Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/Event.cc b/src/Event.cc
index e746119..fb6a40c 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,342 +1,343 @@
#include "RHEJ/Event.hh"
#include "RHEJ/debug.hh"
namespace RHEJ{
namespace{
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
// helper functions to determine event type
// check if there is at most one photon, W, H, Z in the final state
// and all the rest are quarks or gluons
bool final_state_ok(std::vector<Sparticle> const & outgoing){
bool has_AWZH_boson = false;
for(auto const & out: outgoing){
if(is_AWZH_boson(out.type)){
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
}
else if(! is_parton(out.type)) return false;
}
return true;
}
template<class Iterator>
Iterator remove_AWZH(Iterator begin, Iterator end){
return std::remove_if(
begin, end, [](Sparticle const & p){return is_AWZH_boson(p);}
);
}
template<class Iterator>
bool valid_outgoing(Iterator begin, Iterator end){
return std::distance(begin, end) >= 2
&& std::is_sorted(begin, end, rapidity_less{})
&& std::count_if(
begin, end, [](Sparticle const & s){return is_AWZH_boson(s);}
) < 2;
}
// Note that this changes the outgoing range!
template<class ConstIterator, class Iterator>
bool is_FKL(
ConstIterator begin_incoming, ConstIterator end_incoming,
Iterator begin_outgoing, Iterator end_outgoing
){
assert(std::distance(begin_incoming, end_incoming) == 2);
assert(std::distance(begin_outgoing, end_outgoing) >= 2);
// One photon, W, H, Z in the final state is allowed.
// Remove it for remaining tests,
end_outgoing = remove_AWZH(begin_outgoing, end_outgoing);
// Test if this is a standard FKL configuration.
return
(begin_incoming->type == begin_outgoing->type)
&& ((end_incoming-1)->type == (end_outgoing-1)->type)
&& std::all_of(
begin_outgoing + 1, end_outgoing - 1,
[](Sparticle const & p){ return p.type == pid::gluon; }
);
}
bool is_FKL(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> outgoing
){
assert(std::is_sorted(begin(incoming), end(incoming), pz_less{}));
assert(valid_outgoing(begin(outgoing), end(outgoing)));
return is_FKL(
begin(incoming), end(incoming),
begin(outgoing), end(outgoing)
);
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief Checks whether event is unordered backwards
* @param ev Event
* @returns Is Event Unordered Backwards
*
* Checks there is more than 3 constuents in the final state
* Checks there is more than 3 jets
* Checks the most backwards parton is a gluon
* Checks the most forwards jet is not a gluon
* Checks the rest of the event is FKL
* Checks the second most backwards is not a different boson
* Checks the unordered gluon actually forms a jet
*/
bool is_unordered_backward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.front().type == pid::gluon) return false;
if(out.front().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) first outgoing particle must not be a A,W,Z,H.
const auto FKL_begin = next(begin(out));
if(is_AWZH_boson(*FKL_begin)) return false;
if(!is_FKL(in, {FKL_begin, end(out)})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.front()});
return indices[0] >= 0 && indices[1] == -1;
}
/**
* \brief Checks for a forward unordered gluon emission
* @param ev Event
* @returns Is the event a forward unordered emission
*
* \see is_unordered_backward
*/
bool is_unordered_forward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.back().type == pid::gluon) return false;
if(out.back().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) last outgoing particle must not be a A,W,Z,H.
const auto FKL_end = prev(end(out));
if(is_AWZH_boson(*prev(FKL_end))) return false;
if(!is_FKL(in, {begin(out), FKL_end})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.back()});
return indices.back() >= 0 && indices[indices.size()-2] == -1;
}
using event_type::EventType;
EventType classify(Event const & ev){
if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state;
if(! has_2_jets(ev)) return EventType::no_2_jets;
if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL;
if(is_unordered_backward(ev)){
return EventType::unordered_backward;
}
if(is_unordered_forward(ev)){
return EventType::unordered_forward;
}
return EventType::nonFKL;
}
Sparticle extract_particle(LHEF::HEPEUP const & hepeup, int i){
return Sparticle{
static_cast<ParticleID>(hepeup.IDUP[i]),
fastjet::PseudoJet{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
}
};
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
}
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup):
central(EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
})
{
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
std::sort(
begin(incoming), end(incoming),
[](Sparticle o1, Sparticle o2){return o1.p.pz()<o2.p.pz();}
);
std::sort(begin(outgoing), end(outgoing), rapidity_less{});
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Sparticle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
):
ev_{std::move(ev)},
cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def},
min_jet_pt_{min_jet_pt}
{
type_ = classify(*this);
}
std::vector<fastjet::PseudoJet> Event::jets() const{
return cs_.inclusive_jets(min_jet_pt_);
}
/**
* \brief Returns the invarient mass of the event
* @param ev Event
* @returns s hat
*
* Makes use of the FastJet PseudoJet function m2().
* Applies this function to the sum of the incoming partons.
*/
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
namespace{
// colour flow according to Les Houches standard
// TODO: stub
std::vector<std::pair<int, int>> colour_flow(
std::array<Sparticle, 2> const & incoming,
std::vector<Sparticle> const & outgoing
){
std::vector<std::pair<int, int>> result(
incoming.size() + outgoing.size()
);
for(auto & col: result){
col = std::make_pair(-1, -1);
}
return result;
}
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
- result.IDPRUP = 1;
- result.AQEDUP = 1./128.;
+ result.IDPRUP = event.type()+1; // event ID
+ result.AQEDUP = 1./128.; // alpha_EW
+ //result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
for(Sparticle const & in: event.incoming()){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
}
for(size_t i = 0; i < event.outgoing().size(); ++i){
Sparticle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
}
result.ICOLUP = colour_flow(
event.incoming(), filter_partons(event.outgoing())
);
if(result.ICOLUP.size() < num_particles){
const size_t AWZH_boson_idx = std::find_if(
begin(event.outgoing()), end(event.outgoing()),
[](Sparticle const & s){ return is_AWZH_boson(s); }
) - begin(event.outgoing()) + event.incoming().size();
assert(AWZH_boson_idx <= result.ICOLUP.size());
result.ICOLUP.insert(
begin(result.ICOLUP) + AWZH_boson_idx,
std::make_pair(0,0)
);
}
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const int mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}
diff --git a/src/LesHouchesWriter.cc b/src/LesHouchesWriter.cc
index 2c3314c..2e67011 100644
--- a/src/LesHouchesWriter.cc
+++ b/src/LesHouchesWriter.cc
@@ -1,85 +1,86 @@
#include <stdexcept>
#include <memory>
#include <cassert>
#include "RHEJ/LesHouchesWriter.hh"
+#include "RHEJ/event_types.hh"
#include "RHEJ/Event.hh"
namespace RHEJ{
namespace{
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... a){
return std::unique_ptr<T>{new T{std::forward<Args>(a)...}};
}
}
LesHouchesWriter::LesHouchesWriter(
std::string const & file, LHEF::HEPRUP heprup
):
out_{file, std::fstream::in | std::fstream::out | std::fstream::trunc},
writer_{RHEJ::make_unique<LHEF::Writer>(out_)}
{
if(! out_.is_open()){
throw std::ios_base::failure("Failed to open " + file);
};
writer_->heprup = std::move(heprup);
// lhe Stardard: IDWTUP (negative => weights = +/-)
// 3: weight=+/-, xs given in head (same as default MG)
// 4: weight=+/-, xs = avg(weights)
writer_->heprup.IDWTUP = -3;
writer_->heprup.generators.emplace_back(LHEF::XMLTag{});
writer_->heprup.generators.back().name = "HEJ";
writer_->heprup.generators.back().version = "0.0.1";
// use placeholders for unknown init block values
// we can overwrite them after processing all events
- writer_->heprup.XSECUP = {0.};
- writer_->heprup.XERRUP = {0.};
- writer_->heprup.XMAXUP = {0.};
+ writer_->heprup.XSECUP = std::vector<double>(event_type::last_type+1, 0.);
+ writer_->heprup.XERRUP = std::vector<double>(event_type::last_type+1, 0.);
+ writer_->heprup.XMAXUP = std::vector<double>(event_type::last_type+1, 0.);
write_init();
}
void LesHouchesWriter::write(Event const & ev){
assert(writer_ && out_.is_open());
const double wt = ev.central().weight;
writer_->hepeup = RHEJ::to_HEPEUP(std::move(ev), &heprup());
writer_->writeEvent();
- heprup().XSECUP.front() += wt;
- heprup().XERRUP.front() += wt*wt;
- if(wt > heprup().XMAXUP.front()){
- heprup().XMAXUP.front() = wt;
+ heprup().XSECUP[ev.type()] += wt;
+ heprup().XERRUP[ev.type()] += wt*wt;
+ if(wt > heprup().XMAXUP[ev.type()]){
+ heprup().XMAXUP[ev.type()] = wt;
}
}
// this function is called after overwritting the Les Houches init block
// assert that we have overwritten *exactly* the init block,
// i.e. an intact event block is next
void assert_next_event_intact(std::istream & out){
(void) out; // suppress compiler warnings if not in debug mode
#ifndef NDEBUG
std::string line;
getline(out, line);
assert(line == "<event>");
#endif
}
void LesHouchesWriter::rewrite_init(){
assert(writer_ && out_.is_open());
// replace placeholder entries
const auto pos = out_.tellp();
out_.seekp(0);
writer_->init();
assert_next_event_intact(out_);
out_.seekp(pos);
}
LesHouchesWriter::~LesHouchesWriter(){
assert(writer_ && out_.is_open());
heprup().XERRUP.front() = sqrt(heprup().XERRUP.front());
rewrite_init();
}
}

File Metadata

Mime Type
text/x-diff
Expires
Wed, May 14, 11:32 AM (14 h, 9 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5094514
Default Alt Text
(15 KB)

Event Timeline