Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8308917
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
43 KB
Subscribers
None
View Options
diff --git a/src/Event.cc b/src/Event.cc
index ee8170d..51e30e0 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,1234 +1,1246 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <iomanip>
#include <iterator>
#include <memory>
#include <numeric>
#include <ostream>
#include <string>
#include <utility>
#include "fastjet/ClusterSequence.hh"
#include "fastjet/JetDefinition.hh"
#include "fastjet/PseudoJet.hh"
#include "LHEF/LHEF.h"
#include "HEJ/Constants.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/RNG.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/optional.hh"
#include "HEJ/utility.hh"
namespace HEJ {
namespace {
using std::size_t;
//! LHE status codes
namespace lhe_status {
enum Status: int {
in = -1,
decay = 2,
out = 1,
};
}
using LHE_Status = lhe_status::Status;
//! true if leptonic W decay
bool valid_W_decay( int const w_type, // sign of W
std::vector<Particle> const & decays
){
if(decays.size() != 2) // no 1->2 decay
return false;
const int pidsum = decays[0].type + decays[1].type;
if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
return false;
// leptonic decay (only check first, second follows from pidsum)
if( w_type == 1 ) // W+
return is_antilepton(decays[0]) || is_neutrino(decays[0]);
// W-
return is_lepton(decays[0]) || is_antineutrino(decays[0]);
}
//! true for Z decay to charged leptons
bool valid_Z_decay(std::vector<Particle> const & decays){
if(decays.size() != 2) // no 1->2 decay
return false;
const int pidsum = decays[0].type + decays[1].type;
if( std::abs(pidsum) != 0 ) // correct charge
return false;
// leptonic decay (only check first, second follows from pidsum)
return is_anylepton(decays[0]) && !is_anyneutrino(decays[0]);
}
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(Event const & ev){
std::vector<Particle> const & outgoing = ev.outgoing();
if(ev.decays().size() > 1) // at most one decay
return false;
bool has_AWZH_boson = false;
for( size_t i=0; i<outgoing.size(); ++i ){
auto const & out{ outgoing[i] };
if(is_AWZH_boson(out.type)){
// at most one boson
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
+ auto const decay = ev.decays().find(i);
+
+ // Momentum Conservating Decays
+ if(decay != ev.decays().cend()) {
+ fastjet::PseudoJet res;
+ for(auto const & p : decay -> second){
+ res += p.p;
+ }
+
+ if(!nearby_ep(out.p, res, 1e-6)){ return false; }
+ }
+
// valid decay for W
if(std::abs(out.type) == ParticleID::Wp){
// exactly 1 decay of W
if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
return false;
if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
return false;
}
// valid decay for Z
if(out.type == ParticleID::Z_photon_mix){
// exactly 1 decay
if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
return false;
if( !valid_Z_decay(ev.decays().cbegin()->second) )
return false;
}
}
else if(! is_parton(out.type)) return false;
}
return true;
}
/**
* returns all EventTypes implemented in HEJ
*/
size_t implemented_types(std::vector<Particle> const & bosons){
using namespace event_type;
if(bosons.empty()) return FKL | unob | unof | qqbar_exb | qqbar_exf | qqbar_mid;
if(bosons.size()>1) return non_resummable; // multi boson
switch (bosons[0].type) {
case ParticleID::Wp:
case ParticleID::Wm:
return FKL | unob | unof | qqbar_exb | qqbar_exf | qqbar_mid;
case ParticleID::Z_photon_mix:
return FKL | unob | unof;
case ParticleID::h:
return FKL | unob | unof;
default:
return non_resummable;
}
}
/**
* \brief function which determines if type change is consistent with Wp emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param is_qqbar Current both incoming/both outgoing?
*
* \see is_Wm_Change
*/
bool is_Wp_Change(ParticleID in, ParticleID out, bool is_qqbar){
using namespace pid;
if(!is_qqbar && (in==d_bar || in==u || in==s_bar || in==c))
return out == (in-1);
if( is_qqbar && (in==d || in==u_bar || in==s || in==c_bar))
return out == -(in+1);
return false;
}
/**
* \brief function which determines if type change is consistent with Wm emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param is_qqbar Current both incoming/both outgoing?
*
* Ensures that change type of quark line is possible by a flavour changing
* Wm emission. Allows checking of is_qqbar currents also.
*/
bool is_Wm_Change(ParticleID in, ParticleID out, bool is_qqbar){
using namespace pid;
if(!is_qqbar && (in==d || in==u_bar || in==s || in==c_bar))
return out == (in+1);
if( is_qqbar && (in==d_bar || in==u || in==s_bar || in==c))
return out == -(in-1);
return false;
}
/**
* \brief checks if particle type remains same from incoming to outgoing
* @param in incoming Particle
* @param out outgoing Particle
* @param is_qqbar Current both incoming/outgoing?
*/
bool no_flavour_change(ParticleID in, ParticleID out, bool is_qqbar){
const int qqbarCurrent = is_qqbar?-1:1;
if(std::abs(in)<=pid::top || in==pid::gluon)
return (in==out*qqbarCurrent);
return false;
}
bool has_enough_jets(Event const & event){
if(event.jets().size() >= 2) return true;
if(event.jets().empty()) return false;
// check for h+jet
const auto the_higgs = std::find_if(
begin(event.outgoing()), end(event.outgoing()),
[](const auto & particle) { return particle.type == pid::higgs; }
);
return the_higgs != end(event.outgoing());
}
bool is_gluon_to_Higgs(const ParticleID in, const ParticleID out) {
return in == pid::gluon && out == pid::Higgs;
}
/**
* \brief check if we have a valid Impact factor
* @param in incoming Particle
* @param out outgoing Particle
* @param is_qqbar Current both incoming/outgoing?
* @param W_change returns +1 if Wp, -1 if Wm, else 0
*/
bool is_valid_impact_factor(
ParticleID in, ParticleID out, bool is_qqbar, int & W_change
){
if( no_flavour_change(in, out, is_qqbar) || is_gluon_to_Higgs(in, out)) {
return true;
}
if( is_Wp_Change(in, out, is_qqbar) ) {
W_change+=1;
return true;
}
if( is_Wm_Change(in, out, is_qqbar) ) {
W_change-=1;
return true;
}
return false;
}
bool is_extremal_higgs_off_quark(
const ParticleID in,
const ParticleID extremal_out,
const ParticleID out
) {
return in == out && extremal_out == pid::higgs && is_anyquark(in);
}
//! Returns all possible classifications from the impact factors
// the beginning points are changed s.t. after the the classification they
// point to the beginning of the (potential) FKL chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
// This function can be used with forward & backwards iterators
template<class OutIterator>
size_t possible_impact_factors(
ParticleID incoming_id, // incoming
OutIterator & begin_out, OutIterator const & end_out, // outgoing
int & W_change, std::vector<Particle> const & boson,
bool const backward // backward?
){
using namespace event_type;
assert(boson.size() < 2);
if(begin_out == end_out) return non_resummable;
// keep track of all states that we don't test
size_t not_tested = qqbar_mid;
if(backward)
not_tested |= unof | qqbar_exf;
else
not_tested |= unob | qqbar_exb;
// Is this LL current?
if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
++begin_out;
return not_tested | FKL;
}
// q -> H q and qbar -> H qbar are technically not LL,
// but we treat them as such anyway
const auto next = std::next(begin_out);
if(
// first ensure that the next particle is not part of the *other* impact factor
next != end_out
&& is_extremal_higgs_off_quark(incoming_id, begin_out->type, next->type)
) {
std::advance(begin_out, 2);
return not_tested | FKL;
}
// or NLL current?
// -> needs two partons in two different jets
if( std::distance(begin_out, end_out)>=2
){
auto next = std::next(begin_out);
// Is this unordered emisson?
if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
if( is_valid_impact_factor(
incoming_id, next->type, false, W_change )
){
// veto Higgs inside uno
assert(next!=end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < next->rapidity())
||(!backward && boson.front().rapidity() > next->rapidity()))
return non_resummable;
}
begin_out = std::next(next);
return not_tested | (backward?unob:unof);
}
}
// Is this QQbar?
else if( incoming_id==pid::gluon ){
if( is_valid_impact_factor(
begin_out->type, next->type, true, W_change )
){
// veto Higgs inside qqbar
assert(next!=end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < next->rapidity())
||(!backward && boson.front().rapidity() > next->rapidity()))
return non_resummable;
}
begin_out = std::next(next);
return not_tested | (backward?qqbar_exb:qqbar_exf);
}
}
}
return non_resummable;
}
//! Returns all possible classifications from central emissions
// the beginning points are changed s.t. after the the classification they
// point to the end of the emission chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
template<class OutIterator>
size_t possible_central(
OutIterator & begin_out, OutIterator const & end_out,
int & W_change, std::vector<Particle> const & boson
){
using namespace event_type;
assert(boson.size() < 2);
// keep track of all states that we don't test
size_t possible = unob | unof
| qqbar_exb | qqbar_exf;
// Find the first quark or antiquark emission
begin_out = std::find_if(
begin_out, end_out,
[](Particle const & p) { return is_anyquark(p); }
);
// end of chain -> FKL
if( begin_out==end_out ){
return possible | FKL;
}
// is this a qqbar-pair?
// needs two partons in two separate jets
auto next = std::next(begin_out);
if(
next != end_out
&& is_valid_impact_factor(begin_out->type, next->type, true, W_change)
){
// veto Higgs inside qqbar
if( !boson.empty() && boson.front().type == ParticleID::h
&& boson.front().rapidity() > begin_out->rapidity()
&& boson.front().rapidity() < next->rapidity()
){
return non_resummable;
}
begin_out = std::next(next);
// remaining chain should be pure FKL (gluon or higgs)
if(std::any_of(
begin_out, end_out,
[](Particle const & p) { return is_anyquark(p); }
)) {
return non_resummable;
}
return possible | qqbar_mid;
}
return non_resummable;
}
namespace {
bool is_parton_or_higgs(Particle const & p) {
return is_parton(p) || p.type == pid::higgs;
}
}
/**
* \brief Checks for all event types
* @param ev Event
* @returns Event Type
*
*/
event_type::EventType classify(Event const & ev){
using namespace event_type;
if(! has_enough_jets(ev))
return not_enough_jets;
// currently we can't handle multiple boson states in the ME. So they are
// considered "bad_final_state" even though the "classify" could work with
// them.
if(! final_state_ok(ev))
return bad_final_state;
// initialise variables
auto const & in = ev.incoming();
// range for current checks
auto begin_out = boost::make_filter_iterator(
is_parton_or_higgs, cbegin(ev.outgoing()), cend(ev.outgoing())
);
auto rbegin_out = std::make_reverse_iterator(
boost::make_filter_iterator(
is_parton_or_higgs, cend(ev.outgoing()), cend(ev.outgoing())
)
);
assert(std::distance(begin(in), end(in)) == 2);
assert(std::distance(begin_out, rbegin_out.base()) >= 2);
assert(std::is_sorted(begin_out, rbegin_out.base(), rapidity_less{}));
auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
// we only allow one boson through final_state_ok
assert(boson.size()<=1);
// keep track of potential W couplings, at the end the sum should be 0
int remaining_Wp = 0;
int remaining_Wm = 0;
if(!boson.empty() && std::abs(boson.front().type) == ParticleID::Wp ){
if(boson.front().type>0) ++remaining_Wp;
else ++remaining_Wm;
}
int W_change = 0;
size_t final_type = ~(not_enough_jets | bad_final_state);
// check forward impact factor
final_type &= possible_impact_factors(
in.front().type,
begin_out, rbegin_out.base(),
W_change, boson, true );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check backward impact factor
final_type &= possible_impact_factors(
in.back().type,
rbegin_out, std::make_reverse_iterator(begin_out),
W_change, boson, false );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check central emissions
final_type &= possible_central(
begin_out, rbegin_out.base(), W_change, boson );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
// Check whether the right number of Ws are present
if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
// result has to be unique
if( (final_type & (final_type-1)) != 0) return non_resummable;
// check that each sub processes is implemented
// (has to be done at the end)
if( (final_type & ~implemented_types(boson)) != 0 )
return non_resummable;
return static_cast<EventType>(final_type);
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, size_t i){
auto id = static_cast<ParticleID>(hepeup.IDUP[i]);
auto colour = is_parton(id)?hepeup.ICOLUP[i]:optional<Colour>();
return { id,
{ hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3] },
colour
};
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace
Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
parameters.central = EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP
};
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == LHE_Status::in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent const & ev,
fastjet::JetDefinition const & jet_def, double const min_jet_pt
):
Event( Event::EventData{
ev.incoming, ev.outgoing, ev.decays,
Parameters<EventParameters>{ev.central, ev.variations}
}.cluster(jet_def, min_jet_pt) )
{}
//! @TODO remove in HEJ 2.2.0
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
Event::EventData const evData{hepeup};
incoming = evData.incoming;
outgoing = evData.outgoing;
decays = evData.decays;
central = evData.parameters.central;
variations = evData.parameters.variations;
}
void Event::EventData::sort(){
// sort particles
std::sort(
begin(incoming), end(incoming),
[](Particle const & o1, Particle const & o2){return o1.p.pz()<o2.p.pz();}
);
auto old_outgoing = std::move(outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
outgoing.clear();
outgoing.reserve(old_outgoing.size());
for(size_t i: idx) {
outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
if(!decays.empty()){
auto old_decays = std::move(decays);
decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
decays.emplace(i, std::move(decay->second));
}
assert(old_decays.size() == decays.size());
}
}
namespace {
Particle reconstruct_boson(std::vector<Particle> const & leptons) {
Particle decayed_boson;
decayed_boson.p = leptons[0].p + leptons[1].p;
const int pidsum = leptons[0].type + leptons[1].type;
if(pidsum == +1) {
assert(is_antilepton(leptons[0]));
if(is_antineutrino(leptons[0])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_neutrino(leptons[1]));
// charged antilepton + neutrino means we had a W+
decayed_boson.type = pid::Wp;
}
else if(pidsum == -1) {
assert(is_antilepton(leptons[0]));
if(is_neutrino(leptons[1])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_antineutrino(leptons[0]));
// charged lepton + antineutrino means we had a W-
decayed_boson.type = pid::Wm;
}
else if(pidsum == 0) {
assert(is_anylepton(leptons[0]));
if(is_anyneutrino(leptons[0])) {
throw not_implemented{"final state with two neutrinos"};
}
// charged lepton-antilepton pair means we had a Z/photon
decayed_boson.type = pid::Z_photon_mix;
}
else {
throw not_implemented{
"final state with leptons "
+ name(leptons[0].type)
+ " and "
+ name(leptons[1].type)
};
}
return decayed_boson;
}
} // namespace
void Event::EventData::reconstruct_intermediate() {
const auto begin_leptons = std::partition(
begin(outgoing), end(outgoing),
[](Particle const & p) {return !is_anylepton(p);}
);
// We can only reconstruct FS with 2 leptons
if(std::distance(begin_leptons, end(outgoing)) != 2) return;
std::vector<Particle> leptons(begin_leptons, end(outgoing));
std::sort(
begin(leptons), end(leptons),
[](Particle const & p0, Particle const & p1) {
assert(is_anylepton(p0) && is_anylepton(p1));
return p0.type < p1.type;
}
);
// `reconstruct_boson` can throw, it should therefore be called before
// changing `outgoing` to allow the user to recover the original EventData
auto boson = reconstruct_boson(leptons);
outgoing.erase(begin_leptons, end(outgoing));
outgoing.emplace_back(std::move(boson));
decays.emplace(outgoing.size()-1, std::move(leptons));
}
Event Event::EventData::cluster(
fastjet::JetDefinition const & jet_def, double const min_jet_pt
){
sort();
return Event{ std::move(incoming), std::move(outgoing), std::move(decays),
std::move(parameters),
jet_def, min_jet_pt
};
}
Event::Event(
std::array<Particle, 2> && incoming,
std::vector<Particle> && outgoing,
std::unordered_map<size_t, std::vector<Particle>> && decays,
Parameters<EventParameters> && parameters,
fastjet::JetDefinition const & jet_def,
double const min_jet_pt
): incoming_{std::move(incoming)},
outgoing_{std::move(outgoing)},
decays_{std::move(decays)},
parameters_{std::move(parameters)},
cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
min_jet_pt_{min_jet_pt}
{
jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
assert(std::is_sorted(begin(outgoing_), end(outgoing_),
rapidity_less{}));
type_ = classify(*this);
}
namespace {
//! check that Particles have a reasonable colour
bool correct_colour(Particle const & part){
ParticleID id{ part.type };
if(!is_parton(id))
return !part.colour;
if(!part.colour)
return false;
Colour const & col{ *part.colour };
if(is_quark(id))
return col.first != 0 && col.second == 0;
if(is_antiquark(id))
return col.first == 0 && col.second != 0;
assert(id==ParticleID::gluon);
return col.first != 0 && col.second != 0 && col.first != col.second;
}
//! Connect parton to t-channel colour line & update the line
//! returns false if connection not possible
template<class OutIterator>
bool try_connect_t(OutIterator const & it_part, Colour & line_colour){
if( line_colour.first == it_part->colour->second ){
line_colour.first = it_part->colour->first;
return true;
}
if( line_colour.second == it_part->colour->first ){
line_colour.second = it_part->colour->second;
return true;
}
return false;
}
//! Connect parton to u-channel colour line & update the line
//! returns false if connection not possible
template<class OutIterator>
bool try_connect_u(OutIterator & it_part, Colour & line_colour){
auto it_next = std::next(it_part);
if( try_connect_t(it_next, line_colour)
&& try_connect_t(it_part, line_colour)
){
it_part=it_next;
return true;
}
return false;
}
} // namespace
bool Event::is_leading_colour() const {
if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
return false;
Colour line_colour = *incoming()[0].colour;
std::swap(line_colour.first, line_colour.second);
// reasonable colour
if(!std::all_of(outgoing().cbegin(), outgoing().cend(), correct_colour))
return false;
for(auto it_part = cbegin_partons(); it_part!=cend_partons(); ++it_part){
switch (type()) {
case event_type::FKL:
if( !try_connect_t(it_part, line_colour) )
return false;
break;
case event_type::unob:
case event_type::qqbar_exb: {
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at impact factor
&& (std::distance(cbegin_partons(), it_part)!=0
|| !try_connect_u(it_part, line_colour)))
return false;
break;
}
case event_type::unof:
case event_type::qqbar_exf: {
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at impact factor
&& (std::distance(it_part, cend_partons())!=2
|| !try_connect_u(it_part, line_colour)))
return false;
break;
}
case event_type::qqbar_mid:{
auto it_next = std::next(it_part);
if( !try_connect_t(it_part, line_colour)
// u-channel only allowed at q-qbar/qbar-q pair
&& ( ( !(is_quark(*it_part) && is_antiquark(*it_next))
&& !(is_antiquark(*it_part) && is_quark(*it_next)))
|| !try_connect_u(it_part, line_colour))
)
return false;
break;
}
default:
throw std::logic_error{"unreachable"};
}
// no colour singlet exchange/disconnected diagram
if(line_colour.first == line_colour.second)
return false;
}
return (incoming()[1].colour->first == line_colour.first)
&& (incoming()[1].colour->second == line_colour.second);
}
namespace {
//! connect incoming Particle to colour flow
void connect_incoming(Particle & in, int & colour, int & anti_colour){
in.colour = std::make_pair(anti_colour, colour);
// gluon
if(in.type == pid::gluon)
return;
if(in.type > 0){
// quark
assert(is_quark(in));
in.colour->second = 0;
colour*=-1;
return;
}
// anti-quark
assert(is_antiquark(in));
in.colour->first = 0;
anti_colour*=-1;
}
//! connect outgoing Particle to t-channel colour flow
template<class OutIterator>
void connect_tchannel(
OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
){
assert(colour>0 || anti_colour>0);
if(it_part->type == ParticleID::gluon){
// gluon
if(colour>0 && anti_colour>0){
// on g line => connect to colour OR anti-colour (random)
if(ran.flat() < 0.5){
it_part->colour = std::make_pair(colour+2,colour);
colour+=2;
} else {
it_part->colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(colour > 0){
// on q line => connect to available colour
it_part->colour = std::make_pair(colour+2, colour);
colour+=2;
} else {
assert(colour<0 && anti_colour>0);
// on qbar line => connect to available anti-colour
it_part->colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark(*it_part)) {
// quark
assert(anti_colour>0);
if(colour>0){
// on g line => connect and remove anti-colour
it_part->colour = std::make_pair(anti_colour, 0);
anti_colour+=2;
anti_colour*=-1;
} else {
// on qbar line => new colour
colour*=-1;
it_part->colour = std::make_pair(colour, 0);
}
} else if(is_antiquark(*it_part)) {
// anti-quark
assert(colour>0);
if(anti_colour>0){
// on g line => connect and remove colour
it_part->colour = std::make_pair(0, colour);
colour+=2;
colour*=-1;
} else {
// on q line => new anti-colour
anti_colour*=-1;
it_part->colour = std::make_pair(0, anti_colour);
}
} else { // not a parton
assert(!is_parton(*it_part));
it_part->colour = {};
}
}
//! connect to t- or u-channel colour flow
template<class OutIterator>
void connect_utchannel(
OutIterator & it_part, int & colour, int & anti_colour, RNG & ran
){
OutIterator it_first = it_part++;
if(ran.flat()<.5) {// t-channel
connect_tchannel(it_first, colour, anti_colour, ran);
connect_tchannel(it_part, colour, anti_colour, ran);
}
else { // u-channel
connect_tchannel(it_part, colour, anti_colour, ran);
connect_tchannel(it_first, colour, anti_colour, ran);
}
}
} // namespace
bool Event::generate_colours(RNG & ran){
// generate only for HEJ events
if(!event_type::is_resummable(type()))
return false;
assert(std::is_sorted(
begin(outgoing()), end(outgoing()), rapidity_less{}));
assert(incoming()[0].pz() < incoming()[1].pz());
// positive (anti-)colour -> can connect
// negative (anti-)colour -> not available/used up by (anti-)quark
int colour = COLOUR_OFFSET;
int anti_colour = colour+1;
// initialise first
connect_incoming(incoming_[0], colour, anti_colour);
// reset outgoing colours
std::for_each(outgoing_.begin(), outgoing_.end(),
[](Particle & part){ part.colour = {};});
for(auto it_part = begin_partons(); it_part!=end_partons(); ++it_part){
switch (type()) {
// subleading can connect to t- or u-channel
case event_type::unob:
case event_type::qqbar_exb: {
if( std::distance(begin_partons(), it_part)==0)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
case event_type::unof:
case event_type::qqbar_exf: {
if( std::distance(it_part, end_partons())==2)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
case event_type::qqbar_mid:{
auto it_next = std::next(it_part);
if( std::distance(begin_partons(), it_part)>0
&& std::distance(it_part, end_partons())>2
&& ( (is_quark(*it_part) && is_antiquark(*it_next))
|| (is_antiquark(*it_part) && is_quark(*it_next)) )
)
connect_utchannel(it_part, colour, anti_colour, ran);
else
connect_tchannel(it_part, colour, anti_colour, ran);
break;
}
default: // rest has to be t-channel
connect_tchannel(it_part, colour, anti_colour, ran);
}
}
// Connect last
connect_incoming(incoming_[1], anti_colour, colour);
assert(is_leading_colour());
return true;
} // generate_colours
namespace {
bool valid_parton(
std::vector<fastjet::PseudoJet> const & jets,
Particle const & parton, int const idx,
double const soft_pt_regulator, double const min_extparton_pt
){
// TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
if(min_extparton_pt > parton.pt()) return false;
if(idx<0) return false;
assert(static_cast<int>(jets.size())>=idx);
auto const & jet{ jets[idx] };
return (parton.p - jet).pt()/jet.pt() <= soft_pt_regulator;
}
} // namespace
// this should work with multiple types
bool Event::valid_hej_state(double const soft_pt_regulator,
double const min_pt
) const {
using namespace event_type;
if(!is_resummable(type()))
return false;
auto const & jet_idx{ particle_jet_indices() };
auto idx_begin{ jet_idx.cbegin() };
auto idx_end{ jet_idx.crbegin() };
auto part_begin{ cbegin_partons() };
auto part_end{ crbegin_partons() };
// always seperate extremal jets
if(!is_backward_g_to_h(*this)) {
if(! valid_parton(jets(), *part_begin, *idx_begin, soft_pt_regulator, min_pt)) {
return false;
}
++part_begin;
++idx_begin;
// unob -> second parton in own jet
if( type() & (unob | qqbar_exb) ){
if( !valid_parton(jets(), *part_begin, *idx_begin,
soft_pt_regulator, min_pt) )
return false;
++part_begin;
++idx_begin;
}
}
if(!is_forward_g_to_h(*this)) {
if(!valid_parton(jets(), *part_end, *idx_end, soft_pt_regulator, min_pt)) {
return false;
}
++part_end;
++idx_end;
if( type() & (unof | qqbar_exf) ){
if( !valid_parton(jets(), *part_end, *idx_end,
soft_pt_regulator, min_pt) )
return false;
++part_end;
// ++idx_end; // last check, we don't need idx_end afterwards
}
}
if( type() & qqbar_mid ){
// find qqbar pair
auto begin_qqbar{ std::find_if( part_begin, part_end.base(),
[](Particle const & part) -> bool {
return part.type != ParticleID::gluon;
}
)};
assert(begin_qqbar != part_end.base());
long int qqbar_pos{ std::distance(part_begin, begin_qqbar) };
assert(qqbar_pos >= 0);
idx_begin+=qqbar_pos;
if( !( valid_parton(jets(), *begin_qqbar, *idx_begin,
soft_pt_regulator, min_pt)
&& valid_parton(jets(), *std::next(begin_qqbar), *std::next(idx_begin),
soft_pt_regulator, min_pt)
))
return false;
}
return true;
}
bool Event::valid_incoming() const{
for(std::size_t i=0; i < incoming_.size(); ++i){
if(!(HEJ::nearby_ep(std::abs(incoming_[i].pz()), incoming_[i].E(), TOL*incoming_[i].E())
&& (incoming_[i].pt()==0.)))
return false;
}
return true;
}
Event::ConstPartonIterator Event::begin_partons() const {
return cbegin_partons();
}
Event::ConstPartonIterator Event::cbegin_partons() const {
return {HEJ::is_parton, cbegin(outgoing()), cend(outgoing())};
}
Event::ConstPartonIterator Event::end_partons() const {
return cend_partons();
}
Event::ConstPartonIterator Event::cend_partons() const {
return {HEJ::is_parton, cend(outgoing()), cend(outgoing())};
}
Event::ConstReversePartonIterator Event::rbegin_partons() const {
return crbegin_partons();
}
Event::ConstReversePartonIterator Event::crbegin_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
}
Event::ConstReversePartonIterator Event::rend_partons() const {
return crend_partons();
}
Event::ConstReversePartonIterator Event::crend_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
}
Event::PartonIterator Event::begin_partons() {
return {HEJ::is_parton, begin(outgoing_), end(outgoing_)};
}
Event::PartonIterator Event::end_partons() {
return {HEJ::is_parton, end(outgoing_), end(outgoing_)};
}
Event::ReversePartonIterator Event::rbegin_partons() {
return std::reverse_iterator<PartonIterator>( end_partons() );
}
Event::ReversePartonIterator Event::rend_partons() {
return std::reverse_iterator<PartonIterator>( begin_partons() );
}
namespace {
void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
constexpr int prec = 6;
const std::streamsize orig_prec = os.precision();
os <<std::scientific<<std::setprecision(prec) << "["
<<std::setw(2*prec+1)<<std::right<< part.px() << ", "
<<std::setw(2*prec+1)<<std::right<< part.py() << ", "
<<std::setw(2*prec+1)<<std::right<< part.pz() << ", "
<<std::setw(2*prec+1)<<std::right<< part.E() << "]"<< std::fixed;
os.precision(orig_prec);
}
void print_colour(std::ostream & os, optional<Colour> const & col){
constexpr int width = 3;
if(!col)
os << "(no color)"; // American spelling for better alignment
else
os << "(" <<std::setw(width)<<std::right<< col->first
<< ", " <<std::setw(width)<<std::right<< col->second << ")";
}
} // namespace
std::ostream& operator<<(std::ostream & os, Event const & ev){
constexpr int prec = 4;
constexpr int wtype = 3; // width for types
const std::streamsize orig_prec = os.precision();
os <<std::setprecision(prec)<<std::fixed;
os << "########## " << name(ev.type()) << " ##########" << std::endl;
os << "Incoming particles:\n";
for(auto const & in: ev.incoming()){
os <<std::setw(wtype)<< in.type << ": ";
print_colour(os, in.colour);
os << " ";
print_momentum(os, in.p);
os << std::endl;
}
os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
for(auto const & out: ev.outgoing()){
os <<std::setw(wtype)<< out.type << ": ";
print_colour(os, out.colour);
os << " ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< out.rapidity() << std::endl;
}
os << "\nForming Jets: " << ev.jets().size() << "\n";
for(auto const & jet: ev.jets()){
print_momentum(os, jet);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< jet.rapidity() << std::endl;
}
if(!ev.decays().empty() ){
os << "\nDecays: " << ev.decays().size() << "\n";
for(auto const & decay: ev.decays()){
os <<std::setw(wtype)<< ev.outgoing()[decay.first].type
<< " (" << decay.first << ") to:\n";
for(auto const & out: decay.second){
os <<" "<<std::setw(wtype)<< out.type << ": ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(2*prec-1)<<std::right<< out.rapidity() << std::endl;
}
}
}
os << std::defaultfloat;
os.precision(orig_prec);
return os;
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type(); // event type
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
result.IDUP.reserve(num_particles); // PID
result.ISTUP.reserve(num_particles); // status (in, out, decay)
result.PUP.reserve(num_particles); // momentum
result.MOTHUP.reserve(num_particles); // index mother particle
result.ICOLUP.reserve(num_particles); // colour
// incoming
std::array<Particle, 2> incoming{ event.incoming() };
// First incoming should be positive pz according to LHE standard
// (or at least most (everyone?) do it this way, and Pythia assumes it)
if(incoming[0].pz() < incoming[1].pz())
std::swap(incoming[0], incoming[1]);
for(Particle const & in: incoming){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(LHE_Status::in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
assert(in.colour);
result.ICOLUP.emplace_back(*in.colour);
}
// outgoing
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i) != 0u
?LHE_Status::decay
:LHE_Status::out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
if(out.colour)
result.ICOLUP.emplace_back(*out.colour);
else{
result.ICOLUP.emplace_back(std::make_pair(0,0));
}
}
// decays
for(auto const & decay: event.decays()){
for(auto const & out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(LHE_Status::out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
} // namespace HEJ
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 1:37 PM (19 h, 54 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4022984
Default Alt Text
(43 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment