()) + event.incoming().size();
assert(AWZH_boson_idx <= result.ICOLUP.size());
result.ICOLUP.insert(
begin(result.ICOLUP) + AWZH_boson_idx,
std::make_pair(0,0)
);
}
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}
diff --git a/t/test_colour_flow.cc b/t/test_colour_flow.cc
index e76cd1f..44156c6 100644
--- a/t/test_colour_flow.cc
+++ b/t/test_colour_flow.cc
@@ -1,205 +1,209 @@
#include <stdexcept>
#include <utility>
#include "HEJ/Event.hh"
#include "HEJ/RNG.hh"
/// biased RNG to connect always to colour
class dum_rnd: public HEJ::DefaultRNG {
public:
dum_rnd() = default;
double flat() override {
return 0.;
};
};
-void dump_event(HEJ::UnclusteredEvent const & ev){
- for(auto const & in: ev.incoming){
+void dump_event(HEJ::Event const & ev){
+ for(auto const & in: ev.incoming()){
std::cerr << "in type=" << in.type
<< ", colour={" << (*in.colour).first
<< ", " << (*in.colour).second << "}\n";
}
- for(auto const & out: ev.outgoing){
+ for(auto const & out: ev.outgoing()){
std::cerr << "out type=" << out.type << ", colour={";
if(out.colour)
std::cerr << (*out.colour).first << ", " << (*out.colour).second;
else
std::cerr << "non, non";
std::cerr << "}\n";
}
}
/// true if colour is allowed for particle
bool correct_colour(HEJ::Particle const & part){
if(HEJ::is_AWZH_boson(part) && !part.colour) return true;
if(!part.colour) return false;
int const colour = part.colour->first;
int const anti_colour = part.colour->second;
if(part.type == HEJ::ParticleID::gluon)
return colour != anti_colour && colour > 0 && anti_colour > 0;
if(HEJ::is_quark(part))
return anti_colour == 0 && colour > 0;
return colour == 0 && anti_colour > 0;
}
-bool correct_colour(HEJ::UnclusteredEvent const & ev){
- for(auto const & part: ev.incoming){
+bool correct_colour(HEJ::Event const & ev){
+ for(auto const & part: ev.incoming()){
if(!correct_colour(part))
return false;
}
- for(auto const & part: ev.outgoing){
+ for(auto const & part: ev.outgoing()){
if(!correct_colour(part))
return false;
}
return true;
}
bool match_expected(
- HEJ::UnclusteredEvent const & ev,
+ HEJ::Event const & ev,
std::vector<HEJ::Colour> const & expected
){
- assert(ev.outgoing.size()+2==expected.size());
- for(size_t i=0; i<ev.incoming.size(); ++i){
- assert(ev.incoming[i].colour);
- if( *ev.incoming[i].colour != expected[i])
+ assert(ev.outgoing().size()+2==expected.size());
+ for(size_t i=0; i<ev.incoming().size(); ++i){
+ assert(ev.incoming()[i].colour);
+ if( *ev.incoming()[i].colour != expected[i])
return false;
}
- for(size_t i=2; i<ev.outgoing.size()+2; ++i){
- if( ev.outgoing[i-2].colour ){
- if( *ev.outgoing[i-2].colour != expected[i] )
+ for(size_t i=2; i<ev.outgoing().size()+2; ++i){
+ if( ev.outgoing()[i-2].colour ){
+ if( *ev.outgoing()[i-2].colour != expected[i] )
return false;
} else if( expected[i].first != 0 || expected[i].second != 0)
return false;
}
return true;
}
void check_event(
- HEJ::UnclusteredEvent ev, std::vector<HEJ::Colour> const & expected_colours
+ HEJ::UnclusteredEvent unc_ev, std::vector<HEJ::Colour> const & expected_colours
){
+ HEJ::Event ev(
+ unc_ev,
+ fastjet::JetDefinition(fastjet::JetAlgorithm::antikt_algorithm, 0.4), 30.);
+ assert(HEJ::event_type::is_HEJ(ev.type()));
dum_rnd rng;
ev.generate_colour_flow(rng);
if(!correct_colour(ev)){
std::cerr << "Found illegal colours for event\n";
dump_event(ev);
throw std::invalid_argument("Illegal colour set");
}
if(!match_expected(ev, expected_colours)){
std::cerr << "Colours didn't match expectation. Found\n";
dump_event(ev);
std::cerr << "but expected\n";
for(auto const & col: expected_colours){
std::cerr << "colour={" << col.first << ", " << col.second << "}\n";
}
throw std::logic_error("Colours did not match expectation");
}
}
int main() {
HEJ::UnclusteredEvent ev;
std::vector<HEJ::Colour> expected_colours(7);
/// pure gluon
ev.incoming[0] = { HEJ::ParticleID::gluon, { 0, 0,-427, 427}, {}};
ev.incoming[1] = { HEJ::ParticleID::gluon, { 0, 0, 851, 851}, {}};
ev.outgoing.push_back({ HEJ::ParticleID::gluon, { 196, 124, -82, 246}, {}});
ev.outgoing.push_back({ HEJ::ParticleID::gluon, {-167,-184, 16, 249}, {}});
ev.outgoing.push_back({ HEJ::ParticleID::higgs, { 197, 180, 168, 339}, {}});
ev.outgoing.push_back({ HEJ::ParticleID::gluon, {-190, -57, 126, 235}, {}});
ev.outgoing.push_back({ HEJ::ParticleID::gluon, { -36, -63, 196, 209}, {}});
expected_colours[0] = {502, 501};
expected_colours[1] = {509, 502};
expected_colours[2] = {503, 501};
expected_colours[3] = {505, 503};
expected_colours[4] = { 0, 0};
expected_colours[5] = {507, 505};
expected_colours[6] = {509, 507};
check_event(ev, expected_colours);
/// last g to Qx (=> gQx -> g ... Qx)
ev.incoming[1].type = HEJ::ParticleID::d_bar;
ev.outgoing[4].type = HEJ::ParticleID::d_bar;
// => only end changes
expected_colours[1].first = 0;
expected_colours[6].first = 0;
check_event(ev, expected_colours);
{
// don't overwrite
auto new_expected = expected_colours;
auto new_ev = ev;
/// uno forward (=> gQx -> g ... Qx g)
std::swap(new_ev.outgoing[3].type, new_ev.outgoing[4].type);
// => uno quarks eats colour and gluon connects to anti-colour
new_expected[5] = {0, expected_colours[3].first};
new_expected[6] = {expected_colours[0].first, expected_colours[0].first+2};
new_expected[1].second += 2; // one more anti-colour in line
check_event(new_ev, new_expected);
}
/// swap Qx <-> Q (=> gQx -> g ... Qx)
ev.incoming[1].type = HEJ::ParticleID::d;
ev.outgoing[4].type = HEJ::ParticleID::d;
// => swap: colour<->anti && inital<->final
std::swap(expected_colours[1], expected_colours[6]);
std::swap(expected_colours[1].first, expected_colours[1].second);
std::swap(expected_colours[6].first, expected_colours[6].second);
check_event(ev, expected_colours);
/// first g to q (=> qxQ -> qx ... Q)
ev.incoming[0].type = HEJ::ParticleID::u_bar;
ev.outgoing[0].type = HEJ::ParticleID::u_bar;
expected_colours[0] = { 0, 501};
// => shift anti-colour index one up
expected_colours[1].first -= 2;
expected_colours[5] = expected_colours[3];
expected_colours[3] = expected_colours[2];
expected_colours[2] = { 0, 502};
check_event(ev, expected_colours);
{
// don't overwrite
auto new_expected = expected_colours;
auto new_ev = ev;
/// uno backward (=> qxQ -> g qx ... Q)
std::swap(new_ev.outgoing[0].type, new_ev.outgoing[1].type);
// => uno gluon connects to quark colour
new_expected[3] = expected_colours[2];
new_expected[2] = {expected_colours[0].second+2, expected_colours[0].second};
check_event(new_ev, new_expected);
/// swap qx <-> q (=> qQ -> g q ... Q)
new_ev.incoming[0].type = HEJ::ParticleID::u;
new_ev.outgoing[1].type = HEJ::ParticleID::u;
// => swap: colour<->anti && inital<->final
std::swap(new_expected[0], new_expected[3]);
std::swap(new_expected[0].first, new_expected[0].second);
std::swap(new_expected[3].first, new_expected[3].second);
// => & connect first gluon with remaining anti-colour
new_expected[2] = {new_expected[0].first, new_expected[0].first+2};
// shift colour line one down
new_expected[1].first-=2;
new_expected[5].first-=2;
new_expected[5].second-=2;
// shift anti-colour line one up
new_expected[6].first+=2;
check_event(new_ev, new_expected);
}
{
// don't overwrite
auto new_expected = expected_colours;
auto new_ev = ev;
/// uno forward (=> qxQ -> qx ... Q g)
std::swap(new_ev.outgoing[3].type, new_ev.outgoing[4].type);
// => uno gluon connects to remaining colour
new_expected[5] = expected_colours[6];
new_expected[6] = {expected_colours[3].first+2, expected_colours[3].first};
check_event(new_ev, new_expected);
}
/// @TODO add qqx test when implemented (it should work)
return EXIT_SUCCESS;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:35 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242927
Default Alt Text
(33 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment