Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index 3e3e4e9..6a02d60 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,625 +1,631 @@
/**
* \authors Jeppe Andersen, Tuomas Hapola, Marian Heil, Andreas Maier, Jennifer Smillie
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/PhaseSpacePoint.hh"
#include <algorithm>
#include <assert.h>
#include <numeric>
#include <random>
#include "fastjet/ClusterSequence.hh"
#include "HEJ/Constants.hh"
#include "HEJ/Event.hh"
#include "HEJ/JetSplitter.hh"
#include "HEJ/kinematics.hh"
#include "HEJ/resummation_jet.hh"
#include "HEJ/utility.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
namespace HEJ{
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int qqxb_idx = -7;
constexpr int qqxf_idx = -6;
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace {
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in arXiv:1805.04446 (see Fig. 2)
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
return cs.inclusive_jets(param_.jet_param.min_pt);
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
const int ng = dist(ran_.get());
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
assert(idx >= 0);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(new_idx >= 0);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
//! \brief relabels qqx-pair with its PDG IDs.
//*@param ev Born Event
//
// This function will label the qqx pair in a qqx event back to
// their original types from the input event.
void PhaseSpacePoint::label_qqx(Event const & event){
auto const & bornout = event.outgoing();
const auto backquark = std::find_if(
begin(bornout) + 1 - ((qqxb_)?1:0), end(bornout) - 1 + ((qqxf_)?1:0) ,
- [](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
+ [](Particle const & s){ return (is_anyquark(s.type)); }
);
- assert(backquark->type !=pid::gluon);
if(backquark == end(bornout) || (backquark+1)->type==pid::gluon) weight_= 0;
+ auto quark1type = backquark->type;
+ auto quark2type = (backquark+1)->type;
+
+ if(is_AWZ_boson((backquark+1)->type)) quark2type = (backquark+2)->type;
+
+ if( !((is_quark(quark1type) && is_antiquark(quark2type))
+ && !(is_quark(quark2type) && is_antiquark(quark1type)))
+ ){
+ weight_=0;
+ }
+
auto partons = to_PseudoJet(filter_partons(outgoing_));
fastjet::ClusterSequence cs(partons, event.jet_def());
const auto jets = fastjet::sorted_by_rapidity(cs.inclusive_jets(event.min_jet_pt()));
const auto indices = cs.particle_jet_indices({jets});
assert(partons.size() == indices.size());
- int qpart=0;
+ int qpart=-1;
// Find Parton in res event closest to most backward qqx jet in born
- for (size_t i=0; i<indices.size(); i++){
- if( (indices[i] != -1) && indices[i]!=indices[i+1]
+ for (size_t i=0; i<indices.size(); i++) {
+ if( (indices[i] != -1) && (indices[i]==indices[i+1]-1)
&& nearby_rap(backquark->rapidity(), partons[i].rapidity(), 0.1)){
qpart=i;
+ outgoing_.at(qpart).type = quark1type;
+ outgoing_.at(qpart+1).type = quark2type;
+ break;
}
}
- if (indices[qpart] == -1) weight_= 0;
- else if (indices[qpart] == 0 && (!qqxb_)) weight_=0;
- else if (indices[qpart] == signed(jets.size()-2) && (!qqxf_)) weight_=0;
-
- // Ensure qqx in separate jets and adjacent in rapidity
- if (indices[qpart] == indices[qpart+1]-1){
- outgoing_.at(qpart).type = backquark->type;
- outgoing_.at(qpart+1).type = (backquark+1)->type;
- }
- else weight_=0;
+ if(qpart==-1) weight_=0;
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
PhaseSpacePoint::PhaseSpacePoint(
Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran
):
unob_{ev.type() == event_type::unob},
unof_{ev.type() == event_type::unof},
qqxb_{ev.type() == event_type::qqxexb},
qqxf_{ev.type() == event_type::qqxexf},
qqxmid_{ev.type() == event_type::qqxmid},
param_{std::move(conf)},
ran_{ran}
{
weight_ = 1;
const auto Born_jets = sorted_by_rapidity(ev.jets());
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
ng - ng_jets, CMINPT, param_.jet_param.min_pt
);
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
if(weight_ == 0.) return;
if(! pass_resummation_cuts(jets)){
weight_ = 0.;
return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets);
if(weight_ == 0.) return;
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Particle{pid::gluon, std::move(p), {}});
}
const auto WEmit = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & s){ return abs(s.type) == pid::Wp; }
);
- if (abs(WEmit->type) == pid::Wp){
- outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type;
- outgoing_.rbegin()[unof_].type = filter_partons(ev.outgoing()).rbegin()[unof_].type;
- }
+ if (WEmit != end(ev.outgoing()) && abs(WEmit->type) == pid::Wp){
+ if(!qqxb_)
+ outgoing_[unob_].type = filter_partons(ev.outgoing())[unob_].type;
+ if(!qqxf_)
+ outgoing_.rbegin()[unof_].type = filter_partons(ev.outgoing()).rbegin()[unof_].type;
+ }
else{
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
}
if(qqxmid_||qqxb_||qqxf_){
label_qqx(ev);
}
copy_AWZH_boson_from(ev);
assert(!outgoing_.empty());
reconstruct_incoming(ev.incoming());
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.get().flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.get().flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.get().flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return partons;
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param_.jet_param.def.R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(ran_.get());
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
const auto jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// additional Jacobian to ensure Born integration over delta gives 1
weight_ *= resummation_jet_weight(Born_jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param_.jet_param.def.R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if((unob_||qqxb_) && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if((unof_||qqxf_) && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.get().flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets
){
return split(jets, distribute_jet_partons(ng_jets, jets));
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param_.min_extparton_pt) return false;
return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_ + qqxb_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_ - qqxf_;
const auto & jet = param_.jet_param;
const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_};
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
auto split_res = jet_splitter.split(jets[i], np[i]);
weight_ *= split_res.weight;
if(weight_ == 0) return {};
assert(
std::all_of(
begin(split_res.constituents), end(split_res.constituents),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(split_res.constituents), end(split_res.constituents)
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
auto extremal = end(jet_partons);
if (i == most_backward_FKL_idx){ //FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(backward_FKL_idx);
}
else if(((unob_ || qqxb_) && i == 0)){
// unordered/qqxb
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unob_)?unob_idx:qqxb_idx);
}
else if (i == most_forward_FKL_idx){
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(forward_FKL_idx);
}
else if(((unof_ || qqxf_) && i == jets.size() - 1)){
// unordered/qqxf
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index((unof_)?unof_idx:qqxf_idx);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
if(qqxb_ && partons.front().user_index() != qqxb_idx) return false;
if(qqxf_ && partons.back().user_index() != qqxf_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons));
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_ + qqxb_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_ - qqxf_;
assert(idx < partons.size());
return partons[idx];
}
namespace {
bool contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
){
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
return std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
}
}
/**
* final jet test:
* - number of jets must match Born kinematics
* - no partons designated as nonjet may end up inside jets
* - all other outgoing partons *must* end up inside jets
* - the extremal (in rapidity) partons must be inside the extremal jets
* - rapidities must be the same (by construction)
*/
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Particle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved());
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved() const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
const double norm = diff.E();
for(auto const & out: outgoing()) diff -= out.p;
return nearby(diff, fastjet::PseudoJet{}, norm);
}
} //namespace HEJ

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:31 PM (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4211500
Default Alt Text
(22 KB)

Event Timeline